1. N	molecules	each of mass	m and v	velocity	collides	with a	wall of a	container	and
ther	absorbed.	the pressure	applied	on the w	all is:				

(1) mNV^2 (2) $\frac{\text{mNV}^2}{3}$ (3) 2 mNV^2 (4) $\frac{\text{mNV}^2}{2}$

2. The law of far a day is obtained by conservation of :

(1) Charge (2) Energy (3) Energy and magnetic field (4) Magnetic field

3. There is a q charge placed in the centre of a cube, then the emergent flux is :

(1) \underline{q} (2) \underline{q} (3) \underline{q} (4) \underline{q} (6) \underline{q} (6) \underline{q} (7) \underline{q} (9) \underline{q} (10) \underline{q} (11) \underline{q} (12) \underline{q} (13) \underline{q} (13) \underline{q} (14) \underline{q} (15) \underline{q} (15) \underline{q} (15) \underline{q} (15) \underline{q} (15) \underline{q} (15) \underline{q} (17) \underline{q} (17) \underline{q} (18) \underline{q} (18)

4. Two thin lenses are put close to each other, focal length of the combination is :

(1) less than the small focal length

(2) more than the bigger focal length

(3) equal to the arithmetical average of the focal length

(4) equal to the geometrical average of the focal length

5. A car is moving on a horizontal circular path with 10 m/s constant speed. A rigid body is suspended from ceiling of car with a 1 m. long light rod, the angle between rod and path is:

 $(1) 60^{\circ}$

(2) 45° (3) 30° (4) zero

6. Two sources of E1 and E2 emf r1 and r2 internal, resistances, are connected in the parallel combination, the emf of the combination is:

(1) $\underline{E_1E_2}_{E_1+E_2}$ (2) $\underline{E_2r_1 + E_1r_2}_{r_1 + r_2}$ (3) $\underline{E_1r_1 + E_2r_2}_{r_1 + r_2}$ (4) $\underline{E_1 + E_2}_2$

7. In a AC circuit $R = 0 \Omega$, $X_L = 8\Omega$ and $X_C = 6\Omega$ phase difference between voltage and current is : (1) 11⁰ (2) 45⁰ (3) 37⁰(4) 12⁰

8. Relative permeability of a medium is $\mu \mu$ and relative permittivity is ϵ_r then the velocity of an electro magnetic wave is :

(1) c (2) $\sqrt{\epsilon_r \mu_r}$ (3) $\sqrt{\mu_0 t_0}$ $\mu_t \epsilon_r$

(4) 1: 2

9. Ration of radius of two soap bubbles is 2: 1 then the ratio of their excess

(3) 1:4

10. Ratio of sound velocities is H2 and O2 will be:

11	-		
μ	r	г	

pressure is: (1) 2:1

(2)4:1

11. In which	n of the waves	s the energy is	not propagated :
(1) em wave	s	C.N.	
(2) longitudi	ional waves		
(3) stationar			
(4) transvers			
12. A body	of 2 kg. mass	is moving und	er a force, relation between time and
displacemen	$nt is x = t^3 wh$	ere x in meter	and t in time work done in first two secon
is:	3		
(1) 1.6 J	(2) 16 J	(3) 160 J	and t in time work done in first two secon (4) 1600 J
			mass, two third part of chain is on a
			ertically suspended, work done to pull the
whole chair	on table, is :		
(1) MgL	(2) MgL	(3) MgL 6	(4) MgL
18	9	6	3
			ident light is doubled then :
(1) -h-t1.			
(1) photo ele	ectric current v	vill become is ti	imes
(2) kinetic e	nergy of the er	mitted electron	will be increased and current will be 2 times
(2) kinetic e (3) kinetic e	nergy of the er nergy of electr	mitted electron vons will be 4 time	will be increased and current will be 2 times mes
(2) kinetic e (3) kinetic e	nergy of the er nergy of electr	mitted electron	will be increased and current will be 2 times mes
(2) kinetic e (3) kinetic e (4) the kinet	nergy of the er nergy of electr ic energy of el	mitted electron vons will be 4 til ectrons will be	will be increased and current will be 2 times mes 2 times
(2) kinetic e (3) kinetic e (4) the kinet 15. A car tr	nergy of the er nergy of electr ic energy of el avels half dis	mitted electron vons will be 4 till ectrons will be tance with 40 k	will be increased and current will be 2 times mes
(2) kinetic et (3) kinetic et (4) the kinet 15. A car tr then the ave	nergy of the er nergy of electr ic energy of el avels half dis- erage speed of	mitted electron with the 4 time ectrons will be 4 time ectrons will be tance with 40 k f car is:	will be increased and current will be 2 times mes 2 times cmph and rest half distance with 60 kmph
(2) kinetic e (3) kinetic e (4) the kinet 15. A car tr	nergy of the er nergy of electr ic energy of el avels half dis- erage speed of	mitted electron with the 4 time ectrons will be 4 time ectrons will be tance with 40 k f car is:	will be increased and current will be 2 times mes 2 times
(2) kinetic e (3) kinetic e (4) the kinet 15. A car tr then the ave (1) 60 kmph	nergy of the er nergy of electr ic energy of el avels half dist erage speed of (2)	mitted electron vons will be 4 til ectrons will be tance with 40 k f car is: 52 kmph (3) 4	will be increased and current will be 2 times mes 2 times kmph and rest half distance with 60 kmph 48 kmph (4) 40 kmph
(2) kinetic et (3) kinetic et (4) the kinet 15. A car tr then the avo (1) 60 kmph	nergy of the er nergy of electr ic energy of el avels half dist erage speed of (2):	mitted electron vons will be 4 til ectrons will be tance with 40 k f car is: 52 kmph (3) 4	will be increased and current will be 2 times mes 2 times kmph and rest half distance with 60 kmph kmph (4) 40 kmph velocities in the circular paths of r ₁ and r ₂
(2) kinetic et (3) kinetic et (4) the kinet 15. A car tr then the avo (1) 60 kmph	nergy of the er nergy of electr ic energy of el avels half dist erage speed of (2):	mitted electron vons will be 4 til ectrons will be tance with 40 k f car is: 52 kmph (3) 4	will be increased and current will be 2 times mes 2 times kmph and rest half distance with 60 kmph kmph (4) 40 kmph velocities in the circular paths of r ₁ and r ₂
(2) kinetic e (3) kinetic e (4) the kinet 15. A car tr then the ava (1) 60 kmph 16. Two par radius then	nergy of the er nergy of electr ic energy of el avels half dis- erage speed of (2): rticle are mov the ratio of the	mitted electron vions will be 4 till ectrons will be tance with 40 kf car is: 52 kmph (3) 4 ting with same heir centripeta	will be increased and current will be 2 times mes 2 times cmph and rest half distance with 60 kmph 48 kmph (4) 40 kmph velocities in the circular paths of r ₁ and r ₂ Il forces is:
(2) kinetic e (3) kinetic e (4) the kinet 15. A car tr then the ava (1) 60 kmph 16. Two par radius then	nergy of the er nergy of electr ic energy of el avels half dis- erage speed of (2): rticle are mov the ratio of the	mitted electron vions will be 4 till ectrons will be tance with 40 kf car is: 52 kmph (3) 4 ting with same heir centripeta	will be increased and current will be 2 times mes 2 times cmph and rest half distance with 60 kmph 48 kmph (4) 40 kmph velocities in the circular paths of r ₁ and r ₂ Il forces is:
(2) kinetic e (3) kinetic e (4) the kinet 15. A car tr then the ava (1) 60 kmph 16. Two par radius then	nergy of the er nergy of electr ic energy of el avels half dis- erage speed of (2): rticle are mov the ratio of the	mitted electron vions will be 4 till ectrons will be tance with 40 kf car is: 52 kmph (3) 4 ting with same heir centripeta	will be increased and current will be 2 times mes 2 times cmph and rest half distance with 60 kmph 48 kmph (4) 40 kmph velocities in the circular paths of r ₁ and r ₂ Il forces is:
(2) kinetic e (3) kinetic e (4) the kinet 15. A car tr then the ava (1) 60 kmph 16. Two par radius then	nergy of the er nergy of electr ic energy of el avels half dis- erage speed of (2): rticle are mov the ratio of the	mitted electron vions will be 4 till ectrons will be tance with 40 kf car is: 52 kmph (3) 4 ting with same heir centripeta	will be increased and current will be 2 times mes 2 times kmph and rest half distance with 60 kmph kmph (4) 40 kmph velocities in the circular paths of r ₁ and r ₂
(2) kinetic e (3) kinetic e (4) the kinet 15. A car tr then the ava (1) 60 kmph 16. Two par radius then	nergy of the er nergy of electr ic energy of el avels half dis- erage speed of (2): rticle are mov the ratio of the	mitted electron vions will be 4 till ectrons will be tance with 40 kf car is: 52 kmph (3) 4 ting with same heir centripeta	will be increased and current will be 2 times mes 2 times cmph and rest half distance with 60 kmph 48 kmph (4) 40 kmph velocities in the circular paths of r ₁ and r ₂ Il forces is:
(2) kinetic et (3) kinetic et (4) the kinet 15. A car tr then the ave (1) 60 kmph 16. Two pair radius then (1) r ₂ r ₁	nergy of the er nergy of electric energy of el avels half disterage speed of (2): rticle are move the ratio of the ratio	mitted electron vons will be 4 time ectrons will be 52 kmph (3) 4 ting with same heir centripeta (3)	will be increased and current will be 2 times mes 2 times 2 times 2 times 2 times 2 times 48 kmph and rest half distance with 60 kmph 48 kmph (4) 40 kmph 2 velocities in the circular paths of \mathbf{r}_1 and \mathbf{r}_2 if forces is : $\begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \end{bmatrix}^2 \qquad (4) \qquad \begin{bmatrix} \mathbf{r}_2 \\ \mathbf{r}_1 \end{bmatrix}^2$
(2) kinetic e (3) kinetic e (4) the kinet 15. A car tr then the ave (1) 60 kmph 16. Two par radius then (1) r r 1	nergy of the er nergy of electric energy of el avels half disterage speed of (2): rticle are move the ratio of the ratio	mitted electron vions will be 4 till ectrons will be tance with 40 kf car is: 52 kmph (3) 4 ting with same heir centripeta	will be increased and current will be 2 times mes 2 times 2 times 2 times 2 times 2 times 48 kmph and rest half distance with 60 kmph 48 kmph (4) 40 kmph 2 velocities in the circular paths of \mathbf{r}_1 and \mathbf{r}_2 if forces is : $\begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \end{bmatrix}^2 \qquad (4) \qquad \begin{bmatrix} \mathbf{r}_2 \\ \mathbf{r}_1 \end{bmatrix}^2$
(2) kinetic et (3) kinetic et (4) the kinet 15. A car tr then the ave (1) 60 kmph 16. Two pairadius then (1) r ₂ /r ₁ 17. No. of el	nergy of the er nergy of electric energy of el avels half disterage speed of (2): rticle are move the ratio of the extreme of the electrons in the	mitted electron vons will be 4 time ectrons will be 52 kmph (3) 4 ting with same heir centripeta (3)	will be increased and current will be 2 times mes 2 times 2 times 2 times 2 times 2 times 48 kmph and rest half distance with 60 kmph 48 kmph (4) 40 kmph 2 velocities in the circular paths of \mathbf{r}_1 and \mathbf{r}_2 if forces is : $ \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \end{bmatrix}^2 \qquad (4) \qquad \left(\frac{\mathbf{r}_2}{\mathbf{r}_1} \right)^2 $ and is:

IX. I ne wa	velength of pho	ton and electr	on is A., and 2	and energy (E) of the two is
same then		non and circu	on is repn und r	cand chergy (E) of the two is
	erence can be ob	tain if F is give	n	
(2) λe>λph		um n L to give		
(3) λph . λo				
(3) λph - λe (4) λph=λe				
(+) kpii-ke	,			
19. A lift is	moving with a	cceleration a li	n upward dire	ction then the force applied by
	the floor of lift			,
(1) ma	(2) m(g-a)	(3) m(g+a)	(4) mg	
20. Two ca	ers of m ₁ and m ₂	mass are mov	ing in the circ	ular paths of r1 and r2 radius,
		ey travels one	cycle in the sai	me time, the ratio of their
	locities is :	8	120	
$(1) m_1 r_1 : n$	$n_2r_2(2)1:1$	$(3) r_1 : r_2$	(4) m ₁ : m ₂	
21 A ring	of more M radi	ine e le movine	with angular	valualty w. If another two
				velocity w, if another two
odies eac				velocity w, if another two sultant angular velocity will
bodies eac be :	h of mass m is p	laced on its di	ameter, the re	sultant angular velocity will
bodies eac be :	h of mass m is p	laced on its di	ameter, the re	sultant angular velocity will (4) wM
bodies eac be :	h of mass m is p		ameter, the re	sultant angular velocity will
bodies eac be :	h of mass m is p	laced on its di	ameter, the re	sultant angular velocity will (4) wM
bodies each be: (1) w(M +	h of mass m is p - 2m) (2) w (2)	olaced on its di or(M – 2m) M + 2m)	(3) wM (m+m)	(4) <u>wM</u> (M+2m)
bodles eache: (1) w(M+ M	h of mass m is p - 2m) (2) w (2)	olaced on its di v(M - 2m) M + 2m) e V photon 1.2	(3) <u>wM</u> (m+m) 5 x 10 ⁻⁹ m the	sultant angular velocity will (4) wM
bodies eache: (1) w(M + M) 22. The way will be:	h of mass m is p + 2m) (2) w (1) (2) welength of 1 ke	olaced on its di (M - 2m) M + 2m) e V photon 1.2	(3) wM (m+m)	(4) <u>wM</u> (M+2m)
bodies eache: (1) w(M + M) 22. The way will be:	h of mass m is p - 2m) (2) w (2)	olaced on its di (M - 2m) M + 2m) e V photon 1.2	(3) <u>wM</u> (m+m) 5 x 10 ⁻⁹ m the	(4) wM (M+2m) frequency of Me V photon
bodies each be: (1) w(M+ M 22. The was will be: (1) 1.24 x 1	h of mass m is p - 2m) (2) w (2) w (2) w (3) (4) (5) (6) (7) (7) (8) (8) (9) (9) (10) (olaced on its di or (M - 2m) M + 2m) e V photon 1.2 order of:	(3) <u>wM</u> (m+m) 5 x 10 ⁻⁹ m the 4 x 10 ²³	(4) wM (M+2m) frequency of Me V photon (4) 1.24 x 10 ¹⁵
bodies each be: (1) w(M+ M 22. The wa will be: (1) 1.24 x 1 23. Size of	h of mass m is p - 2m) (2) w (2) w (2) w (3) (4) (5) (6) (7) (7) (8) (8) (9) (9) (10) (olaced on its di or (M - 2m) M + 2m) e V photon 1.2 order of:	(3) <u>wM</u> (m+m) 5 x 10 ⁻⁹ m the	(4) wM (M+2m) frequency of Me V photon (4) 1.24 x 10 ¹⁵
bodies each be: (1) w(M + M) 22. The wa will be: (1) 1.24 x 1	h of mass m is p - 2m) (2) w (2) w (2) w (3) (4) (5) (6) (7) (7) (8) (8) (9) (9) (10) (olaced on its di or (M - 2m) M + 2m) e V photon 1.2 order of:	(3) <u>wM</u> (m+m) 5 x 10 ⁻⁹ m the 4 x 10 ²³	(4) wM (M+2m) frequency of Me V photon (4) 1.24 x 10 ¹⁵
bodies each be: (1) w(M + M) 22. The wa will be: (1) 1.24 x 1 23. Size of (1) 10 ⁻¹³ cm	h of mass m is p (2) w (1) (2) w (2) (3) (4) (5) (6) (7) (7) (8) (8) (9) (10)	olaced on its di ((M - 2m) M + 2m) e V photon 1.2 3 (3) 2. c order of: 0 ^{-10 cm} . (3) 10	(3) wM (m+m) 5 x 10 ⁻⁹ m the 4 x 10 ²³	(4) wM (M+2m) frequency of Me V photon (4) 1.24 x 10 ¹⁵ 0 ⁻¹⁵ cm.
bodies each be: (1) w(M + M) 22. The wa will be: (1) 1.24 x 1 23. Size of (1) 10 ⁻¹³ cm 24. If MI, 3	h of mass m is p (2) w (1) (2) w (2) (3) (4) (5) (6) (7) (7) (8) (8) (9) (10)	olaced on its di ((M - 2m) M + 2m) e V photon 1.2 3 (3) 2. c order of: 0 ^{-10 cm} . (3) 10	(3) wM (m+m) 5 x 10 ⁻⁹ m the 4 x 10 ²³	(4) wM (M+2m) frequency of Me V photon (4) 1.24 x 10 ¹⁵
bodies each be: (1) w(M + M) 22. The wa will be: (1) 1.24 x 1 23. Size of (1) 10 ⁻¹³ cm 24. If MI, 3	h of mass m is p 1 (2) w 1 (1) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2)	olaced on its di ((M - 2m) M + 2m) e V photon 1.2 3 (3) 2. c order of: 0 ^{-10 cm} . (3) 10	(3) wM (m+m) 5 x 10 ⁻⁹ m the 4 x 10 ²³	(4) wM (M+2m) frequency of Me V photon (4) 1.24 x 10 ¹⁵ 0 ⁻¹⁵ cm.

25. In a uniform circular motion :

- (1) both acceleration and speed changes
- (2) both acceleration and speed are constant
- (3) both acceleration and velocity are constant
- (4) both acceleration and velocity changes

26. Ratio of average kinetic evergies of H2 and O2 at a given temp. is :

(1) 1:1 (2) 1:4 (3) 1:8 (4) 1:16

27. To make the working of a machine, free of magnetism, the cover of this machine must be of :

- (1) non magnetic substance
- (2) diamagnetic substance
- (3) paramagnetic substance
- (4) ferro magnetic substance

28. λ_{α} , λ_{β} and λ_{r} are the wavelengths of k α ,	ka and kr lines of X-ray spectrum then :
--	--

(1)
$$\lambda_{\beta} > \lambda_{\pi} > \lambda_{\tau}$$
 (2) $\lambda_{\alpha} < \lambda_{B} < \lambda$

(1)
$$\lambda_{\beta} > \lambda_{\alpha} > \lambda_{\tau}$$
 (2) $\lambda_{\alpha} < \lambda_{\beta} < \lambda_{\tau}$ (3) $\lambda_{\alpha} > \lambda_{\beta} > \lambda_{\tau}$ (4) $\lambda_{\alpha} = \lambda_{\beta} = \lambda_{\tau}$

29. Angular momentum of electron of H atom is proportional to:

$$(4) r^2$$

30. MI, rotational kinetic energy and angular momentum of a body is I, E and L then:

(1)
$$E = \frac{L^2}{2L}$$

(1)
$$E = \frac{L^2}{2I}$$
 (2) $E^2 = \frac{2I}{L}$ (3) $E = 2IL$ (4) $L = \frac{E^2}{2I}$

$$(3) E = 2IL$$

(4)
$$L = E^2$$

31. In a diode value, the state of saturation can be obtained easily by :

- (1) high plate voltage and high filament
- (2) low filament current and high plate voltage
- (3) low plate voltage and high plate tem
- (4) high filament current and high plate voltage

32. A magnet is dropped in a long coppertube vertically, the acceleration of magnet:

- (1) equal to g
- (2) less than g (3) zero
- (4) greater than g

33. Joule-second is unit of:

- (1) rotational power
- (2) angular momentum
- (3) rotational energy
- (4) torgue

34. A 3 coulomb charge enerts 3000 N force in a uniform electrical field, the distance between two points is 1 cm. potential difference will be :

35, 1000 drops, each v volt, are combined to form a big drop, then the potential of the drop will be how many times :

36. A plane is revoloving around the earth with 100 km./hr. speed at a earth, the changes in the velocity as it travels half circle is :

37. 3 x 107 kg, water is initially constant and it is displaced 3 m, by applying 5 x 104 N force. Velocity of water will be (if resistance of water is zero):

(4) 0.125 amp

(2) 0.025 amp (3) 0.060 amp

(1) 0.021 amp

(1) 8 shape	(2) an ellipse	(3) a circle	(4) a straight line
40. A monoa	tomic gas (r = 5	(3) and a diate	omic gas (r= 7/5) are mixed in equal ratio the
the r of mixt			8-1-1-1
(1) 3.07	(2) 1.53	(3) 1.5	(4) 1.4
Al Walasin	C		107 - 108 / th th ti-lt-i
(1) 2.10		(3) 1.45	2.07 x 108 m/sec. then the dielectric constant (4) 1.22
	ission of a β-par	rticle, the nucl	eus :
(1) A - 4, Z	-2 (2) A,	Z-1 (3) A	, Z-2 (4) A + 2, Z
	n a proton is 9.6 cular path, the er (2) 12.02	nergy of protor	proton is moving in a 1T magnetic field in (n in Mev. (4) 4.84
44. If $\frac{d^2\omega}{dx^2}$	$+ \alpha x = 0$ then	the angular fre	quency will be :
(1) √α	$(2) \alpha^2$	(3) α	(4) zero
45. Noble pr	ize presented to	Finstein for:	1
(1) therories		Linstelli Ioi .	
(2) photo ele			
(3) theory of			
	specific heat in	solids	
to D. c.		4	100
	aturation current	the ratio of pl	ate currents at 400 v and 200 v plate voltage
is:	(2) 2	(2) 2-75	(1) -/
(1) $\frac{1}{2}$	(2) 2	(3) 2V2	(4) <u>V2</u> 4
$47 \text{ If } I = I_0 \text{ s}$	in $(\omega t - \pi/2)$ and	$d E = E_0 \sin \omega$	then the power loss is:
			(4) zero
	2	$(3) \underline{\underline{E_0}}_0$ $\sqrt{2}$	**
(1) <u>EI</u> √2	2		
$(1) \frac{EI}{\sqrt{2}}$			ontainer is increased 1°C, the increase in
(1) $\frac{EI}{\sqrt{2}}$ 48. If the ten	np. of an ideal g	as filled in a co	ontainer is increased 1°C, the increase in s is:
(1) $\frac{EI}{\sqrt{2}}$ 48. If the ten		as filled in a co	
(1) $\frac{\text{EI}}{\sqrt{2}}$ 48. If the ten pressure is 0 (1) 120°C	np. of an ideal g 4%, the initial t (2) 200°K	as filled in a co emp. of the ga (3) 250°K	s is : (4) 250°C
(1) <u>EI</u> √2 48. If the ten pressure is 0 (1) 120°C 49. Plate resi	np. of an ideal g 4%, the initial t (2) 200°K	as filled in a co emp. of the ga (3) 250°K	s is : (4) 250^{0} C $2K\Omega$ and $4K\Omega$, amplification factor of each
(1) <u>EI</u> √2 48. If the ten pressure is 0 (1) 120°C 49. Plate resi	np. of an ideal g .4%, the initial t (2) 200°K istances of two t is 40°. The ratio	as filled in a co emp. of the ga (3) 250°K	s is:

50. Relation between displacement x and time t is $x = 2 - 5t + 6t^2$, the initial velocity will

(1)-3 m/sec. (2) 12 m/sec. (3) 2 m/sec. (4) - 5 m/sec.

51. Focal length of a convex lens is 16 cm. it is dipped in water. The refractive indices of the substance of lens and water are 1.5 and 1.33 resp., now the focal length will be:

(1) 64 cm. (3) 24.24 cm. (4) 16 cm. (2) 18 cm.

 In a half wave rectifier circuit, the input signal frequency is 50 Hz, the the output frequency will be:

(1) 25 Hz (2) 50 Hz (3) 200 Hz (4) 100 Hz

53. In the following circuit :

- (1) the loop will be displaced along the length of wire
- (2) PO unchanged
- (3) the loop will repell the wire
- (4) wire will attract the loop

54. In a triode the ratio of small change in plate voltage and small changes in grid voltage is, if plate current is constant:

- (1) DC plate resistance
- (2) mutual conductance
- (3) AC plate resistance
- (4) amplification factor

55. Two particles accelerated with same voltage eneters in a uniform magnetic field perpendicularly, the radii of the circular paths is R₁ and R₂, the charge on particles is same the ratio of m₁ is:

(1)
$$\begin{bmatrix} \underline{R_2} \\ R_1 \end{bmatrix}^2$$
 (2) $\underline{R_2} \\ R_1$ (3) $\underline{R_1} \\ R_2$ (4) $\begin{bmatrix} \underline{R_1} \\ R_2 \end{bmatrix}^2$

56. Light Velocity in diamond is ($\mu = 2.0$)

- (1) 60 x 10¹⁰ cm/sec. (2) 2 x 10¹⁰ cm/sec. (3) 3 x 10¹⁰ cm/sec.
- (4) 1.5 x 1010 cm/sec.

57. If Arsenic is dopped to silicon then its conductivity:

- (1) becomes zero
- (2) unchanged
- (3) increases
- (4) decreases

58. Two condensers of c and 2c capacity are connected in parallel and these are charged upto v volt. If the battery is removed and dielectric medium of k constant is put between

59. Equation of wave is $y = 15 \times 10^{-2} \sin (300t - 100x)$ where x in meter and t in sec. the

60. Escape velocity at the surface of earth is 11 km/sec., if radius of earth is doubled then

(2) 5.5 km/sec.(3) 11 km/sec. (4) 22 km/sec.

(4)4:1

61. Kinetic energies of two bodies of 1 kg. and 4 kg. are same, the ratio of their

 $(3)\sqrt{2:1}$

the plates, then the potential at each condenser is:

(1) 1.5 m/sec. (2) 3 m/sec. (3) 0.5 m/sec. (4) 1 m/sec.

(1)

wave velocity is:

(1) 15.5 km/sec.

momentum is:

(1)1:16

the escape velocity will be:

(2)1:2

 $\frac{v}{k+2}$ (2) $2+\frac{k}{2}$ (3) $\frac{2v}{k+2}$ (4) $\frac{3v}{k+2}$

(1) 40 minute	(2) 10 minute (3)		
63. AC voltage is v = is :	200 sin 300t and if	$R = 10\Omega$ and L:	= 800 mH, peak value of current
(1) 1.83 (2) 1.5	(3) 2.0	(4) .83	
is stationary and other	is rotated around,		each other. If one of the charge
$(1) \underline{kq}^2 \qquad (2) \underline{kq}$	(3) kq ²	(4) zero	
r r	r		
65. Peak value of AC	current is 4√2, RM	AS current is:	
(1) 2√2 (2) 8	(3) 4 √2	(4) 4	
pressure will be : (1) 32 times	(2) $\frac{40 \text{ times}}{3}$	(3) 8 times	adiabatically (r = 5/3), the (4) $\frac{24}{5}$ times
67. A condenser is che the plates of condense (1) Q constant V and (2) Q constant V inches (3) Q increases V dec (4) None	er, then correct state U decreases eases U decreases		a dielectric plate is put between
68. The MI of a disc	wrt its diameter is I, rallel to diameter is		is passing through its

(1) 41	(2) 61	(3) 31	(4) 51
	sed in the wire		nce between the wires is 1 m. If 1 amp. it length between the wires is: $0^{-7}(4)$ None
theory of gase		155	d absolute temp. T of an ideal gas as kinetic
of light is:	velength in a gl		nd refractive index is 1.5, the wavelength (4) 6000 Å
If A is loaded		2 beats/sec. ar	ear to each other produces 4 beats per second. re produced. If the frequency of A is 256 Hz, (4) 250
73.Work don (1) – PE	e to rotate a dip (2) – 2 PE		ngle, is: (4) PE
74. Zener dio (1) rectifier	de may be used (2) os		mplifier (4) voltage regulator
	gth of first line er series will be (2) 4860 Å		ries is 6561 Å then the wavelength of second (4) 2430 Å