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Module 1: Matrices and Linear Algebra

Lesson 1

Linear Equations and Matrices

1.1 Introduction

The problem of solving system of linear equations arises in almost all areas of
science and engineering. This is an important part of linear algebra and lies at the

heart of it.

A linear equation on n variables x; Xy, . . ., X, IS an equation of the form a;x; + a)x,

+...+aX, =b,

where a;, ay, . . ., a, and b are real or complex numbers, usually known in advance.
A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables. The following is an example of a

system of linear equations:

X1 = 2Xo + 4X3 =10
2, - 3X3 = -9 (1.1)

It is convenient to represent large systems of linear equations in terms of
rectangular arrays called matrices. An m x n matrix is a rectangular array of
elements with m number of rows and n number of columns. It is denoted by (aj)m «
n Wherei=1,23, ..., mandj=12,...,n,anda; are real or complex
numbers (or elements of a field) called entries of the matrix. Almost all the

concepts in linear algebra are expressed in terms of matrices.
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Linear Equations and Matrices

A system of m linear equations on n variables Xy, X», . . . , X, can be written as
apiXy +apXy + ...+ X, = by

AxnX1 + axpXo + ...+ axXy =Dy

am1X1+ am2X2 +. . + aman = bn (1.2)
The m x n matrix
d;; A, ... Ay,
a21 a22 o o a2n
Ay Q4 ... Ay,

associated with the system (1.2) is called the co-efficient matrix of the system. The

m x (n + 1) matrix

NS I
a,, a, ... a, Db,
aml a‘m2 ce amn bm

is called the augmented matrix of the system (1.2).

The augmented matrix of a system consists of the co-efficient matrix with an
additional column whose entries are the constants from the right sides of the
equations. If in (1.2) by =0 for all i = 1, 2, . . ., n then the system is called

homogeneous otherwise non-homogeneous. We perform some operations on
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Linear Equations and Matrices

matrices not only for solving system of linear equations but also for studying other

topics in linear algebra.

1.2. Matrix Operations

As matrix notation simplifies the calculations in solving systems of linear

equations, we shall discuss different kind of matrices and operations on them.

Recall that a matrix A of size m x n over a field F (here we take F as the real or
complex field) is denoted by A = (ajj)m«n, 1=1,2,3,...,mandj=1,2,...,n,
and a; are from F. If m = n then A is called a square matrix. In this case the entries
ai, . . ., any are called the main diagonal or principal diagonal and other entries
are called off-diagonal entries. If a; = O for all i and j, then A is called the null
matrix or the zero matrix, and is denoted by 0. An identity matrix, denoted by I, is
a square matrix whose all diagonal entries are equal to 1 and off diagonal entries

are equal to zero.

A square matrix A is called a diagonal matrix if all the off-diagonal entries are
zero. A square matrix A = (ajj)n < n IS called lower (respectively upper) triangular
matrix if a; = 0 whenever i > j (respectively 1 < j), that is, all entries above

(respectively below) the main diagonal are zero.

Two matrices of the same size A = (ajj)m « n and B = (bjj)m « n are said to be equal if

ajj = bij for all i, j

WhatsApp: +91 7900900676 www.AgriMoon.Com



Linear Equations and Matrices

1.2.1 Addition and Scalar Multiplication

If A = (aij)mxnisamatrix over F and o [ F then the scalar multiplication of A by

a is the matrix oA =(a ajj)m«n i.€. €ach entry of A is multiplied by o.

If A = (@jj)mxn and b = (bj))m « n are matrices of the same size over F then addition

of A and B denoted by, A + B, is the matrix C = (Cij)m«n, Where ¢;; = aj; + bj;.

Scalar multiplication and addition of matrices satisfy some properties as given

below.

For matrices A, B and C of the same size over Fand o, B [] F:
(1) A+ B =B + A (commutative)
(2) (A+B)+C=A+(B+C) (associative)
(3) A+ 0 =0+A =A, where 0 is the zero matrix of the same size as A.
(4) A+ (=A)=(-A)+A=0,where — A= (- 1Ai.e. if A= (ajmxnthen— A= (-
aij)m x n-
(5) (a+B) A=0A + BA.
(6) a (A +B)=0A + aB.

(7) o (BA) = o B A.

1.2.2 Matrix Multiplication

If A = (aj)m<n and B = (bjj) x p are matrices over F then multiplication or product

of A and B, denoted by AB, is the matrix C = (Cij)m « p, Where
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Linear Equations and Matrices

n
Cij = E dik bkj'
k=1

Matrix multiplication satisfies some properties as given below.

(1) Matrix multiplication need not be commutative, that is, one can find matrices A

and B such that AB is not equal to BA.
(2) For matrices A and B if AB = 0 then it may not imply either A=0or B=0.

(3) If for matrices A, B, C if AB = AC, it may not imply B = C, that is matrix

multiplication does not obey cancellation law.

(4) If A, B and C are matrices of sizesm x n, n x p, and p x ¢ respectively then
(AB) C=A(BC) (associative).

(5) If Ais a matrix of size m x nand both B and C are matrices of size n x p then
A (B + C) = AB + AC (left distributive).

(6) If A, B are matrices of size m x n each and C is a matrix of size n x p then
(A +B) C =AC + BC (right distributive).

(7) For any square matrix A, Al=1A=A, where | is the identity matrix of the same

size as A.

For matrix A = (@jj)m < n , the transpose of A, denoted by AT, is the matrix A" = (@ji)n
. m. In other words A" is obtained from A by writing the rows of A as the columns

of A" in order. Some properties of transpose operation are as given below.
(1) For any matrix A, (AN = A.

(2) For matrices A and B of the same size
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Linear Equations and Matrices

(A+B) =AT+B".
(3) For matrices A and B over F of sizes m x n and n x p respectively,

(AB)" =B'A".

1.2.3 Some Special Matrices

Here we shall discuss about some of the special type of matrices which will be

used in the subsequent lectures.

We consider a square matrix A = (&), «n- I A is a real matrix and satisfies A = AT
then A is called symmetric. In this case a; = a; for all i, j. If A satisfies A" = — A
then A is called skew-symmetric. In this case a; = — a; for all i, j, and therefore all

diagonal entries are equal to zero.

Here we take a complex square matrix A = (ajj)n x n. The conjugate of A is the
matrix A= (@jj) n x n, Where 13 is the complex conjugate of a;;. Matrix A is said to
be Hermitian if (JA)" = A. In this case a; = 3@; and in particular a; = a@; Thus for
Hermitian matrices diagonal entries are real numbers. Matrix A is said to be skew-
Hermitian if (1A)" = — A. By the similar argument ajj = -a; and so diagonal entries
are either 0O or pure imaginary for skew-Hermitian matrices. One sees that

symmetric and Hermitian matrices agree for real matrices. Similarly, skew-

symmetric and skew-Hermitian matrices also agree for real matrices.

A complex square matrix A = (a;), « » is called unitary if A(DA)T =(0A) A=,

where | is the identity matrix of the same size as A. In case of real matrices unitary
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Linear Equations and Matrices

matrices are called orthogonal, that is, a real matrix A is orthogonal if AAT = ATA
=1.

1.2.4 Elementary Row/Column Operations

For any matrix A, each of the following is called an elementary row (resp.

columns) operation on A:
(1) Interchange of two rows (resp. columns).

(2) Addition of scalar multiple of one row (resp. column) to another row (resp.

column).

(3) Multiplication of a row (resp. column) by a non-zero scalar.

1.3 Determinant of Matrices

Let A = (ajj)n xn b€ @ square matrix with a;; ! Ror []

We define determinant of A, denoted by det A or | A |, recursively as below. For
n=2,
all a12

Al =
| | a21 a22

= Qdgpdypp — dgpdyg.

Forn>3,
m

detA=|A|=Z(_1)I+Jaij M |

=1

Where i is a fixed integer with 1 <i < n, and m;; is the determinant of the matrix

obtained from A by deleting ith row and jth column.
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Linear Equations and Matrices

One may also find determinant of A by using following properties of determinant:
(1) For identity matrix | of any size, det | =1.
(2) det A = det AT

(3) If any two rows (or columns) are interchanged, then the value of the

determinant is multiplied by (- 1).

(4) If each element of a row is multiplied by a scalar a then the value of the

determinant is multiplied by o. Therefore |a A |=a"| A |.

(5) If a non-zero scalar multiple of the elements of some row (or column) is added
to the corresponding elements of some other row (or column), then the value of

the determinant remains unchanged.

(6) Determinant of diagonal or triangular matrices is the product of its diagonal

entries.

(7) If A and B are the matrices of the same order then det (AB) = det (A) det (B).

1.4 Conclusions

Matrices and operations on them will be used in almost all the subsequent lectures.

In the next lecture we shall solve systems of linear equations. A solution of a

system of linear equations on n variables X, X5, . . ., Xy is a list (sy, Sy, . . .,S,) Of
numbers such that each equation is a true statement when the values s;, S,, .. ., Sy
are substituted for xy, X,, . . ., X, respectively. The set of all possible solutions is

called the solution set of the given system. Two systems are called equivalent if
they have the same solution set. That is, every solution of the first system is a
solution of the second system and vice versa. Getting solution set of a system of
two linear equations in two variables is easy because it is just finding the

intersection of two lines. However, solving a large system is not so straight-
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forward. For this we represent a system in matrix notation and then we perform
some operations on the associated matrices. From the resultant matrices either we

draw conclusion that the system has no solution or find solutions of the system.

Keywords: Algebra of matrices, special matrices, elementary row operations,

determinant of matrices, linear systems.

Suggested Readings:

Linear Algebra, Kenneth Hoffman and Ray Kunze, PHI Learning pvt. Ltd., New
Delhi, 2009.

Linear Algebra, A. R. Rao and P. Bhimasankaram, Hindustan Book Agency, New
Delhi, 2000.

Linear Algebra and Its Applications, Fourth Edition, Gilbert Strang, Thomson
Books/Cole, 2006.

Matrix Methods: An Introduction, Second Edition, Richard Bronson, Academic
press, 1991.
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Module 1: Matrices and Linear Algebra

Lesson 2

Rank of a Matrix and Solution of a Linear System

2.1 Introduction

In this lecture we shall discuss about the rank of matrices, the consistency of
systems of linear equations, and finally present the Gauss elimination method
for solving the linear systems. For this we need an important form of matrices
called echelon form which is obtained by applying elementary row (or column)

operations.

2.2 Echelon Form of a Matrix

Echelon form of a matrix is useful in solving system of linear equations, finding

rank of a matrix and checking many more results in linear algebra.

An m x n matrix A is said to be in (row) echelon form if
(i) All the zero rows of A are at the bottom.

(if) For the non-zero rows of A, as the row number increases, the number of zero

entries at the beginning of the row also increases.

In the echelon form of a matrix some people consider one more condition that
the 1% non-zero entry in a non-zero row is equal to 1. However this condition is
not required for us and therefore not included in the definition of echelon form
of a matrix. One finds row echelon form of a matrix by applying elementary
row operations. By applying elementary column operations, one gets column

echelon form of the matrix.

Example 2.2.1: Find the row echelon form of

WhatsApp: +91 7900900676 www.AgriMoon.Com
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Rank of a Matrix and Solution of a Linear System

[N NG
© w o

We keep 1% row as it. Then we make 1% entry of the second row zero by
applying elementary row operations. So replacing 2™ row R, by R, — R, one

gets

Then we make at least 1% two entries of the 3™ row of the above matrix zero.

For this we replace R; by R; — R; in the above matrix and get

w3 5
0 1 -2].
0 -2 4

Finally by replacing R; by R; + 2R, one gets the echelon form of A and is given
by

2.3 Rank of a Matrix

The rank of a matrix has several equivalent definitions. Here we take the rank
of a matrix A as the number of non-zero rows in the row echelon form of A. It
is also defined as the number of nonzero columns in the column echelon form of

the matrix. Whatever way the definition may be given the rank of a matrix will
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Rank of a Matrix and Solution of a Linear System

be the same, is a fixed number. Therefore the rank of a matrix A has the

following properties.
(1) Matrix A and its transpose have the same rank, that is, rank(A) = rank(A").
(2) If A'isa matrix of size m x n then rank (A) is at the most min{m, n}.

(3) If B is asub-matrix of A then rank (B) is less than or equal to rank(A).

Example 2. 3.1: Here we find rank of the matrix

2 2 3 4 -
-1 1 2 5 2
0 0 -1 -2 3]
1 -1 2 3 0

Here we find echelon form of the matrix A. First row will be kept as it is.

Replacing R, by R4+ R, and then R, by 2R,+ R; the matrix will be

AN/ PR A )T
0 0 7 14 3
A ioAtyc21P
0 0 4 8 2

Replacing R4 by R4+ 4Rz and then replacing R; by 7R; + R, the matrix will be

14 3
0 24|
0 14

o O O N
O O N w

Finally replacing R, by R4 — i R the resultant matrix will be in echelon form

as given below:
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Rank of a Matrix and Solution of a Linear System

2 2 3 4 1
0 0 7 14 3
0 0 0 0 24|
00 00 O

Now there are three non-zero rows in the echelon form of the given matrix A.

Therefore rank of A is equal to 3.

2.4 Solution of a Linear System

Recall that a system of m linear equations in n variables Xy, X, . . ., X, will be of
the form

apXi+ apXo+ ...+ AXy = by

A1Xy+ ApXot ...+ 8xXn = by

AmiXy + dmpXo+ ...+ AmpXp = bm

where a;;’s and b;’s are real or complex numbers.

By using matrix notation this system can be expressed as Ax = b, where A is the

m x N matrix
a‘ll alZ a‘ln
A —_ a‘21 a‘22 a‘2n ’

aml amz amn
b
X, bl
xisthenx 1 matrixx=1 : |, bisthemx 1 matrix | 2
X ’
b

17 WhatsApp: +91 7900900676 www.AgriMoon.Com
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Rank of a Matrix and Solution of a Linear System

A system of linear equations has either (i) no solution or (ii) exactly one
solution or (iii) infinitely many solutions. The system is said to be consistent if
it has at least one solution, that is (ii) or (iii) of the above hold, and is

inconsistent if it has no solution.

The following theorem gives conditions for existence of solution of the system
AXx =Dh.

Theorem 2.4.1: Let Ax = b be a system of m linear equations on n variables.
Let the augmented matrix (1A of A be (A b). Then

(i) The system is consistent if rank A = rank [JA.
(if) The system has a unique solution if rank A =rank [JA =n.

(iii) The system has infinitely many solutions if rank A = rank [JA =k <n.

Remark 2.4.1: Recall that if b = 0 then the system Ax = 0 is called
homogeneous. In this case A = [JA and so from the above theorem a
homogeneous system is always consistent. In fact (Xq, X5, . .., %,) = (0,0, .. .,

0) is always a solution of Ax = 0.

2.5 Gauss Elimination Method for Solving a System

Gauss-Elimination method is a matrix method constantly used to solve large

systems of linear equations. The main steps in this method are as follow:
1. Consider the augmented matrix of the system.

2. Convert the augmented matrix in to row echelon form. Decide whether the

system is consistent or not. If yes then go to the next step, stop otherwise.
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Rank of a Matrix and Solution of a Linear System

3. Write the system of equations corresponding to the matrix in echelon form
obtained in step 2. Now this system is either solvable by back-substitution or
having some free variables (variables which do not occur at the beginning of
any equation of the system in this step) for which we assign arbitrary
real/complex value and then solve the system.

We explain the above method through some examples.

Example 2.5.1: Consider the system of linear equations
2X -2y +3z+4u=-1
—-X+y+2z+5u=3
-z-2u=3

X—-y+2z+3u=0

The augmented matrix of this system is

Notice that this is the same matrix A appears in Example 3.1. So its row echelon

form will be

2 -2 3 4 -1
O O 7 14 3
O O O 0 24
O 0O O O O
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Rank of a Matrix and Solution of a Linear System

Observe that the rank of the co-efficient matrix is 2 and that of the augmented
matrix is 3. Therefore according to Theorem 4.1(i) the given system is

inconsistent.

Example 2.5.2: Here we shall solve the system

2Xx+y—-2z2=10
3X+2y+2z=1
SX+4y+3z=4

2 1 —2 10

The augmented matrix is| 3 2 2 1
5 4 3 4

2 1 -2 10

Row echelon form of this matrixis| © 1 10 28|
0O 0 —-14 42

Notice that 1% three columns is the row echelon form of the co-efficient matrix
and its rank is equal to three which is same as the rank of the augmented matrix.
Therefore the system is consistent and since the number of variables is also

equal to three from Theorem 4.1(ii) the system has a unique solution.

The system corresponding to the echelon form of the augmented matrix is:

2Xx+y—-2z2=10
y+10z=-28
— 14z =42
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Rank of a Matrix and Solution of a Linear System

From the last equation we get z = — 3. Then by back substitution we gety = 2
and x = 1 from the 2" and 1% equations respectively. Hence (1,2,-3) is the

unique solution of the given system.

Example 2.5.3: Here we shall solve the system
X+2y—-32=6
2X—y+4z=2

4x + 3y —2z=14

1 2 -3 6
Augmented matrix of the system is 2 -1 4 2
4 3 -2 14
1 2 -3 6
and its row echelon formis |0 -5 10 -10|
DN (U 0

The rank of the co-efficient matrix and the rank of the augmented matrix are
same and is equal to 2 which is less than the number of variables. Therefore the
system has infinite number of solutions. From the row echelon form of the

augmented matrix the system will be
X+2y—-32=6

-5y +10z=-10

Here z is the free variable. So it can take any real value. Let z = a, a is a real

number. Then from the second equation of the above system y = 2 + 2a and
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Rank of a Matrix and Solution of a Linear System

then from the first equation X = 2 — a. Hence the set of all solutions of the
system is
{2-0,2+20,0): 00 R}

2.6 Conclusions

In this lecture we have observed that homogeneous systems are always
consistent. We shall see in an other lecture that the set of all solutions of a
homogeneous system has linearity property and therefore these systems are of
special interest. In a subsequent lecture we shall learn about the linearity

property of sets, which is the basic thing of the subject Linear Algebra.

Keywords: Echelon form of matrices, rank of a matrix, solution of linear

system, Gauss elimination method.

Suggested Readings:

Linear Algebra, Kenneth Hoffman and Ray Kunze, PHI Learning pvt. Ltd.,
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Module 1: Matrices and Linear Algebra

Lesson 3

Inverse of Matrices by Determinants and Gauss-Jordan Method

3.1 Introduction

In lecture 1 we have seen addition and multiplication of matrices. Here we shall
discuss about the reciprocal or inverse of matrices. Matrix inverse is one of the
basic concepts that is useful in several topics of linear algebra. Not every matrix
has an inverse. In this lecture we shall find conditions for existence of inverse of a

matrix and discuss two different methods for getting it.

3.2 Inverse of a Matrix

Let A be a square matrix of size n. A square matrix B of size n is said to be inverse

of Aif and only if AB = BA =1, where | is the identity matrix of size n.

N\ #£ 41
Example 3.2.1: Let A= [3 4} and B=| 1 Tt
2 2

Notice that AB = BA = Ll) ﬂ So A and B are inverse of each other.

Inverse of a matrix A is denoted by A™. If a square matrix has an inverse then it is
called invertible or non-singular, otherwise it is non-invertible or singular. Not all

square matrices are invertible.

Theorem 3.2.1: A square matrix has an inverse if and only if its determinant is

non-zero.
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Inverse of Matrices by Determinants and Gauss-Jordan Method

Some of the properties of inverse of a matrix are as listed below:
(1) Inverse of a matrix if exists is unique.
(2) Inverse of inverse of a matrix is the matrix itself, that is, (A™)™ = A.
(3) Inverse and transpose operations are interchangeable, that is, (A")™* = (A"

(4) If A and B are invertible matrices then (AB)*=B*A™.

3.3 Inverse by Determinants

Recall that for a square matrix A = (a;), the minor of any entry a; is the
determinant of the square matrix obtained from A by removing i" row and j"
column. Moreover the cofactor of a;; is equal to the minor of a; multiplied by (— 1)
*1. The cofactor matrix associated with an n x n matrix A is an n x n matrix A°
obtained from A by replacing each entry of A by its cofactor. The adjugate A” of A

Is the transpose of the cofactor matrix of A.
The following theorem gives an idea to find inverse of a matrix.
Theorem 3.3.1: For any square matrix A,
AA = A'A = (det A) |
where | is the identity matrix of the same size as A.
Corollary 3.3.1 If det A # 0 then

A A _ A A,
det A det A '
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Inverse of Matrices by Determinants and Gauss-Jordan Method

Thus we have the following formula for inverse of a matrix given in the theorem
below.

Theorem 3.3.2: For any square matrix A with det A # 0,

-1_ 1 *
A =
det A

Example 3.3.1: Here we find inverse of the matrix

0 -1
A= 1 2
1 1

w O N

We first check the value of determinant of A. Since detA =1 # 0, the inverse of A

exists.

One can check that the cofactor matrix A° of A is given by

-1 6 -3
AC -|-1 5 -2 .
1 -4 2
Then the adjugate A™ of A is
-1 -1 1
A* = 6 5 _4 .
-3 -2 2
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SincedetA=1, A l=—A"=A"
det A
1041 1
Hence, Al=l6 5 -4
3 2 2

Existence of inverse of a matrix can be linked with rank of A through the result

below given in the theorem.

Theorem 3.3.3: For a matrix A of size n, det A # 0 if and only if rank A =n. In
other words inverse of A exists if and only if rank A =n.

3.4 Inverse by Gauss-Jordan Elimination

Next we shall find inverse of a square matrix A of size n by Gauss-Jordan

elimination method. The following steps are followed in this method:

Step 1: If either det A # 0 or rank A = n then proceed to next step, otherwise
inverse of A does not exist.

Step 2: Form the augmented matrix (A I) where I'is'the n x n identity matrix.

Step 3: Apply elementary row operations to (A 1) so that first n column of it will
form an upper triangular matrix, say U. So now the resultant matrix is (U
B).

Step 4: Again apply elementary row operations to (U B) till first n columns form
the identity matrix. If the resultant matrix is (I K) then K is the inverse of

matrix A.

We shall consider an example below to explain this method.
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Example 3.4.1: Here we shall find inverse of the matrix

2 0 -1
A=|5 1 0. One checks that rank of A is equal to 3 or det A # 0, and so
0 1 3

2 0 —-11 O O

inverse of A exists. The augmented matrix is 5 1 00 1 O
O 1 3|0 0 1

Replacing R; by iRz one gets

1)1
I VR Lo 52 °F
2|2 15
1 0]0 1 0|-ftol0 4 21 1 0
Lo o . 01 3|0 01
1)1
e R 1003 -11
R4R,-R 5|5 R, >R+ R =3
_RoReR g 1 2|2 1 g RoRreR g 1 22 g
2|2 2|2
00 L[2 11 00 H2 41
AR 2| 2

1 003 -1 1
—>|0 1 0-15 6 -5
0 0 15 -2 2

The last matrix is of the form (I K). Therefore the inverse of A is given by
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3 -1 1
Al-|-15 6 -5|
5 -2 2

3.5 Conclusions

Several other methods are also there to find inverse of a matrix and for particular
type of matrices like upper or lower triangular matrices one can derive an easier
formula for the inverse. Applying inverse of a matrix one can find solution of the
system Ax =b if A is a square matrix of size n and rank of A is n. In this case x=A

b is the solution.

Keywords: Invertible matrices, Adjugate of a matrix, Gauss-Jordan elimination

method, Augmented matrix.
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Module 1: Matrices and Linear Algebra

Lesson 4

Vector Spaces, Linear Dependence and Independence

4.1 Introduction

In this lecture we discuss about the basic algebraic structure involved in linear
algebra. This structure is known as the vector space. A vector space is a non-empty
set that satisfies some conditions with respect to addition and scalar multiplication.
Recall that by a scalar we mean a real or a complex number. The set of all real

numbers R is called the real field and the set of all complex numbers 7 is called

the complex field. Here onwards by a field F we mean the set of real or the set of
complex numbers. The elements of vector spaces are usually known as vectors and
that in field F are called scalars. In this lecture we also discuss about linearly

dependency or independency of vectors.

4.2 Vector Spaces

A non-empty set V together with two operations called addition (denoted by +) and
scalar multiplication (denoted by.), in short (\V, +, .), is a vector space over a field
F if the following hold:

(1) V is closed under scalar multiplication, i.e. for every element o [1 Fand u [V,

a.u [ V. (In place of a.u usually we write simply au).

(2) (V, +) is a commutative group, that is, (i) forevery pair of elements u, v [ V,
u+v [J V (i) elements of V are associative and commutative with respect to +
(iii) V has the zero element, denoted by 0, with respect to +, i.e, u+0 =0+u=0,
for every element u of V and finally (iv) every element u of V has additive

inverse, i.e, there exists v [ V such that u+v = v+u =0.
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(3) Fora,BIFandu 1V, (a+p)u=ou+p.u
(4) ForaJFandu,w ] V,a. (utw)=au+ow.
(5) Foro,B I Fandu 1V, a.(B.u)=(af).u

(6) 1.u=u, forallu [JV, where 1 is the multiplicative identity of F.

If V is vector space over F then elements of V are called vectors and elements of F

are called scalars.

For vectors vy, Vy, . . ., V, in V and scalars ag, ap, . . ., o, In F the expression
o1Ve, 0Vo, . . ., anV, IS called a linear combination of vq, vy, . . ., V,. Notice that V
contains all finite linear combinations of its elements hence it is also called a linear

space.

Examples 4.2.1: Here we give example of some vector spaces.

(1) [J is a vector space over R. But IR is not a vector space over [ as it is not

closed under scalar multiplication.

(2) IfF=R or Fl thei{ X1, Xo, . . ., Xn) : Xj L) F, 1 <i<n} is a vector space

over F where addition and scalar multiplication are as defined below:
For X = (Xg, X2, . . ., Xn), Y= (Y1, Yo, . .., ¥n) [l F"and o [ F,

X +Yy = (Xp+y1, Xo+Ya, . ooy XneYn)

ax = (00X, 0Xp, . . . , OXp).

F" is also called the n-tuple space.
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(3) The Space of m x n Matrices: Here F™ " is the set of all m x n matrices over

F. F™ * " is a vector space over F with respect to matrix addition and matrix

scalar multiplication.

(4) The space of polynomials over F: Let P(F) be the set of all polynomials over

F,i.e.,

PF)={ay+ax+...+ax":a [JF,1<i<n,n>0is an integer}.

P(F) is a vector space over F with respect to addition and scalar multiplication

of polynomials, that is,
(@+ax+...+ax")+ (bg+bx+...+bx")

=Co+ CiX + CX2 + .+ XK

where Ci=a+ Dby, kK=max{m,n} a=hb=0
for I >nandj>m. And

a(ay+aX+...+ax)=oag+ aax+ ...+ aax".

The following results can be verified easily (proof of which can be taken as

exercise).

Theorem 4.2.1: If V is a vector space over F then
(@) 0.0 =0, for o L] F, here 0 is the additive identity of \V or the zero vector.

(b) O.u =0, for u [J V, here 0 in the left hand side is the scalar zero i.e. additive

identity of F and O in right hand side is the zero vector in V.
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(¢) (—a)u=-(a.u),forall o 1 F,ullV.

(d) Ifu#0in V then a.u = 0 implies a. = 0.

4.3 Subspaces

For every algebraic structure we have the concept of sub-structures. Here we

discuss about subspaces of vector spaces.

Let V be a vector space over F. A subset W of V is called a subspace of V if W is
closed under * +” and * .’ (which are the addition and scalar multiplication of V).
In other words (i) foru, v [ W, u+v [1 Wand (ii) foru [l Wand a [] F, au [] W.

The above two conditions of a subspace can be combined and expressed in a single
statement that: W is a subspace of V if and only if for u, v [1 W and scalars a, [
F, au+ Bv [J W,

Example 4.3.1: Here we give some example of subspaces.

(1) The zero vector of the vector space V alone i.e. {0} and the vector space V
itself are subspaces of V. These subspaces are called trivial subspaces of V.

(2) Let V = R ? the Euclidean plane, and W be the straight line in R * passing
through (0 0) and (a b), ie. W= {(x y) 0 R?:ax + by = 0}. Then Wis a
subspace of R % Whereas the straight lines which do not pass through the origin

are not subspaces of R>.

(3) The set of all n x n symmetric matrices over F forms a subspace of F"*" (F is a
field).
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(4) The set of all n x n Hermitian matrices is not a subspace of 1" * " (the
collection of all n x n complex matrices), because if A is a Hermitian matrix
then diagonal entries of A are real and so iA is not a Hermitian matrix

(However the set of all n x n Hermitian matrices forms a vector space over R).

4.4 Linear Span

Let V be a vector space over F and S be a subset of V. The liner span of S, denoted

by L(S), is the collection of all possible finite linear combinations of elements in S.

Then L(S) satisfies the following properties given in the theorem below.

Theorem 4.4.1: For any subset S of a vector space V
(1) L(S) is a subspace of V.

(2) L(S) is the smallest subspace of V containing S, i.e. if W is any subspace of V
containing S then £(S) contained in W.

Example 4.4.1: In R? if S = {(2, 3)} then £(S) is the straight line passing through
(0,0) and (2, 3) i.e. L(S) =2x +3y=0.1fS={(1, 0), (0, 1)} then L(S) = R~

4.5 Linearly Dependency/Independency

A vector space can be expressed in terms of very few elements of it, provided that ,
these elements spans the space and satisfy a condition called linearly
independency. Short-cut representation of a vector space is essential in many

subjects like Information and Coding Theory.
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Consider a vector space V over a field F and a set S={ vy, Vo, . . ., Vi } of vectors in
V. Sis said to be linearly dependent if there exist scalars a;, ay, . . ., ok (in F), not

all zero such that

oqVy + opVo + ...+ oV = 0.

If S is not linearly dependent then it is called linearly independent. In other words
S is linearly independent, if whenever a,v; + apv, + ... + anv, = 0, all scalars a;
have to be zero. This suggests a method to verify linearly dependency or
independency of a given set of finite number of vectors, as given in the next sub-

section.

4.5.1 Verification of Linearly Dependency/Independency
Suppose the given set of vectors is S = {vy, Vo, . . ., Vk}.

Step 1: Equate the linear combination of these vectors to the zero vector, that is,

o1Vq +opVo t+ ..+ oV = 0, where a;’s are scalars that we have to find.

Step 2: Solve for scalars ay, 0y, . . ., o If all are equal to zero then S is a linearly
independent set, otherwise (i.e. at least one «; IS non-zero) the S is linearly
dependent.

Properties 4.5.1: Some properties of linearly dependent/independent vectors are

as given below.
(1) A superset of a linearly dependent set is linearly dependent.
(2) A subset of a linearly independent set is linearly independent.

(3) Any set which contains the zero vector is linearly dependent.
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Example 4.5.1: Let V = R® be the vector space (over R) and S; = {(1, 2, 3), (1, 0,
2), (2,1,5}and S, = {(2, 0, 6), (1, 2, — 4), (3, 2, 2)} be subsets of V. We check

linearly dependency/independency of S; and S,.

First consider the set S;. Let a4, ay, az be scalars such that
(l]_(l, 29 3) + (12(1, 03 2) + (13(2, 1’ 5) = (01 O’ O)

Then we have

((Xl +op + 2(13, 2(11 + o3, 3(11 =+ 2(12 + 5(13) = (0, O, 0)

And is equivalent to the system

o, +o,+20,=0
20, +0, =0
3a, +2a, + 50, =0

On solving this system we get o; = ap, = a3 = 0, S0 S; is linearly independent.

Next for S,, we can take a; = 0, = 1 and a3 = — 1 and get

(l]_(z, O: 6) + (X'Z(ls 21 - 4) + 0"3(31 2’ 2) =0.

So S, is a linearly dependent set.

We can also test linearly dependency/independency of vectors in F" (in particular

in R") using echelon form of a matrix. This method has been explained in the

example below.
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Example 45.2: LetV=R'and S={(1,2,1,-2),(2,1,3,-1),(2,0,1, 4} and S*

={(,1,2,-1),(1,2,0,3),(1,3,2,2),(0,1, 1, 1)} be subsets of V. We will check
linearly dependency/independency of S and S'.

We consider S first. We write the vectors in S as a matrix taking the vectors as
rows and then apply elementary row operations and convert it to echelon form. If
there is a zero row in the echelon form then the set is linearly dependent otherwise

linearly independent.

1 21 =2 1 2 1 =2
2 1 3 —1|—Re=Re®h 510 31 3
2 01 4 2 0 1 4

1 2 1 =2 1 2 1 =2

—ReoRe R 10 -3 1 3 |—Re2%Re?h 5l 3 1 3

0 2 -1 8 0 0 -5 18

The last matrix is in echelon form and all the rows are non-zero. Hence S is

linearly independent.

Next we consider

$'={(0,1,2,-1),(1,2,0,3),(1,3,2,2),(0,1, 1, 1)}.

While forming the matrix we may not have to take 1% vector in S* as 1% row, 2™
vector as 2™ row and so on. Since we have to convert the matrix into echelon form
we may take 1% row of the matrix a vector in S for which the 1% entry is non-zero.

So let the matrix be
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. O O
N N, O

w Pk P DN

We convert this to echelon form by applying elementary row operations and is

given by
120 3
011 1
001 -2
000 O

There is a zero row in the echelon form so S* is linearly dependent.

4.6 Conclusions

Vector spaces are the main ingredients of the subject linear algebra. Here we have
studied an important property of the vectors that is linearly
dependency/independency. This property will be used in almost all the lectures. In
the next lecture also we discuss about some basic terminologies associated with a

vector space.

Keywords: Vectors, scalars, vector spaces, subspaces, linearly dependent or

independent vectors.
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Module 1: Matrices and Linear Algebra

Lesson 5

Basis and Dimension of VVector Spaces

5.1 Introduction

In the previous lecture we have already said that vector spaces can be represented
in a short-cut form in terms of few linearly independent vectors. The set of these
few vectors have a name called basis. The number of elements in a basis is fixed
and this number is called the dimension of the vector space. In this lecture we
shall discuss on these two important terms basis and dimension of a vector space.
We shall also give an another definition of the rank of a matrix in terms of linearly

independent rows/columns and finally present the rank-nullity theorem.

5.2 Basis and Dimension

Let V be a vector space over F. A subset S of V is called a basis for V if the
following hold

(i) Sisalinearly independent set

(if) S spans V i.e., L(S) = V (or in other words every element of V can be

written as a finite linear combination of vectors in S).

If V contains a finite basis B then V is called a finite dimensional vector space and
dimension of V is the number of elements in B. If V is not finite dimensional then

it is infinite dimensional vector space. Dimension of a vector space is well defined

because of the theorem below.
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Theorem 5.2.1: If a vector space V has a basis with k number of vectors then
every basis of V contains k vectors (in other words all bases of a vector space are

of the same cardinality).
Next we shall see some examples of vector spaces with their bases and dimensions.

Example 5.2.1:

(1){(2,0,6), (1,2,-4), (3,2,2)} is not a basis for & as it is not linearly independent
because (2,0,6)+(1,2,-4)=(3,2,2).

(2)S = {(2,0,0),(3,4,0)} is also not a basis for R ° as it does not span R’
because (0, 0, o), a. # 0, cannot be written as linear combination of vectors in S.

(3) The set {(1,0,0,...,0), (0,1,0,0,...,0),...,(0,0,...,1)} of vectors in R " forms a
basis for R ". This basis is called standard basis of R". So dimension of R" is

n.

(4) The collection of all polynomials over F, P(F) is an infinite dimensional vector
space over F because S={1,x,x*x,.....} is a linearly independent set and spans
P(F) but no finite subset of S spans P(F). However P,(F) , the set of all
polynomials of degree < n, is a finite dimensional vector space with

{1,x,x2x%,...,x"} as a basis. Hence dimension of P(F) is equal to n + 1.

(5) The set R?*2 of all 2 x 2 real matrices is a finite dimensional vector space over

1 0)(0 1)(0 0Y(0 O
R with 0 0 ! 0 0 ! 1 0 ! 0 1 as a basis. So dim R2X2=4.
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Next we shall list some of the well known properties of an n-dimensional vector

space.

Theorem 5.2.2: The following results are true in an n-dimensional vector space V:

(i) Every basis of V contains n number of vectors.

(if) A setof n+ 1 or more vectors in V is a linearly dependent set.

(iii) If Sis a set of n vectors in VV and £L(S) =V then S is linearly independent.

(iv) If S is a set of n linearly independent vectors in V then £(S) = V. In other
words S is a basis of V.

(V) If S={vy, Vo, ..., Vy } is aset of m vectors in V, m < n, then S can be
extended to a basis of V i.e. there exist vectors, Uy + 1, . . ., Uy Such that S = {
Vi, Vo, ..., Vi, Umst, - - ., Uq} IS @ basis for V.

(Vi) If S = {wy, Wy, ..., W}, k>n, is a set of vectors in V such that £(S) =V,

then S contains a basis for V.

(vii) If W is a subspace of V then dim W <dim V.

In the following example we shall use some of the results of Theorem 2.2 to check

for a basis.

Example 5.2.3: Here we show that S = {(1, 0, — 1), (1, 1, 1), (1, 2, 4)} is a basis
for R in two different ways. Here we shall use the fact that dimension of R is
3.
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Method 1: We will show that S is a linearly independent set. We get the echelon
form of the matrix formed by the vectors in S. The matrix and its row reduced

matrices are as follow:

1 0 -1 1 0 -1
11 1 RoRR 510 102
1 2 4 1 2 4
1 0 -1 1 0 -1
R;—>R3-R; 0 1 2 R;—>R3-2R, 0 1 2
0 2 5 0 0 1

The last matrix is in echelon form and no zero row is there in it. So S is a linearly
independent set of 3 vectors and since dimension of R® is 3, by Theorem 2.2(iv) S

is a basis of R,

Method 2: Next by applying Theorem 2.2(iii) we show that S is a basis of R °.
Here we show that every vector in R ® can be expressed as a linear combination of

vectors in S. Let (X4, X2, X3) [ R > be an arbitrary vector and o, B, v [ R such that

(Xl; X2; X3) = (l(l, Oa - 1) + B(la 19 1) + Y(la 29 4)9

=(a+PB+y,B+2y,—atp+4y)

Soo+P+y=X,B+2y=xy,-0+p+4y=x;and is a linear system with

unknowns a, B, y. On solving we get

(X:2X1—3X2+X3,B:—2X1+5X2—2X3,'Y:X1—2X2+X3
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Thus for every vector in R * we have found scalars to express the vector as a linear

combination of vectors in S. Hence S forms a basis for R°.
[In particular if (Xq, X2, X3) =(1,2,3) thena=-1,=2,y=01.e.
(1,2,3)=(-1)(1,0,-1)+2(2,1,1) +0(1, 2, 4).]

In the next example we shall find basis and dimension of a subspace generated by a

set of vectors.

Example 5.2.4: We consider the subspace W of R generated by the vectors u =
(1,3,1,-2,-3),v=(1,4,3,-1,-4),w=(2,3,-4,-7,-3), x=(3,8,1,-7,
- 8).

Here we find a basis and the dimension of W.

The dimension of W will be the maximum number of linearly independent vectors
in {u, v, w, x}. To determine this we take help of echelon form of the matrix whose

rows are the vectors u, v, w, and X. The matrix is

1 3 i -2 -3
1 4 3 -1 -4
2 3 4 —7 -3
3 8 i -7 -8

Replacing R, by R, — Ry, Rz by Rz — 2R; and R, by R4 — 3R; the matrix will be
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1 3 1 -2 -3
O 1 2 1 -1
O 3 -6 -3 3
o -1 -2 -1 1

Replacing R; by R; + 3R, and R4 by R4 + R, in the above matrix we get

1 3 1 -2 -3
O 1 2 1 —1
0O O O O )
0O O O O )

which is in echelon form.

In the echelon form there are two non-zero rows only. Therefore dimension of W is
equal to two and these non-zero rows form a basis for W. So {(1, 3, 1, — 2, — 3),
(0,1,2,1,— 1)} is a basis for W.

5.3 The Rank-Nullity Theorem

Here we give a definition of the rank of a matrix in terms of linearly independent
rows or columns. The rank of a matrix A is defined as the maximum number of
linearly independent rows in A. This is same as the dimension of the subspace
spanned by the rows of A. This subspace is also called the row space of A.
similarly one defines the column space of A. It is known that the dimension of the
row space of A is same as the dimension of the column space of A. Therefore the
rank of a matrix is also equal to the dimension of its column space. From this one

can also conclude that a matrix and its transpose have the same rank.
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For any matrix A its nullity may be defined as below. Recall that a homogeneous
system of m linear equations on n variables is of the form AX =0, where Aisam
x N matrix and X is the n x 1 matrix (Xy, X,, . . ., Xp). HOmogeneous systems are
always consistent because (0, O, . . ., 0) is always a solution of it. Also this is true
because of the fact that the co-efficient and augment matrices of this system have

the same rank.

Let S be the collection of all solutions of AX = 0. One can easily check that S is a

subspace of R " and this subspace is called the solution space of the system. The

dimension of the solution space of the system AX = 0 is called the nullity of A.
Now we are ready to state the famous rank-nullity theorem for matrices.
Theorem 5.3.1: Let A be an m x n matrix. Then rank A + nullity of A =n.

We illustrate the above theorem through some examples below.

Example 5.3.1: We verify the rank-nullity theorem for the matrix A

1 2 -1
2 5 2
=1 4 7
1 3 3
1 2 -1
O 1 4
We convert A into row echelon form and is givenby| O O O
O 0 O
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From this we get that rank of A is equal to 2 since there are two non-zero rows in

the row echelon form of A.

The homogeneous system corresponding to A is AX = 0, where X is the 3 x 1

matrix say (X1, Xz, X3)". S0 the system is
X1+ 2X,—X3=0
2X1+5x, +2%X3=0
X1 +4X, + 7X3=0

X1+3X2+3X3=0

From the echelon form of the matrix A, the above system is equivalent to
X1+ 2%, —X3=0

X2+4X3:O

Here X3 is the free variable. Let X3 = o, o [ R. Then X, = — 4a. and x; = 9. So the

solution space of the system AX=01is S = {(9a, —4a, o) -: o [ R }.

A basis for S is {(9, — 4, 1)} because this vector generates S, that is, all other
vectors in S are scalar multiple of the vector (9, — 4, 1). Therefore nullity of
A =dim S = 1. Now rank of A + nullity of A = 3 which verifies the rank-nullity

theorem.

5.4 Conclusions
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Basis and Dimension of Vector Spaces

In this lecture we have learned that if we know a basis for a vector space then the
whole vector space can be generated by taking all possible finite linear
combinations of the basis vectors. Because of this wonderful structure, vector
spaces are widely used in coding and decoding of messages in Information and
Coding theory. We shall find application of the rank-nullity theorem in some of the

subsequent lectures.

Keywords: Finite dimensional vector spaces, basis, dimension, homogeneous

system of equations, rank-nullity theorem.
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Module 1: Matrices and Linear Algebra

Lesson 6

Eigenvalues and Eigenvectors of Matrices

6.1 Introduction

The concept of eigenvalues and eigenvectors of matrices is very basic and having
wide application in science and engineering. Eigenvalues are useful in studying
differential equations and continuous dynamical systems. They provide critical
information in engineering design and also naturally arise in fields such as physics

and chemistry.

6.2 Eigenvalues and Eigenvectors

Let A be square matrix of size n over a real or complex field F. An element A in F
is called an eigenvalue of A if there exists a non-zero vector x in F" (oran x 1

matrix) such that Ax = Ax.

If A is an eigenvalue of A then all the non-zero vectors x satisfying Ax = Ax are
called eigenvectors corresponding to A. For a single eigenvalue there may be
several eigenvectors associated with it. In fact all these eigenvectors form a

subspace as we shall see below.

Theorem 6.2.1: Let A be an n x n matrix, A be an eigenvalue of A, and S be the set

of all eigenvectors corresponding to A. Then SU{0} is a subspace of F".

Proof: Let X3, X, be eigenvectors corresponding to A. Then

A(Xl + X2) = AXl + AXZ = le =+ XXZ = X(Xl + Xz).
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A(ox;) = 0Ax; = aAx; = Moxy). SO X; + X, axXy [ S and hence the result.

If S is the set of all eigenvectors corresponding to an eigenvalue A then the
subspace SU{0} is called the eigenspace corresponding to the eigenvalue A.

5 4
Example 6.2.1: For the matrix A = [1 2] over the real field R, 6 is an

4
eigenvalue because for the vector x = [:J in R?

5 4\(4 24 4
Ax = 1 211171 6 =61 = 6X.
2
Similarlyy = | 1 | isalso an eigenvector of A corresponding to the eigenvalue 6.
2

Next we shall find all eigenvalues and associated eigenvectors of a matrix

systematically.

6.2.1 Method to find Eigenvalues and Eigenvectors

If A is an eigenvalue of A and x is a corresponding eigenvector then

Ax=)lxor(A-Al)x=0 (6.1)

where | is the n x n identity matrix. Note that (6.1) is a homogeneous system of

linear equations. If (6.1) has a non-zero solution then rank (A — Al) <n. Then A —
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Al is not invertible and one gets that det (A — AI) = 0. Therefore if A is an
eigenvalue of A then it satisfies the equation det (A - AI) = 0 (because it will have a
non-zero eigenvector). Since det (A — Al) is a polynomial in A of degree n, we
obtain all values of A by solving det (A — Al) = 0, and this equation will have n
solutions with counting multiplicities. We summarize the above discussions as

follows:
1. Eigenvalues of A are the solutions of det (A — AI) = 0.
2. If A is of size n then A has n number of eigenvalues with counting multiplicities.

3. If A is an eigenvalue of A then all non-zero solutions of the system (A — Al) X =

0 are the eigenvectors of A corresponding to A, here X = (X4, Xz, . . . , Xn)".

Eigenvalues of matrices are sometimes called characteristic values. The equation
det (A — AI) = 0 is called the characteristic equation and det (A — Al) is called the

characteristic polynomial associated with A.

We explain this method of finding eigenvalues and eigenvectors of a matrix

through an example below.

Example 6.2.2: Find all eigenvalues and their corresponding eigenvectors of the

matrix

>

I
N A Gl
N oA
N NN

Solution: The characteristic polynomial of A is
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5—A4 4 2

det(A-anp=| 4 S-4 2|
2 2 2-2

=— (2 -10)(2 -1 ).

So the characteristic equation is (A — 10) (. — 1) = 0 and the eigenvalues A are
A=10,1, 1.

Eigenvectors Corresponding to A = 10: Here we solve the system (A — 101) x = 0.

-5 4 2\ X
4 -5 2 || x%x,]|=0
2 2 -8)\ X,

Xl
where X = | x, |.
X3
g LA L2

Echelon form of the co-efficient matrixis| 0 -9 18|,
0 0O O

or

So the given system of equations will be
- 5X1 + 4X2 + 2X3 =0.

- 9X2 + 18X3 =0.
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Here X3 is free variable. So let X3 =a, a #0, a [J R . Then we get X, = 2a and X; =

X, = 20.. So the set of all eigenvectors corresponding to A = 10 is {(2a, 2a, o) : o [

R, a#0}.

Eigenvectors corresponding to A = 1: Here we have to solve the system
(A-1)x=0.

4 4 2)\(X
or |4 4 2| X%,|=0
2 2 1){x,
4 4 2
Echelon form of the co-efficient matrixis |0 O 0. so the system will be
0 0O

4X1 + 4X2 + 2X3 =0.

or 2X;+2X, +2x3=0.

Here X, and x3 are both free variables. So let X, = o, x3=p, o, p [ R, and o =0,
B = 0 cannot hold simultaneously. Then x; = — é (2o + B). The set of all
eigenvectors corresponding to A = 1 is {(- 51 Qa+p),a B):a, p R aandpdo

not take the zero value simultaneously}

6.2.2 Properties of Eigenvalues and Eigenvectors

In the following we present some properties of eigenvalues and eigenvectors of

matrices:
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(1) The sum of the eigenvalues of a matrix A is equal to the sum of all diagonal
entries of A (called trace of A). This property provides a procedure for

checking eigenvalues.
(2) A matrix is invertible if and only it has non-zero eigenvalues.

This can be verified easily as det A = (A — 01) = 0 if and only if 0 is an
eigenvalues of A. Also recall that det A = 0 if and only if A is not invertible.

(3) The eigenvalues of an upper (or lower) triangular matrix are the elements on

the main diagonal.

This is true because determinant of an upper (or lower) triangular matrix is

equal to the product of the (main) diagonal entries.

(4) IfAis an eigenvalue of A and if A is invertible then % is an eigenvalue of A",

Further if x is an eigenvector of A corresponding to A then it is also an

eigenvector of A~ ' corresponding to %

The above is true because if x is an eigenvector of A corresponding to the

eigenvalue A then Ax = Ax. Multiplying both sides by A !, x =LA A" X or

_ 1
A lx==x
a

(5) IfAis an eigenvalue of A then aA is an eigenvalue of aA where a is any real or
complex number. Further if x is an eigenvector of A corresponding to the
eigenvalue A then x IS also an eigenvector of oA corresponding to eigenvalue

aA. This is true because (aA) x = (ad) X.

(6) If A is an eigenvalue of A then A* is an eigenvalue of A* for any positive

integer K. Further if x is an eigenvector of A corresponding to the eigenvalue A
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then x is also an eigenvector of A* corresponding to the eigenvalue A*. This is

true because if X 1s an eigenvector of A corresponding the eigenvalue A then
A*x = AKTHAX) = A I0x) = A (AT = A2 (A X)) =L =aRx

(7) If A is an eigenvalue of A, then for any real or complex number ¢, A — C is an
eigenvalue of A — cl. Further if x is an eigenvector of A corresponding to the
eigenvalue A then x is also an eigenvector of A — cl corresponding to the

eigenvalue A — C
This is true because (A —cl) X = AX —¢cx = Ax — ¢x = (A — ¢) x for an
eigenvalue A and its corresponding eigenvector x of A.

(8) Every eigenvalue of A is also an eigenvalue of A'. One verifies this from the
fact that determinant of a matrix is same as the determinant of this transpose

and
A-A|=| (AN =A"|[=| (AT=AD"| = | AT = 1A |.

(9) The product of all the eigenvalues (with counting multiplicity) of a matrix

equals the determinant of the matrix.

(10) Eigenvectors corresponding to distinct eigenvalues are linearly independent.

6.3 Conclusions

Some more properties of eigenvalues and eigenvectors will be discussed in the
next lecture. In a subsequent lecture we shall show that eigenvalues and

eigenvectors are used for diagonalization of matrices.

Keywords: Characteristic equation, eigenvalues, eigenvectors, properties of

eigenvalues and eigenvectors.
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Module 1: Matrices and Linear Algebra

Lesson 7

The Cayley Hamilton Theorem and Applications

7.1 Introduction

The Cayley Hamilton theorem is one of the most powerful results in linear algebra.
This theorem basically gives a relation between a square matrix and its
characteristic polynomial. One important application of this theorem is to find

inverse and higher powers of matrices.

7.2 The Cayley Hamilton Theorem

The Cayley Hamilton theorem states that:
Theorem 7.2.1: Every square matrix satisfies its own characteristic equation.

That is if A is a matrix of sizenand ya(A) =ap+ ah+...+a, A" '+1"=0is

the characteristic equation of A then

wa(A) =al +aAt ... +an—1An_1+An=0nxn

where 0, x » is the zero matrix of size n, and for any positive integer i, A’ is the

product A x A ... x A of i number of A.

1 2
Example7.2.1: Let A = (4 3} Characteristic equation is A — 4, — 5 = 0. One
neckthat A2= | > |.aa=[ % 2ls
can check that 16 17) ~ 116 12.0
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) (9 8 4 8 5 0
A—AA=ST= 116 17) M1 12) "o 5)
9-4-5 8-8-0 00
~ (16-16-0 17-12-5) |0 0)
The Cayley-Hamilton theorem can be used to find inverse as well as higher powers

of a matrix.

7.3 Method to Find Inverse

Here we consider a square matrix A of size n and its characteristic polynomial ya
(\) =det (A-AT)=ag+ aA +...+a,_ A" "+ A" The following is a well known

result for matrices.

Theorem 7.3.1: If ya (\) = det (A- A ) =ap + a;A + . . . + a5 _ A"~ L+ A" is the
characteristic polynomial of a square matrix A then determinant of A is equal to (-
1)n do.

The following is an immediate consequence of the above theorem.

Corollary 7.3.1: Ais invertible if and only if ag # 0.

In light of the above results to find inverse of A we should have a; # 0. By the

Cayley- Hamilton theorem we have

al +aA+...+a, (A" 1+A"=0.

or Al +aA+. ..+ A" H=—gl.
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or A{_ai(aﬂ Fa A+, +AT Y=,
0

Therefore A"*=—L (a1 + a,A + ... + A""%) which is a formula for inverse of A.
aO

We will illustrate this method in the example below.

2 -11
Example 7.3.1: Here we find inverse of the matrix A = |3 -2 1| applying
0 0 1

Cayley- Hamilton theorem. One finds that the characteristic equation of A is
det (A-AD)=—-A+A*+A1-1=0.

The matrix A is invertible because a; = — 1 # 0. By the Cayley-Hamilton theorem
AP+ AP+ A-1=0.
orAA>+A+1)=1.
1=0%pY (g=tli= 1} (l “o=0
or A l=—A2+A+]1=-]0 1 2|+/3 -2 1|+/0 1 O
0 0 1 0 0 1 0 0 1

2 -1 -1
=3 -2 -1
0O 0 1

7.4 Computation of powers of A

Applying Cayley-Hamilton theorem we can also find higher powers of a square
matrix. For this we need a famous theorem of algebra called the division algorithm,

which is stated below.
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Theorem 7.4.1: (Division Algorithm) For any polynomials f(x) and g(x) over a
field F there exist polynomials q(x) and r(x) such that f(x) = q(x) g(x) + r(x) where
r(x) =0 or deg r(x) <deg g(x).

The polynomial r(x) is called remainder polynomial.

Here we shall discuss about a method that finds value of higher degree polynomial
on a square matrix A and in particular the value of higher power of A. The method

as follows:

Step 1: Let A be a square matrix of size n and f(A) be a polynomial in A of any

finite degree m, usually m > n.

Step 2: Compute the characteristic polynomial y(A) of A. From division algorithm
we get f(A) =q(A) x(A) + r(A), where q(A) and r(A) are polynomials in A and deg
r(A) < deg x(A) or r(A) = 0.

Step 3: From Cayley-Hamilton theorem we get y(A) = 0. Therefore f(A) = r(A),
that is f(A) is equal to a polynomial in A of degree less than n. Then we compute

r(A) which involves at the most n unknown constants and up to (n — 1)th powers of

A, that is, r(A) can be written as:
r(A) —al +taA+...+ an_lAn_l.
To find r(A) one has to compute the co-efficients ay , a; , . . ., a,_1 and powers of

A. We use the eigenvalues of A to find these co-efficients. This procedure is

divided into two cases depending on the eigenvalues are distinct or not.
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Step 4: In this case we assume that A has distinct eigenvalues Ay, Ay, . . . , Ap. From

Cayley-Hamilton theorem we have f(A) = r(A). Therefore
f(A)=r(\) foralli=1,2,...,n,thatis

fh) =1(0) = ap + ahs + @A’ +. .. +an_ A"t

fh) =1(00) =ap+ aho + @k  +. .. +a,_1A" !

fh) =1(\) = 0 + &hn + QA + . ..+ An_ A" 1

Solving this system one finds the values ag , a; , . . ., a1, since f(A;) and A;, 1 <i<

n, are known.

Step 5: In this step we consider the case that A has multiple eigenvalues. If 4; is an
eigenvalue of A of multiplicity k then we differentiate the equation f(Aj) =r(A;) Kk —
1 times, and get k equations:

f(h) = r(7Li)-

df (1)) dr(n)

dr | N .

d“f(x)  d™r(a)
| A .
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This is how one gets a system of n equations using all the eigenvalues of A and

from this system the values of ay, a; , . . . , @, can be determined.

2 -1
Example 7.4.1: Here we shall find the value of f(A) = A, for A = {2 5]

applying Cayley-Hamilton theorem. Characteristic polynomial of A is
det (A — Al) = A*> — 70 + 12. Eigenvalues are 3 and 4. Since characteristic

polynomial of A is of degree 2 the remainder will be of degree at the most one.
Therefore

A =al +aA (7.1)
3% =a,l + 3a

47 = a1 + 4a,

On solving we get a; = — 3" + 4% and a, = 4 x 3" — 3 x 4’® Putting this value in
(7.1),

2 X 378 . 478 378 _478
—2x 3% +2x4" -3%4+2x4")

o - O

1 1
Example 7.4.2: For the matrix A = | 0 01, we find the value of f(A) = A" -
0 2

5A% + 2A3,
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Eigenvalues of the matrix A are 1, 1 and 2. Since the characteristic polynomial is

of degree 3 we get

f(A) = agl + A + a,A” = r(A).

For eigenvalue 2 we get the equation

29 5 x2°+2x 2= ay + 2a, + 4a, (7.2)

Since 1 is a eigenvalue of multiplicity two we get equations

df (1) dr(})
fQ)=r()and — | ~ . That is,
dr - dr by
—2=q+a+aand —14 =a; + 2a, (7.3)

From (7.2) and (7.3) we have the system
ap + 2a; +4a,=720

aptayta=-2

at2a,=-14

On solving this system we get a; = 748, a; = — 1486 and a, = 736.

Thus f(A) = A —5A° + 2A% = 748 | - 1486 A + 736 A’
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1 0 3
A2:010_
00 4
100 1 0 1 10 3
Now f(A) = 748/0 1 0| + (- 1486)|0 1 0| + 736/0 1 0=
00 1 0 0 2 0 0 4
2 0 722
0 -2 0 |
0 0 1720

7.5. Conclusions

In this lecture we have seen that how powerful the Cayley-Hamilton theorem and
the concept of eigenvalues are? In the next lecture also we shall use the theory of

eigenvalues for diagonalization of matrices.

Keywords: Cayley Hamilton theoem, division algorithm, inverse of matrices,

power of marices.
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Module 1: Matrices and Linear Algebra

Lesson 8

Diagonalization of Matrices

8.1 Introduction

Diagonalizable matrices are of particular interest in linear algebra because of their
application to computation of several matrix operations and functions easily. Not
all matrices are diagonalizable. In this lecture we learn technique to identify

matrices that are diagonalizable.

8.2 Similar Matrices

Diagonalizable matrices are defined through similar matrices. Two square matrices
A and B are said to be similar if there exists an invertible matrix P such that A = P~
B P or equivalently PA = BP.

2 4

4 2

31 } are similar because PA

3 5
Example 8.2.1: (i) Matrices A = ( ) and B = (

4 0

1 5]. Note that P is invertible as det P = 20 # 0. However

= PB, where P = [
2 0 2 1
matrices R = 0 2 and S = 0 2 are not similar because otherwise the

a b

0 0] and is a non-invertible

matrix P, satisfying P;R = SP; will be of the form (

(or singular) matrix.

In the following we shall present an important result on similar matrices.
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Theorem 8.2.1: Similar matrices have the same characteristic equation (and hence

the same eigenvalues).

Proof: Let A and B be similar matrices. We have to show that
det (A — AI) = det (B — AI). A =P ' B P, where P is an invertible matrix.

det (A—Al)=det (P"'BP - P 'AIP) =det (P * (B — Al) P)
= det (P~ 1) det(B — AI) det (P) = det (B — AI).

The above theorem also gives a criteria for checking that the given matrices are

similar or not.

4 1

3 2] are not similar because

.2
Example 8.2.1: Matrices A = (4 3] and B = (

their characteristic polynomials are A* — 4\ — 5 and A* — 6\, + 5 respectively.

8.3 Algebraic and Geometric Multiplicities

For diagonalization of matrices we need to understand the algebraic and geometric
multiplicities of eigenvalues. Let A, be an eigenvalue of A. The geometric
multiplicity of A is the dimension of the eigenspace of Ao, that is the dimension of
the solution space of (A — Agl) x = 0, which is also the nullity of (A — Agl).
Whereas the algebraic multiplicity of A, is the largest positive integer k such that (A
— )" is a factor of the characteristic polynomial of A.
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-3 1 -1
Example 8.3.1: Consider the matrix A= | =7 9 —1| Characteristic polynomial
-6 6 -2

of A is det (A — AI) = (A + 2)> (A — 4). So — 2 is an eigenvalue of multiplicity two
and therefore algebraic multiplicity of the eigenvalue — 2 is equal to 2. One can
check that rank of (A + 2I) is equal to two hence its nullity is equal to one. So
geometric multiplicity of the eigenvalue — 2 is equal to 1. The following theorem

gives a relation between these two multiplicities.

Theorem 8.3.1: The algebraic multiplicity of an eigenvalue is not less than its

geometric multiplicity.

8.4 Diagonalizable Matrices

A square matrix is said to be diagonalizable if it is similar to a diagonal matrix. In
other words A is diagonalizable if and only if there is an invertible matrix P such

that P A P is a diagonal matrix.

The following theorem gives a criteria for diagonalizable matrices.

Theorem 8.4.1: Let A,,, be an square matrix with eigenvalues Ay, Ay, . . ., A Let
Y1, Y2, - - - » Yk be the geometric multiplicity of Ay, Ay, . . ., A, respectively. Then A is

diagonalizable if and only if y; +y,+ ... +yc=n.

From theorems 8.3.1 and 8.4.1 we get the following result.
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Corollary 8.4.1: A matrix A, . , is diagonalizable if and only if for every
eigenvalue A of A, the algebraic multiplicity of A is equal its geometric

multiplicity.
Corollary 8.4.2: If A, ., has n distinct eigenvalues then A is diagonalizable.

8.5 Algorithm to Diagonalize a Matrix

Input: A square matrix A, . n.

Output: A diagonal matrix similar to A.
(1) Find eigenvalues of A say Aq, Ap, . .., A, k<n.
(2) Find geometric multiplicity y; of A;, 1 <i<k.

(3) If y1 + v+ ...+ v« = n then continue otherwise return that A is not

diagonalizable.

(4) Find basis for eigenspace of each A;. Let { X jﬂi : 1 5j <v; } be a basis for the
eigenspace corresponding to A;, 1 <1 <k.

(5) Take P = (xl’ll--- X, X2 X2 X, B XX xyk*k) bethe n,n

72
matrix such that each Xjﬂi IS a column vector i.e. a matrix of size n , 1.
Obviously P is invertible.

(6) P"' A P = diag(h, M A A2 M. A2y oM Ak ... A ) IS the diagonal

matrix similar to A.
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Example 8.5.1: Consider the matrix A =

N B~ O
N O B~
N NN DN

A has two eigenvalues A; = 10 and A, = 1, where algebraic multiplicities of A; and

A, are 1 and 2 respectively. Recall that the eigenspace of A4 IS
S:1= {20, 20, a): a [1 R} (here we include the zero vector also).

dim S; = 1 =y, the geometric multiplicity of A; Eigen space of A, is
S;={(- ;2o +P), o, B): @ B (1 R}and dim S, =2 =y,.
Now v; + v, = 3 = size of the matrix A. So A is diagonalizable.

A basis for Sy is {(2, 2, 1)}. A basis for S, is {(- 1, 1, 0), (- é, 0,1)} (obtained by

taking o =1, =0 and thena =0, = 1). SO

P
2 1 -1
2

_ 1
1 0 1
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10

and is similar A.

o — O
, O O

One checks that P *AP = | 0
0

Not all matrices are diagonalizable and we will see such an example below.

Example 8.5.2: As we have seen in Example 8.3.1 that for the matrix A =
-3 1 -1

—7 5 -1] the eigenvalues are A, = — 2, A, = 4, A, is of multiplicity 2. Also the
-6 6 -2

algebraic multiplicity of A is 2 and the geometric multiplicity of it is 1. Therefore

A is not a diagonalizable matrix.

8.6 Computation of Functions of Diagonalizable Matrices

In the following theorem we shall list some properties of diagonal and

diagonalizable matrices.

Theorem 8.6.1: The following are true for a diagonal or a diagonalizable matrix
D:

a 0
() If D = (O bj is a diagonal matrix the k™ power of D is equal to
nxn

a“ o0
O bk an.

(1) If A is a diagonalizable matrix with A = P-'D P, where D is a diagonal matrix,
then A* = P-*D*P. (For k=2 one verifies that A>= A A= (P-*DP) (P-'DP) = P!
D (PP-)DP=P 'D*P.)

WhatsApp: +91 7900900676 www.AgriMoon.Com



71

Diagonalization of Matrices

(1) If P(X) =ag + aix + . . . + a,Xx" be any polynomial and A be a diagonalizable
matrix with A = M D M, where D is diagonal, then P(A)= M P (D) M-*. (One can
get this by taking P(A)=M ag I M- '+ May DM+ ... +MaD"M 1)

0 1
Example 8.6.1: Here, We compute A* for A =£ j This matrix is

-2 3

1 1 1 0
diagonalizable as A=M D M !, where M = [1 2) and D = (0 ZJ . Thus by

_ o 30_11110 2 -1
Theorem 8.6.1(i) and (ii)), A" =MD M "~ = 1 20lo0 22 /l.1 1]

2_230 230_1
“lo-gF 22-1)

Example 8.6.2: If P(x) = x'" - 3x>+2x*+1 then we find the value of P(A) = A" -
3A° + 2A? + |, for the same matrix A in Example 8.6.2. By Theorem 8.6.1 (iii) ,
and Example 8.61, P(A)=A"" — 3A° + 2A% + |

227 oY _1q 3 2_25 251 ) 222 22_1 N 1 0
“l2-28 21®_1q 220 20_1 228 22_1) |0 1)

8927 _88+2"
17628 _17542% |-

8.7 Conclusions

Here we have seen that finding higher powers of a diagonalizable matrix or value

of any polynomial on a diagonalizable matrix can be computed easily.
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Lesson 9

Linear and Orthogonal Transformations

9.1 Introduction

In order to compare mathematical structures of same type we study operation
presenting mappings from one structure to another. In case of vector spaces such a
mapping is called a linear transformation. Matrices and linear transformations are
closely related, in fact one can be obtained from the other easily. Orthogonal

transformations are particular type of linear transformations.

9.2. Linear Transformations

Let V and W be vector space over the same field F. A mapping T: V — W is called

a linear transformation if
(i) Tu+v)=T (u) +T(v), foruyv ] V.

(i) T (au) = aoT (u) forallu [1 V and a ['F.

(Combiningly these two statements can be written as:
T(au + Bv) =aT(u) + B T(v), foruv [1 Vand a, B [] F).

Example 9.2.1: Let T4, T, be mappings from R to R? defined as:

T1 (Xq, X2, X3) = (X1 + Xz, X3) and T, (X1, Xz, X3) = (X1X2, X3).

T, is a linear transformation because
T1((X1, X2, X3) + (Y1, Y2, ¥3)) = T1 (Xaty1, X2 + Yo, X3 + Y3)

= (X1tY1 + X2 + Y2, X3 +Y3).
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= (X1 + X2, X3) + (Y1 + Y2, ¥3).

= Tl (Xl’ Xo, X3) + T2 (yl’ Y2, y3)

Ty (o0 (X1, X2, X3)) = Ty (aX1, 0X2, 0X3).

= ((XX]_ + 00Xy, (XX3) =o (X1 + Xo, X3) =aoT (X]_, Xo, X3).

T, is not a linear transformation because

To (X1, X2, X3) + (Y1, Y2, ¥3)) = T2 (Xaty, Xo + Y2, X3 + Ya).
= ((Xaty1) (X2 +Y2), (X3 +Y3))

7 (X1 Xz, X3) + (Y1 Y2, ¥3) = T (X1, Xo, X3) + T (Y1, Y2, ¥a)-

A linear transformation T: V. — W is called an isomorphism if T is a one to one
mapping. Vector spaces V and W are said to be isomorphic if there is a an
isomorphism from V on to W. A vector space V is trivially isomorphic to itself
because the identity mapping is an isomorphism from V onto itself. If V. and W are
isomorphic and T is an isomorphism from V on to W then T"* : W — V is also-an

isomorphism.

In the theorem below we list some properties of isomorphisms.

Theorem 9.2.1: Let T: V — W be a linear transformation. Then

(1) T(0) = 0. Further if T is an isomorphism then T(v) = 0 implies v = 0.
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(2) If T is an isomorphism and S = {Vy, V,, ..., Vi} is a linearly independent set
of vectors in V then { T(V1), T(V.), ..., T (Vk)} is a linearly independent set
in W.

An important result for finite dimensional vector spaces is given in the theorem

below.

Theorem 9.2.2: Two finite dimensional vector spaces over the same field are

isomorphic if and only if they have the same dimension.

Corollary 9.2.1: Every n-dimension vector space over F is isomorphic to F". In

particular every n-dimensional vector space over R is isomorphic to R".

Next we shall define the null space and range space of a linear transformation. Let
T: V. — W be a linear transformation. The kernel of T, Ker T, is the set Ker T = {v
[1V:T(v) =0}The set T(V) ={T(v) : v [1 V}is called the range of T, denoted by
rang(T). It is an well-known result that Ker T = {0} if and only if T is an
isomorphism One can verify easily that Ker T is a subspace of V, called the null
space of T, and Rang(T) is also a subspace of W, called the range space of T. If V
and We are finite dimensional vector spaces then dimension of Ker T is called the
nullity of T and the dimension of rang(T) is called the rank of T. One should not
get confuse with these terminologies because very shortly we are going show that

linear transformations can be represented as matrices and the vice versa.

Example 9.2.2: (1) Consider the linear transformation T: R® — R? defined as:
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T((X1, X2, X3)) = (X1, X2, 0). Then Ker T is the z-axis and rang (T) = R°.

(2) Consider the linear transformation T: R® — R? given by T (X, Xz, X3) = (X1, O,

0). Then Ker T is the yz-plane and rang (T) is the x-axis.

Like matrices one can also have the rank-nullity theorem for linear

transformations.

Theorem 9.2.3: Let V and W be finite dimensional vector spacesand T: V — W

be a linear transformation. Then nullity of T + rank of T =dim V.

9.3 Linear Transformations from Matrices

Every linear transformation can be represented as a matrix and every matrix can
produce a linear transformation. So people sometime treat matrices as linear
transformations and vice versa. Here we shall discuss about the method to get a

linear transformation from a matrix.

Let VV and W be finite dimensional vector spaces over F with dimV =n and dim W
=n, and Ay« n = (@j)m « n be @ matrix over F (same field). From Corollary 9.2.1

every vector in V can be expressed as an n-tuple of elements in F, in other words,

Xl
we can take V = F"*! i.e. V consists of n x 1 matrices (or column vectors L, X;
Xn
Xl
1 F). Similarly elements of W can be taken as column vectors | - |, x; [1 F, I.e.
X
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Xy X,
W = F™ ! Then the mapping T: V — W defined as T | * | = Anxn
Xn Xn nx1l
> 2,
j=1
= : Is a linear transformation because
QX
j=1
" n 3
> ay (XJ T Y )
X1 y1 =1
A +| =< : > _
Xn yn -
> an (Xj T Y )
L J=1 )
" n 3 C n N
Zaljxj E :aljyj
i=1 i=1 X, Y.
J : L b < : L =A| : |+A]| :
n n
Xn yn
2_amX, > amY;
U5=1 ) U= }
and
ax, X,
Al  |=ai{A
ax, X

Notice that if A is an m x n matrix then we get a linear transformation from an n-

dimensional vector space to an m-dimensional vector space.
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1 3 -2
Example 9.3.1: Let A = (O 4 1 j be a matrix over R. The mapping T:
2x3

R*®— R given by:
1 3 2\
T(xl,xz,x3)T = X,
0O 4 1

X, +3X, —2X,
= Is a linear transformation.
4X, + X,

9.4 Matrix Representation of a Linear Transformation

Let V and W be vector spaces over F and T: V — W be a linear transformation.
LetdimV =n,dimW =m, {vy, V5, ..., Vp} and{wy, W,, ..., Wy} be bases for V
and W respectively. Note that T (v4), T (v2), ..., T (v,) are vectors in W and so
these vectors can be expressed as linear combinations of vectors in{wy, Wy, . . .,
Wn}. So let

T (V]_) = aptWwy + dioWo +...+ A1mWm.

T (Vo) = agWy + apWs + . .. + 8ymWi,.

T (V) = amWy + agWo + .. . + anmWn, Where a; [ F.

Then the matrix A given below is a matrix representation of T:
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aj;  ady v dy
dj, Ay vt A,
A : . . .
A Qo o Ay mxn

Note that if we consider different bases in V and W then we may get different
matrix representations of T (of course these matrices are all similar). In the above
if we represent T (vi) = (air, aip, . . ., ain)T. then the matrix corresponding to T can

be written as:
A= (T(vy) T(Vo). .. T(vpn)).

Example 9.4.1: Consider the linear transformation T: R® — R ? defined by T(xy,

Xo, X3) = (X]_ + Xo, 2X3).

Take bases B = {(1, 1, 0), (0, 1, 4), (1, 2, 3)} and B; = {(1, 0), (0, 2)} in R* and R?

respectively.
T(L, 1,0) = (2, 0) = 2(, 0) + 0(0, 2).
T(0, 1, 4) = (1, 8) = 1(L, 0) + 4(0, 2).
T(1, 2, 3) = (3, 6) = 3(, 0) + 3(0, 2).

2 1 3
So the matrix representation of T is the matrix(0 4 3)

9.5 Orthogonal Transformations
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Before defining orthogonal transformations we recall same terminologies defined

in the vector space R ". For any two vectors X = (X;, X, . . . , X,) and

Y =(Y1, Y2 - - ., ¥n) in R" the standard inner product of x and y, denoted by (x, y),

n
IS given by (x, y) = in Yi. Since (x, x) > 0, positive square root of
i=1

(x, x) denoted by || x||,is called the norm (or length) of x. Two vectors x and y

in R" are said to be orthogonal if {x, y) = 0. A basis {vi, V5, ..., Vv, } of R"is
said to be an orthonormal basis if (V;.V;)=0for 1 <i#j<n,and| vl =1 for

allk=1,2,...,n.

Recall that a real square matrix A of size n is said to be orthogonal if A A" = ATA
= I, where 1 is the n x n identity matrix. Orthogonal matrices satisfy the following
properties: (1) A" = A" ' (2) det A = +1 and (3) Product of two orthogonal

matrices of the same size is orthogonal.

A linear transformation T: R" — R " is called an orthogonal transformation if
(T(u), T(v)) = (u,v) for every vectors u and v in R ". So an orthogonal

transformation not only preserves the addition and scalar multiplication, it also
preserves the length of every vector.
An orthogonal transformation is also called an isometry because of the following

result.

Theorem 9.5.1: A linear transformation T: R " — R " is an orthogonal

transformation if and only if || T(v) || = || v || for all vectors vin R".
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2X-y x+2y]
. : ‘w2 m2 defi | == = |
Example 9.5.1: The mapping T: R R “ defined as T(X, y) ( NN IS

an orthogonal transformation. One can check that T preserves addition and scalar

multiplication and hence is a linear transformation. Next we show that
I T y) || = 11 (%, y) ||, for all vectors (x, y) in R?.
1T y) 1l = i{(2x-y)z + (x+2y)2}; .
’ 5

1
:%{SXZ +5y?12 = \x*+y* = |[(x.¥)Il.

In the following theorem we show that the matrix associated with an orthogonal

transformation is also orthogonal.

Theorem 9.5.2: Let T: R" — R " be an orthogonal transformation and A be the
matrix representation of T with respect to the standard basis {e1, &5, ..., e} in R".

Then A is an orthogonal matrix.

Proof: The matrix representation of T can be written as A = T(ey), T(ey), . . .,

T(e,)). Since T is an orthogonal transformation,<T(ei),T(e,-)>=<ei,e,-> The

standard basis in R" is orthonormal. So <T(ei),T(ej)> is equal to 1 if i = j and is

zero otherwise (i.e. i#j). Thus A A" = | and A is orthogonal.

9.6 Conclusions
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Linear transformations are used to recognize identical structures in linear algebra.
Using these transformations one can transfer problems in a complicated space to a
simpler space and then workout. Orthogonal transformations are also applied for

reduction of matrices to some important foms.
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Lesson 10

Quadratic Forms

10.1 Introduction

The study of quadratic forms began with the pioneering work of Witt. Quadratic
forms are basically homogeneous polynomials of degree 2. They have wide

application in science and engineering.

10.2 Quadratic Forms and Matrices

Let A = (a;) be a real square matrix of size n and x be a column vector x = (X3, Xy,

..., X»)". A quadratic form on n variables is an expression Q = x" A x.

In other words,

Q=x"Ax= (X1 X0 vy Xy)
a'n]_ coo a X
= apXe” + AXaXo F . .+ AgXaXn F XXy F AgoXoT L Lt BpXoXn + L F A XXy +

n

n
AnoXpXp + ... F annxn2 = Zzaijxixj .
=1 i1

The matrix A is called the matrix of the quadratic form Q. This matrix A need not
be symmetric. However, in the following theorem we show that every quadratic
form corresponds to a unique symmetric matrix. Hence there is one to one
correspondence between symmetric matrices of size n and quadratic forms on n

variables.
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Theorem 10.2.1: For every quadratic form Q there is a unique symmetric matrix B
suchthat Q =x"B x .

Proof: We consider an arbitrary quadratic form Q = x' Ax, with A = (a;j). We
aij+ aji

2

A x = X' B X, i.e. quadratic forms associated with A and B are the same.

construct a matrix B = (b;;), where bj;; = . This matrix B is symmetric and x"

1 2 3
Example 10.2.1: For A=|4 5 6 the quadratic form associated with A is
7 8 9
1 2 3)(x,
o=(% X, X3)|4 5 6%,
7 8 9)\ X,

= X12 + 2X1X2 + 3X1X3+ 4X2X1 + 5X22 + 6X2X3+ 7X3X1 + 8X3X2 + 9X32.

= X;2 + 6X1Xp + 10X Xg+ Xo° + 14XoXs+ TXaXq + 9X32.

This quadratic form is equal to the quadratic form x' B x where B =

o1 w o
~N O w
©O© N o

which is a symmetric matrix.
If D is a diagonal matrix then the quadratic form associated with D is called a

diagonal quadratic form, that is if D = diag (a11, 8z, - . . , @) then X' D X = agx;® +

axnX,” + ... + a,X.. This is also called the canonical representation of a quadratic
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form. The theorem below says that every quadratic form has a canonical

representation.

Theorem 10.2.2: every quadratic form x" A x can be reduced to a diagonal
quadratic form y' D y through a non-singular transformation Px =y, that is, P is a

non-singular matrix.

The above theorem says that, for x = (X, Xz, . . ., X,)' and Yy = (Y1, Vo, . . ., Vo),
variables Xy, Xo, . .., X, in X" A x can be changed to yy, ¥y, . . ., yn through Px =y,
P is a non-singular matrix, so that x' A x =y' D y, where D is a diagonal matrix.

We shall explain the above result through some examples.

Example 10.2.2: We reduce the quadratic forms (a) 4x:° + X;° + 9x3> — 4x;X, +

12x:x%3 and (b) XX, + XoX3 + X3X; to diagonal forms.

For (), 4x;,° + X,° + 9X5” — 4X1X; + 12X;X3

= 4{X12 + X1(3X3 - Xg)} + X22 + 9X32

2 2
=4 {xf + 2% 2 (3}‘3_“2) }+ X7+ 9x, % — 4(—“3_“2)

2 2
2
3 —_
=4 (Xl + %) + X22 + 9X32 - 9X32 + X22 + 6XoX3.

= (2X1 + 3X3 — Xp)* + 6XoXs.

We change the variables as: X; = y;, X, = y,, and X3 = y, + y3. Then the above

expression (2x; + 3Xs — X)% + 6XXs
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= (2y1+ 3y2 + 3y3 = ¥2)* + 6Y2 (Y2 + Va)
= @+ 22+ 3y + 6yt + 2y, 24 (%) ]-6 ()
-(2y1+2y2+3y3)+6(r "—)——y
= (2y1 + 2y, + 3ys)’ + = {2y, + ya)* — 47}

Finally changing the variables as 2y; + 2y, + 3y; = 7, 2y, + y3 = Z, and y3 = z3, we

get the above quadratic form is Zi? + g (z,% — z3%) which is in diagonal form. Here

the transformation Px = z is non-singular, because here P is the non-singular the

2 -1 3
matrix [0 1 1
0O 1 -1

For the (b) part the quadratic form is XX, + XoX3 + X3X;. Here no square term is

there and since the 1% non-zero term is x;x,, we change the variables to x; = i,

Xo =Y; + Y, and X3 = ys. So thisform isy; (1 + yo) + (Y1 + Y2) Yz + V13
= V1% + V1Yo + YiYs + YoYs + Y1y

=yys + vy, + 2y + Y2Y3

{yl + 2.y, (B2 4 (L) } (222 ) s vy,

2 2

2 4
= (}’1 + Lﬁh) - ;{}’22 + 4y5° + 4y.yaltYays.

2

= i (2y; + yo + 2y3)*- §Y2ZY32-
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Finally replacing 2y; + 2y, + 3y; = z;, and y, = z, and y; = z3 the above form will

1 . . .
reduce to " (z,2— z,%) —z3° Here also the transformation Px = z is non-singular

1 1 2
asthe matrix Pis | 1 =1 0| which is non-singular.
0O 0 1

10.3 Classification of Quadratic Forms

Quadratic forms are classified into several categories according to their range.

These are given below.

Definition 10.3.1: A quadratic form Q = x" A x is said to be
(i) Negative definite if Q <0 for x # 0.
(i1) Negative semi-definite if Q <0 for all x and Q = 0 for some x # 0.
(i11) Positive definite if Q > 0 for x # 0.
(iv) Positive semi-definite if Q > 0 for all x and Q = 0 for some x # 0.

(v) Indefinite if Q > 0 for some x and Q < 0 for other x.

Since there is one to one correspondence between real symmetric matrices and
quadratic forms similar kind of classification is also there for the symmetric
matrices. A real symmetric matrix A belongs to a class if the corresponding

quadratic form x" A x belong to the same class.

Example 10.3.1: The form Q; = — x,° — 2x,% is a negative definite form where as:
Q, = — x,° + 2X; X + X,° is a negative semi-definite because Q, = — (x; — X,)* which

Is always negative and also takes value zero for x; = X, # 0. The form Qs = 2%,° +
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3x,% is positive definite where as: Qs = X° — 2X1X, + X,° is positive semi-definite.

Finally Qs = x,* — X, is an indefinite form.

10.4 Rank and Signature of a Quadratic Form

To define rank and signature of a quadratic form we use its diagonal representation

as given below.

For a real symmetric matrix A let P(A) and N(A) be the numbers of positive and
negative diagonal entries in any diagonal form to which x"A x is reduce through a
non-singular transformation. The number P(A) — N(A) is called the signature of
the quadratic form x" A x. However rank of the matrix A is called the rank of the

form x" A x.

The quadratic form in example 10.2.2(a) has signature equal to 1 where as that in

example 10.2.2(b) has signature — 1.

The classification of quadratic forms can also be done according to their rank and

signatures as given in the theorem below.

Theorem 10.4.1: Let Q = x" A x be an n variable quadratic form with rank r and

signature s then Q is
(i) Positive definite if and only if s =n.
(i1) Positive semi-definite if and only if r = s,
(i11) Negative definite if and only if s =—n.

(iv) Negative semi-definite if and only if r = —s.
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(v) Indefinite ifand only if |s| <.

The following is an important result on non-singular transformation of quadratic

forms.

Theorem 10.4.2: Two quadratic forms on the same number of variables can be
obtained from each other through a non-singular transformation if and only if they

have the same rank and signature.

10.5 Hermitian Forms

The complex analogue of real quadratic form is known as Hermitian form. Here all

vectors as well as matrices are taken as complex.

For a vector x in  "land a hermitian matrix A, the expression X'A x is called a
Hermitian form where x is complex conjugate of x. Notice that if x and A are real

then Hermitian form will be a quadratic form only.

Although the vector x and the matrix A are complex, the Hermitian form always

takes real value that can be seen in the theorem below.

Theorem 10.5.1: A Hermitian form takes real values only.

Proof: Let H = x" A x be a Hermitian form. Complex conjugate of H is

H=FAx)=(x')Ax=x"AX

WhatsApp: +91 7900900676 www.AgriMoon.Com



90

Quadratic Forms

T — —
Since H is a scalar, H=H" = (x'Ax) =x"ATx. Since A is Hermitian A = 4, so

H=x"Ax=X'ATx=H"=H. Therefore A is real.

2 3+i
Example 10.5.1: Consider a Hermitian matrix A :[3—i 1 j The Hermitian

form associated with this is

e 0,2, ()

=24 X, tB+H) XX +(B-1) X, X4 + X X5,
=2/ %P+ 2Re {(3+ 1) x, X} + | X2 [*

which is a real number.

10.6 Conclusions

Vast literature is there on quadratic forms, to know them on should do further
reading. Quadratic forms occur naturally in the study of conics and quadrics in

geometry.
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e-course Linear Algebra problems

1. Identify the following matrices as symmetric, skew-symmetric, Hermitian, skew-Hermitian or none?

2 0 2
(&) |5 1 0
0 6 3
0 -1
(b) 1
-1 1 3
0 -1
()] -5 0 -1
1 0
1 -1 7
@l-1 o 1-i
—i 1+ 2
) —i 341
(e) —1 ] 0
-3+7 0 3

2. Whether the system below is consistent? Justify.

T+ 2y — 3z
3r—y+2z =
5+ 3y —4z =

3. Solve

r+2y—3z4+2w =
2z 4 5y — 8z + 6w
3r+4y —5z+42w =

4. Find rank of the matrix given below.

1 2 -3 0
2 4 -2 2
3 6 -4 3

5. Check whether the following are vector spaces?

(a) Let V' be the set of all real polynomials of degree > 5, with the usual addition and scalar

multiplication.

(b) Let V be the set of all nonzero real numbers with addition defined as = + y = zy and scalar

multiplication defined as ax = x.
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6. In the following, find out whether S forms a subspace of V7

(a) V=R3 S ={(x1,79,23) : 71 + b2 + 323 = 0}

(b) V=R3 S ={(x1,29,73) : 21 + 519 + 3x3 = 1}

() V=R3 S={(z1,22) : 71 > 0,22 > 0}

(d) V = P(R), the set of all polynomials over reals and S = {p(x) € P(R) : P(5) = 0}
(e) V=R"S={(x1,72,.... %) : T1 = T2}

(f) V=R3S={(z1,22,....2,) : 23 = 23}.

7. Prove or disprove:

(a) Union of two subspaces of V' is a subspace of V.

(b) Intersection of any number of subspaces is a subspace.

8. If x, y, z are linearly independent vectors then whether z+vy, y+2, z+x are linearly independent?

9. For what values of k, do the vectors in the set {(0,1,k), (k,1,0),(1,k,1)} form a basis for R3?

10. Check whether the following set of vectors are linearly dependent or independent.

(a) §={(1,2,-2,—1),(2,1,-1,4), (~3,0,3,—2)}

(b) S={(1,3,-2,5,4),(1,4,1,3,5),(1,4,2,4,3),(2,7,-3,6,13)}

11. Determine whether or not the following form a basis for R3?

(a) {(17 17 1)3 (1’ 717 5)}

(b) {(1,1,1),(1,2,3),(2,—-1,1)}

(C) {(1’ 27 S)a (1707 _1)a (37 _1a 0)7 (27 ]-7 _2)}

(d) {(1,1,2),(1,2,5),(5,3,4)}

12. Let W be a subspace of R® generated by the vectors in 10(b). Find dimension and a basis for it.

13. Applying Gauss Jordan elimination method find inverse of the matrix

2 0 -1
A=15 1 0
01 3
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14. Whether f is a linear transformation in each of the following? If yes then whether it is as isomor-

15.

16.

17.

18.

19.

20.

phism?

(a) f: R? — R?, f(xy,m2) = (21 + 22, T122).

(b) f: R3 — Rs, f(z1,m2,23) = (22,21,0).

(C) f : RB - Rga f(xhﬂjg,l'g) = (1’1,1’3,$1).

(d) f : ]RB - RSa f($17$2,$3) = (Z’l - 27562 - 4,$3)~

Let T : R® — R? be a linear transformation defined by T'(z1,z2,23) = (v1 — 72,21 + 23). Find
the matrix of T with respect to the basis {u1,uz,uz} of R® and {u},ub} of R? respectively, where
up = (1,—-1,0), ue = (2,0,1), uz = (1,2,1), v} = (-1,0) and u = (0,1).

For the system

T+ 2y —z =
2x 4+ 5y + 2z
r+4dy+7z =
T+ 3y + 32

o O o O

find the solution space as well as its dimension.

2 1 0
Consider the matrix A=]0 1 -1
0 2 4

For this find all eigenvalues and a basis for each eigenspace. Is A diagonalizable?

Applying Cayley-Hamilton theorem find inverse of the matrix

1 20
-1 1 2
1 2 1

Find the symmetric matrix of the quadratic form 2;10% + 2x129 — 6273 — ac%

Check whether the matrices below are positive definite or positive semi-definite?

10 2 0
@2 4 6
0 6 10
8 2 -2
) [ 2 8 -2
—2 -2 11
3 10 -2
i) |10 6 8
—2 8 12
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Answer and Hints

1. (a) none (b)symmetric (c¢) skew-symmetric (d) Hermitian (e) skew-Hermitian

2. Not consistent. Check that rank of the co-efficient matrix is 2 where as that of the augmented

matrix is 3.

3. Check that the system is consistent, where the rank of both the co-efficient matrix and augmented

matrix is 2. In echelon form the system is

r4+2y—32+2w = 2
y—22z4+2w =

Taking z and w as free variables, i.e., z = o, w = (3, we get the set of all solutions is {(—a+28,1+
200 — 28,0, 0) : o, B € R}.

4. Making elementary row operations Ry — —2R; + Ry, R3 — —3R; + R3, R3 — —5Ry + 4R3, get

1 2 -3 0
an echelon form [0 0 4 2
0 0 0 2

Thus rank of the given matrix is 3.

5. (a) Not a vector space because zero vector is not there.

(b) Yes, it is a vector space as it satisfy all the axioms. Here 1 is the zero vector, and for any

1

vector x its negative vector is .

6. (a) yes, (b) neither closed under addition nor under scalar multiplication; (¢) not closed under

scalar multiplication, (d) yes, (e) yes, (f) not closed under addition.

7. (a) No, Counter Example: V = R2, S; = {(z1,22) : 21 = 22}, S2 = {(21,72) : 11 + 225 = 0}.
(]., 1) € Sl, (72,1) € Sy but (1,1) + (72, ].) = (71,2) € Sl,SQ.

(b) Yes. Let S;(i = 1,2,---) be subspaces of V and S =NX,S;. z,y € S = z,y € S; Vi. Then
x4y €S; Viand so x +y € S. Similarly S is closed under scalar multiplication. So (b) is true.

8. Yes, linearly independent.
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10.

11.

12.

13.

14.

Taking scalar multiplication of the vectors and equating to 0 one gets the system in «, [3,7,
Bk+~v=0

a+pB+k=0

1 1 k
ak + v = 0. An echelon form of the system is | 0 &k 1

0 0 2—k?

The system should have unique solution and hence rank of this matrix is 3. So k2 # 2. k can not
be equal to zero otherwise the set will have only two vectors. So k can be any real number other
than 0 and +v/2.

(a) Echelon form of the corresponding matrix
1 2 -2 -1 1 2 -2 -1
2 1 -1 4 ]is|0 3 —3 —6]. So the given set of vectors are linearly independent.
-3 0 3 =2 00 -3 -7

(b) Echelon form of the corresponding matrix

1 3 -2 5 4 1 3 -2 5 4
14 1 3 5 0o -1 -3 2 -1
is . So the given set of vectors are linearly dependent.
1 4 2 4 3 0 O T 1 -2
2 7 -3 6 3 0 0 0 0 0

(a) No, because dimR3 = 3.
(b) Yes, because the set is linearly independent.
(¢) No, because it contains more than 3 vectors.

(d) No, because it is linearly dependent.

First 3 rows of the echelon form in 10(b) forms a basis for W. Therefore dim W = 3.

2 0 —-1|1
Consider (A|I)=1 5 1 0 |0
01 3|0 01
Apply each of these elementary row operations in the updated matrix Ry — %Rl, Ry — Ry —5Ry,
R3 — R3+ Ro, Ry — Ry + R3, Ro — — Ry, Ry — R — 5R3, R3 — 2R3 and get

0 0
1 0

100 3 -1 1 3 -1 -1
01 0/-15 6 -5 |.So, A t=]-15 6 =5
001, 5 =2 2 5 =2 2

(a) No. (b) Yes; not an isomorphism. (c¢)Yes; an isomorphism. (d) No

WhatsApp: +91 7900900676 www.AgriMoon.Com



97

16.

17.

18.

19.

20.

-2 -2 1
T(ug) = (—1,2) = 1(—1,0) 4+ 2(0,1). So, answer is ( L3 2).

The system in echelon form is

T+2y—z =
y+4z =

The solution space is {(9a, —4o, ) : @ € R}. It’s dimension is 1.

Eigenvalues are 2,2, 3. Basis for eigenspace corresponding to 2 and 3 are {(1,0,0)} and {(1,1,-2)}
respectively. The matrix is not diagonalizable beacuse sum of dimension of eigenspaces is not equal
to 3.

-3 -2 4
Characteristic polynomial is —A* +3A2 = A+3. So A™' = $(A2 -34A+1)=3| 3 1 -2
-3 0 3
2 1 0
-1 3
0 3 0

(i) Positive semi-definite.
(ii) Positive definite. (iii) Neither of them.

WhatsApp: +91 7900900676 www.AgriMoon.Com



Module 2: Complex Variables

Lesson 11

Limit, Continuity, Derivative of Function of Complex Variable

11.1 Introduction

First we introduce some basic notations and terminology for the set of complex

numbers as a metric space.

11.1.1 Circle, Disk and Annulus

Let |z|=1be the unit circle and let |z—a|= pdenote the circle of radius pand
centre a. |z —a|<pdenotes the interior of the circle of radius pand centre a .
It is also called an open circular disk. Similarly |z —a|£pis the closed circular
disk and |z —a|> pis the exterior of the circle.

The open circular disk |z — a| < pisalso called a neighbourhood of a.

Also p < |z — a| < p,denotes an open annulus or a circular ring.

11.1.2 Half-Planes

The following notations are used for half-planes:
(i) {z=x+1iy:y >0} —>upper half-plane
(i) {z=x+iy:y <0} —lower half-plane
(iii) {z=x+iy:x>0} —>right half-plane

(iv) {z=x+iy:x <0} —>the left half-plane
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Limit, Continuity, Derivative of Function of Complex Variables

11.1.3 Interior, Exterior and Boundary Points

A point z,is said to be an interior point of a set D if there is a neighbourhood of

z,that is entirely contained in D.

A point z,is called an exterior point of a set D if there is a neighbourhood of z,

which does not have any point of D.

A point z,is called a boundary point of a set D, if every neighbourhood of

z, contains points of D as well as points of D°.
11.1.3.1 Example: The boundary of the sets, |z|<1 or |z|<1 is |z|=1.

11.1.4 Open and Closed Sets

A set D is said to be an open set if all its points are interior points. For example,

the open circular disk, the right half-plane etc. are open sets.

A set is closed if it contains all its boundary points. The closure of a set D is the

closed set consisting of all points in D together with the boundary of D.

11.1.4.1 Example: The set {z:]z|< p}is a closed set.

11.1.4.2 Example: The set {z:0<|z|<1} is neither open nor closed.

11.1.4.3 Example: The set of all complex numbers is both open and closed.

11.1.5 Connected Sets, Bounded Sets, Domain

An open set D is said to be connected if each pair of points z, and z, can be
joined by a polygonal line, consisting of a finite number of line segments joined

end to end, that lies entirely in D.
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Limit, Continuity, Derivative of Function of Complex Variables

11.1.5.1 Example: The open set {z:|z| <1} is connected.

Example: The open ring {z:1<|z| < 2} is connected.

An open connected set is called a domain. Any neighbourhood is a domain. A
domain together with some, none or all of its boundary points is called a region.

A set D is closed if and only if its complement is open.

A set D is bounded if every point of D lies inside some circle |z| =R, otherwise

it is unbounded.

A simple closed path is a closed path that does not intersect or touch itself. A
simply connected domain D in the complex plane is a domain such that every
simple closed path in D enclosed only points of D. A domain that is not simply

connected is called multiply connected.

11.1.5.2 Example: The set {z § I |z| < 2} Is bounded whereas right half plane is

unbounded.

11.1.6 Examples

1. |z —2+ i| <1 closed, bounded

N

. |22 +3|> 4 open, connected set, unbounded

3. Imz>1 open, connected , unbounded
4, Imz=1

5. Osargzs%,(z;tO)

»

. |z—4|2|z|
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Limit, Continuity, Derivative of Function of Complex Variables

7. |Re z| < z|

8. Re(EJ si
Z 2

9. Re(zz)>0

11.2 Function

Let D be a set of complex numbers. A function f defined on D is a rule that
assigns to each z in D a complex number w. The number w is called the value of
f at wand is denoted by f(z); that is w = f(z). The set D is called the domain
of definition of f. The set of all values of a function f is called the range of f.

Suppose that w = u + iv is the value of a function fat z = x + iy, so that

u+iv=f(x+1iy)

Each of the real numbers u and v depends on real variable x and y, and so it
follows that f(z) can be expressed in terms of a pair of real-valued functions of

the real variables x and y:

(@) =ulxy) +iv(x,y)

Converse is not true, i.e., given two real functions (x, y) we may not be able to
define a complex function of z = x + iy in an explicit form, for example,

w = (2x+vy)+i(bxy).

11.2.1 Function in Polar Form: If the polar co-ordinates  and & are used then

i0

u+iv=f(re”), wherew =u+iv and z=re’. So we may write

f(z)=u(r,0) +iv(r,0).
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Limit, Continuity, Derivative of Function of Complex Variables

11.2.2 Example: If f(z)=2z% then f(x+iy)=(x+iy)*= (X" —y?)+ 2ixy
Hence u(x,y) =x"—y*, v(x,y) = 2xy.

When polar co-ordinates are used,

f(re”)= (re“g)2 =%’ = r?c0s26 +ir?sin 26. Consequently,

u(r,0) =r?cos26, v(r,0) =r?sin20. If v is always zero then f is a real-valued

function of a complex variable. For example, f(z) = |z|2 = (x2 + yz).

11.2.3 Polynomial and Rational Functions

Ifa,,a,,...,a are complex numbers,a, #0,n>0,thenP(z)=a, +a,z+...+a,z"is
a polynomial of degree n.The domain of z is the entire complex plane. For

example, P(z) =1+ 2z —3z%

: P(z . : . .
Quotients Lof polynomials are called rational functions and are defined at
z
2
each point z, where Q(z) = 0. For example, g(z) = 22 _4223.
+

11.2.4 Examples
1. Domain of definition of f(2) :iis the entire complex plane excluding the
z

origin.

2. Domain of definition of f(z)= . L ~1s the entire complex plane excluding

the circle |z|:1.
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Limit, Continuity, Derivative of Function of Complex Variables

11.2.5 Multiple-Valued Function

If to each value of z, there are several values of f(z), f is called a multiple-

1
valued function. For example, if w=z", then w may take any of n values:

1{ (9+2kﬁ) . (9+2kﬁj}
Wk=Z” COS o +1SIN o

for k =0,1,...,(n— 1). In such cases, we consider those parts of the domain in

which the multiple-valued function behaves like a single-valued function. Each
one of these single valued functions is called a branch of the multiple-valued

function.

11.3 Limit of a Function

Let a function f be defined in some domain D containing z,. We say that

lim f(z)=s,if for every e>Othere exists 6>0 such that |f(z)-s|<e

72124

whenever |z -z,|<§.

11.3.1 Examples

1. limZ_2!
72 3

%(z —2)‘ :%|z -2 <%<e whenever|z—2|<5and 5 <3e.

2. Iingédoes not exists, as along (x,0), ézﬁzland along (0,v),
250 7 Z X
2.0
Z -y
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Limit, Continuity, Derivative of Function of Complex Variables

3. Iim[\/z—3| \/2+,]_|,m[(2—3i)—(z+i)]

7 9% 73 +z+I

=lim 4 =lim “4ivu =0.
o0 7 -3 +/7 +1 U*O\/l 3iu+1+iu

11.3.2 Theorem: Suppose that f(z) = u(x,y) +iv(x,y), z,=X,+1iy,, and

W, =U, +iv,. Thenlim f(z)=w, if and only if lim  u(x,y)=u,

11y (%,¥)—>(%0,Y0)

and lim  v(x,y)=V,.
(XY)=>(% Yo)

11.3.3 Theorem: Suppose that limf(z)=¢, and limg(z)=/,. Then
lim[f(2)9(2)]=a,+B, . lim[f(2)9(2)]=c,p,, and if B =0, then
Ilmf(z) aO

= g (Z) :Bo

11.3.4 Infinite Limits and Limit at Infinity

We say that lim f(z) = if for every positive >0, these exists ¢ >0 such

7217,

that |f (2)| > whenever z-2z,<5.
S

z+3
11.3.4.1 Example: Ilm( * ):oo
-1 741

We say that lim f(z)=w,if for every >0 there exists ¢ >0such that

Z—»00

z—0

| f (z) — w,| <e whenever |z |>i Equivalently, we can say that Ilmf(lj W, .
z
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11.3.4.2 Examples: im22- 22 iy lim—2— = |
o0 741 250 2 — iz

We say that limf(z)=wif for everye>0, there exists 6>0 such that

Z—0

| (2)|> lwhenever 2| > % One can alternatively say Iirrgi1 =0.
[= Z—>
z

3 —
11.3.4.3 Example: lim22—2
oo 741

=0

11.4 Continuous Function
A function f is continuous at a point z, if limf(z)=f(z,). Using the

definition of limit, we define f is continuous at z if for every > 0, there exists

& >0such that | f (z) - f (z,)| < ewhenever |z -z,|< & .
Compositions of continuous functions are again continuous.

1141 Remark: If f(z) is continuous, let g(z)="f(z). Now

19(2) - 9(z,)|=|f(2) - £ (z,)| =|f (2) - f(z,)]<e , whenever |z-z)|<5. So

g(z) is also continuous.

11.4.2 Examples
1. f(z)=2%is continuous on the whole complex plane.

sinz
2.

f(z)=1 — s continuous except at z =+i.
+Z
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(1m(z)

220
3. f(2)={ [

4. f(2)=1 |

are not continuous at z = 0

ﬂ yAERN
5 f(@)=qz+i’
0,z=-1I

IS not continuous at z = —ias lim f(z) =-2i = f (-i).

11.5 Differentiability of a Function

The derivative of a complex function f at a point z,is defined by

lim f(z, +Az) - f(z,) £(2,)

Az—0 AZ

provided the limit exists. Then the function f is said to be differentiable at z,.

11.5.1 Example: f (z) = z°

2 (N2
lim Zo A2 =(Z0)" _ i (a7 4+ 22) = 22

Az—0 AZ Az—0

11.5.2 Remark: It can be easily seen that the differentiability of a function at a

point implies its continuity at that point.
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General differentiation rules are the same as in real calculus such as
(cf) =cf', (f+qg)=1"+q',(fg) =g+ fg'.

(éj :fgg;zfgprovided g does not vanish.

11.5.3 Examples:

1. f(2)=17.

f(z,+A2)— f(z) (2, +A7)—(2,) Az AX—idy
Az Az AZ  AX+IAY

Now for Ay=0 this value is +1 and for Ax=0, it is —1. Hence

lim f(z,+Az)- f(z,)
Az—0 AZ

does not exist for any z. That is, f|z|=Zis not

differentiable at any point.

2. f(2)=|z[ =2z

f(z+A7)—f(z) (z+A2)(Z+A7)-2Z
Az Az

=724+ 7T+Az

AZ

f(0+A2)- f(0) _—

Now for z = 0, AZ
Az

which has limit 0 as Az — 0. Hence |z|2is differentiable at z = 0. However for

any z=0, llmo% does not exist. Consequently |z|2iS not differentiable at any
z—> Z

other point.

3. f(z) =Re(z)is not differentiable for any z.
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4. f(z)=1Im(z)is not differentiable for any z.

5 f(z)=7"

(z +A§2n -7 :iﬁsz“mz +(;]Z"2(Az)2 +...+[:J(A2)n}

—nz"tas Az — 0.

Hence i(z“): nz"* for all z.
dz
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Module 2: Complex Variables

Lesson 12

Analytic Function, Cauchy-Riemann Equations, Harmonic Functions

12.1 Analytic Functions

A function f(z) is said to be analytic at a point z,if it is differentiable at z,and
also at each point in some neighbourhood of z,. The function f is said to be
analytic in a domain D, if it is analytic at every point in D.

Analytic functions are also called holomorphic functions.

12.1.1 Examples:

1. f(z)=2z", na positive integer, is analytic at every point in the complex plane.

2. p(z)=a,+az+..+a,z"wherea,,a,...,a,are complex constants is analytic

at every point in the complex plane.

3. (2) =%, where P and @ are polynomials, is analytic at all points except

where @(z) vanishes.

12.1.2 Entire Function

A function which is analytic at all points in the complex plane is called an entire

function.

12.1.3 Examples:

1. Every polynomial is an entire function.

2. f(2)= |z|2is not analytic anywhere as it is differentiable only at z = 0.
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Analytic Function, Cauchy-Riemann Equations, Harmonic Functions

A function f(z) is said to be analytic at z =ooif f (ljis analyticat z = 0.
Z
Let us write the function

f(@) =ulxy) +iv(xy)

and let u,,u v, v, denote the partial derivatives of u and v with respect to x

and y respectively.
12.2 Cauchy-Riemann Equations

u=v,u =v (12.2.1)

12.2.1 Theorem: Let f(z) = u(x,y) + iv(x, y) be defined and continuous in
some neighbourhood of a point z = x + iy and differentiable at z itself. Then at
that point the first order partial derivatives of « and v exist and satisfy the

Cauchy-Riemann equations (12.2.1).

Hence, if f(z) is analytic in a domain D, then partial derivatives exist and

satisfy (12.2.1) at all points of D.

Proof: Given that f'(z) = lim f(z+Az)-1(2)

exists. This implies that
Az—0 Az

- {[u(x +AX, Y + AY) + V(X + AX, Y + Ay) | = [u(x, y) +iv(X, y)]}
(A%, Ay)—(0,0) (AX +1Ay)

exists.

Hence along (Ax,0)and (0, Ay)the limit should be same. Now along (Ax,0) the

limit is
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Analytic Function, Cauchy-Riemann Equations, Harmonic Functions

lim (U(x+ A%, y) —u(x, y)) +i(v(x+ Ax, y) = V(X,Y))

AX—0 AX

=Uu, (X, y)+iv (X, Y), (12.2.2)

since limit is assumed to exist.

Similarly along (0, Ay) the limit is

lim (U(x, y +Ay) —u(x, y))+i(v(x y +Ay) —v(X,Y))
Ay—>0 IAY

=iu (X, y)+v,(x,y) (12.2.3)

Equating the real and imaginary parts in (12.2.2) & (12.2.3), we get the Cauchy-

Riemann equations.

12.2.2 Example:
1. Let f(z)=Z=x-ly, u=x,v=-y. It can be easily seen that
u,=Lv,=-1u =0,v, =0. Hence the Cauchy-Riemann equations are not

satisfied. So f cannot be differentiable at any point.

2.Letf(z)=£= 2X > 2y - 2#0
Z X +y X“+y
22
uxzu:v ,u :—Lzz—vxexcept at z=0. The function is

(x2+y2)2 Y (x2+y2)

nalytic everywhere except at z = 0.

12.2.3 Theorem: If two real-valued continuous functions w(x, y) and v(x, y) of

two real variables x and y have continuous first order partial derivatives that
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Analytic Function, Cauchy-Riemann Equations, Harmonic Functions

satisfy the Cauchy-Riemann equations in some domain D, then the complex

function w = f(z) = u(x, y) + iv(x, y) is analytic in D.

Proof: Consider a neighbourhood of z. Now the partial derivatives of u(x, )

and v(x, y) are continuous. Therefore, we can write
Au=u(X+AX Yy +Ay) —u(X,y) =UAX+U Ay+ € AX+ €, Ay,
and  Av=V(X+AX, Y +Ay) = V(X Y) =V AX+V Ay+ €, AX+ €, Ay,

where €, €,, €;,€,— 0asAx, Ay — 0.

Now Aw= f (z+Az)- f(z) =Au+iAv

= (U, +iV,)AX+ (U, +1V )AY + (€, +i €,)AX + (g, +i €,)Ay

If we apply Cauchy-Riemann equations, the above expression reduces to
AW = (U, + 1V, )AX + (V, +1U,)AY + (€, +1 €;)AX + (€, +i €,) Ay

= (U, +1V,) (AX+IAY) + (€, +i €;,)AX + (€, +i €,)Ay.

5o | f(z+Az)- f(z)—(ux+
AZ

iv,) < |(e1 +i es)| + |(e2 +i e4)|

g
Az

Ay
Azl

Using the fact that Ii)Z(I Sl&IiZI <1, we get

lim f(z+Az)-1(2)
Az—0 AZ

=U, +iv, =u, +iv,.

This proves that f is differentiable at an arbitrary point in D and so it is analytic

in D.
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12.2.4 Examples:
1. f(z)=2°=x>-3xy* +i(3x*y — y®)is analytic in D.
(z)°

2. t(2)=1 7 270

0, z=0.

Then Cauchy-Riemann equations are satisfied at (0,0) but f is not differentiable

at (0,0).

3. Let f(z) be analytic in a domain D and| f (z) |=k forall ze D. So writing

f(2) = u(x,y) + iv(x,y), we get u®+v’=k?>. Differentiating with respect to
x and y we get

uu, +w, =0 (12.2.4)

and uu,+w, =0 (12.2.5)

Using v, =-u, in the first equation and v, =u, in the second equation, we get
uu,—vu, =0 and uu +vu, =0

:>(u2+v2)uX =0, (u2+v2)uy =0
If u*+v?=k?>=0 then u =0 =wvandhence f = 0.

If k=0 then u, =u, =0, then v,and v, are also zero. So u = const. , v = const.

This proves that f is constant.
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12.2.5 Polar Co-ordinates

Let x=rcosd,y=rsing. Consider the function w = f(z). If we write
z = x + iy, then the real and imaginary parts of w = u + iv are expressed in
terms of the variables x and y. Similarly, if we write z= re',(z#0), the real
and imaginary parts of w = u + iv are expressed in terms r and 8. Assume
the existence and continuity of the first-order partial derivatives of w and v with
respect to x and y everywhere in some neighbourhood of a given non zero point
z,. Then the first order partial derivatives with respect to » and & will also exist

and be continuous in some neighbourhood. Using the chain rule for

differentiating real-valued functions of two real variables we obtain

u_dudu oudy u_oudu oudy
or oxor oyor 00 oxo6 oy oo

so that u, =u, cos@ +u,sind, U, =—u, rsind+u, rcosé. (12.2.6)
Similarly v, =v, cos@ +v,sind, v,=-v, rsind+v, rcoso. (12.2.7)

If the partial derivatives with respect to x and y also satisfy the Cauchy-

Riemann equations u, =v,,u, =-v,at z,, then equation (12.2.7) becomes
V, =-U,cosf+u,sind,v, =u rsing+u,rcosd (12.2.8)

r —

Comparing (12.2.6) and (12.2.8), we get
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u, = Eve andv, = —Eug. (12.2.9)
r r

12.2.6 Theorem: Let the function f (z) =u(r,8) + 1 v(r,0) be defined throughout
some e-neighbourhood of a non-zero point z, =r,exp(ig,) . Suppose that the
first order partial derivatives of the functions u and v with respect to r and
@ exist anywhere in that neighbourhood and that they are continuous at (ro,é?o).

Then if those partial derivatives satisfy the polar form (4) of the Cauchy-

Riemann equations at (r,,6,), the derivatives f’(z,) exists and
f'(z,) =" (u, +iv),
where the right hand side is evaluated at (r,,6,).

1 _cos@_isine

12.2.7 Example: f(z):lz =
r r

Z Tre

The conditions in the theorem are satisfied at every non-zero point z = re"in the

plane. Hence the derivative of f exists there and

_cosd .siné?j_ 1 1
r r

f’(z):e'e( —+i— _(re“‘))z 2

12.2.8 Example:

f(z) =z(Rez) = x* +ixy. Then u, =2x, u, =0, v, =y, v,=x
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So C. R. equations are satisfied only at the origin. Hence f is not differentiable
at any point z=0. At z = 0, partial derivatives are continuous. Hence f is

differentiable at z = 0.

12.2.9 Example:

f(z)=—5, 20,
t
=l, z#0
Z
X -y
U=————, V= .
X2+y2 X2+y2

Here fis differentiable everywhere except at z = 0.

12.3 Harmonic Functions

A real valued function ¢(x,y)of two variables x and y that has continuous
second order partial derivatives in a domain D and satisfies the Laplace

equation
2 2
T, 2 _
ox~ oy

Is said to be harmonic in D.

12.3.1 Theorem: If f(z) = u(x,y) + iv(x,y) is analytic in a domain D, then u

and v satisfy Laplace’s equation

2 2
Viu=u,+u,=0and Viv=v, +v =0
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respectively in D and have continuous second order partial derivatives in D.

Proof: The function f satisfies the Cauchy-Riemann equations
u =v,, (12.3.1)
and u,=V,. (12.3.2)
Differentiating (12.3.1) with respect to x and (12.3.2) with respect to y we get
u, =v (12.3.3)
and u, =-v (12.3.4)

If £ is analytic in D then u and 1 have continuous partial derivatives of all

orders in D. Hence v, =v, . Hence adding equations (12.3.3) and (12.3.4), we

get u, +u,, =0. Similarly we can prove that v, +v, =0.

If two functions « and 1 are harmonic in a domain D and their first order partial
derivatives satisfy the Cauchy-Riemann equations throughout D, v is said to be

a harmonic conjugate of w.

12.3.2 Theorem: A function f(z) = u(x,y) + iv(x,y) is analytic in a domain

D if and only if v is a harmonic conjugate of w.

12.3.3 Example:
Let u=x*—y*—v.
Then

u, =2x,u, =2,u, =-2y-1u, =-2.
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So u,, +u, =0;thatis, u is harmonic.

To find the conjugate harmonic function wvof wu, we should have

v,=u,=2xand v, =-u, =2y +1. Integrating the first equation with respect to

y, we get v = 2xy + h(x).

Differentiating with respect to x, we get v, =2y +h'(x) =2y +1,

or, h'(x)=+1= h(x) =+x+k. Hence v = 2xy+ x + k.

This v is the general conjugate harmonic function of 1 and

f(2)=u+iv=(x* -y’ —y)+i(2xy+ x+k) =(2* +iz + k) is analytic.

12.3.4Remark: A conjugate of ‘a given harmonic function is uniquely

determined up to a constant.

12.3.5 Remark: If u(x,y) and v(x,y) are any two harmonic functions, then

(u + i1) need not be analytic in D. However, if second order partial derivatives

of u nad v are continuous then (uy —vx) + i(uX + vy) is analytic in D.

12.3.6 Example: Let u=x*—y? v=3x’y—y®. Then w and v are harmonic. But
u,#v,and so f = u+ tvis not analytic. Let U =u,—v,and V =u, +v,. Then

U + iV is analytic.

12.3.7 Example: Let u(x,y) =2x+ y> —3x°y.
U, =2-6xy,u, =—6Yy,u, =3y* —3x°,u, =+6y.
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So u,, +u, =0, that is, u is harmonic.

For finding conjugate 1,

V,=U =2-6xy=Vv=2y-3xy’ +h(x)

y

=V, =-3y? +h'(x) =—u, =3x* -3y’

=h'(x)=3x*=h(x)=x*+c¢

Hence v=2y-3xy*+ x*+c. f =u+iv=2z+iz’ +icis analytic.

12.3.8 Laplace Equation in Polar Form

Consider the function f in polar form f (z) =u(r,8) +iv(r,0).

Cauchy-Riemann equations are

u, :%vg (12.3.5)

1
and Fue =V, (12.3.6)
(123.5) =v,=ru, =V, =U,+ru, (12.3.7)
(12.3.6)=v,, :—%ugg (12.3.8)

: 1
Assumlng Uy = Vg » WE get U, +TU, =——Uy
r

1 1 1
= U, +ru, +-u, =0, or, u, +-=u, +—u, =0. (12.3.9)
r r r
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Similarly, we will have

vV, +%vr +ri2v99 =0. (12.3.10)

Equations (12.3.9) and (12.3.10) are Laplace equations in polar form.
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Module 2: Complex Variables

Lesson 13

Line Integral in the Complex Plane
13.1 Introduction
Complex definite integrals are called complex line integrals written asj f(z)dz,
C

where Cis a curve in the complex plane called the path of integration. We may

represent such a curve C by a parametric representation
z(t)=x(t)+iy(t), ast<h. (13.1.1)

The sense of increasing t is called the positive sense on C. We assume Cto be
smooth curve, that is, C has a continuous and nonzero derivative z = dz/dt at
each point. Geometrically this means that ¢ has a unique and continuously
turning tangent. Consider the partition a = t, < t, < --- <t,_, <t, = b. Let

Zy A a2 A e L i (L) B =00,

Further, we choose point ¢, between z,_, and z; i = 1,2,...,n; and consider

thesum S, = 251 F($m) A,

where AZ,, = (., — (s - (13.1.2)

The limit of S, as the maximum of |At,. | = |t,,— t,._,| approaches zero
(consequently |Az,,| = |z,, — Zz,—1 | @pproaches zero) is called the line integral

of f over C and denoted by jf(z)dz or, by ¢ f(z)dz, if z, coincides with z,
C

(that is, € is a closed curve).
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In general all paths of integration for complex line integrals are assumed to be
piecewise smooth. The following three properties are easily implied by the

definition of the line integral.

1. Linearity: [(kf,(2)+k,f,(2))dz =k [ f,(2)+k, [ f,(2).

2. Sense Reversal: [~ f(z)dz = — [° f(2)dz.

3. Partitioning of Path: [ f(z)dz={f(z)dz+[ f(z)dz.
Cc C C
13.2 Existence of the Complex Line Integral
From our assumptions of the existence of the complex integral, f is continuous
and C is piecewise smooth. Let us write f(z) = u(x,y) +iv(x,y). Let us

further take ¢, = &, +1,, and Al = Ax,, +iAy,,. Then the sum S, in

(13.1.2) becomes
f— Z (u+ iv)(Ax,, + idy,,)
m=1
= Juldx,, — Xvdy,, +i(Zudy, + Zvix,,) (13.2.1)
These sums are real. Since f is continuous, u and v are continuous. As

maximum of |At,| — 0, maximum of Ax,_, and Ay, also converges to zero and

the sum on the right becomes a real line integral.

lims, :_[ f(z)dz :.[udx—_[vdy+{fudy+.[vdx} (13.2.2)

n—oo
C

2
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This shows that under assumptions on f and C, the line integral exists and its

value is independent of the choice of subdivisions and intermediate points ,...

13.2.1 Theorem: (Indefinite integration of analytic functions)

Let f(z) be analytic in a simply connected domain D (every simple closed
curve in D encloses only points of D). Then there exists an indefinite integral of
f(2)in the domain D, that is, an analytic function F(z) such that F'(z) = f(z)

in D, and for all paths in D joining two points z, and z, in D we have
[} F@dz = F(z,) — F(z). (13.2.3)

13.2.2 Examples

. = i - -
1L [r2dz=T | =c(1+0)P=—Z+-0

30 T g

2. f_n;cnszdz = sinz|™ . = 2sinwi = —2isin hn
3. [z = et = 2(e4F ) o,
(since e is periodic with period 2i).

4. [ Z=ini-In(-)=Z-(-F)=m.

4

13.2.3 Theorem (Integration by the use of the path)

Let ¢ be a piecewise smooth path, represented by z = z(t), where a <t < b. Let

b .
f(=) be a continuous function on . Then [ f (z)dz = [ (z(t))z(t)dt, (13.2.4)

a

d=

where z = £
dt

3
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Proof: The LHS of (13.2.4) is given by (13.2.2) in terms of real line integrals,
and we show that the RHS of (13.2.4) also equals (13.2.2). We have z = x + iy,

hence z = i + iy. We simply write wfor w[x(t),v(t)] and v for v[x(t), y(£)]. We
also have dx = % dt and dy = y dt.

Consequently, in (13.2.4)

f fz()z (Ddt = J (u + iv) (% + iv)dt

= [ [udx - vdy +i(udy +vx)]
C

- I(udx—vdy)+ ij(udy+vdx).

C

13.2.4 Examples

dz . ) .y .
1. J'—:Zm, where C is a unit circle, counter clockwise.
z
C

Solution: z(t) = cost + isint = &%,0 < t < 2z (representation of unit circle)

#(t) = —sint +icost =ie"
1 .
f[z[t]) = E = g it

Thus from (13.2.4), we get
1 27 ) ) 2z

j Zdz= j e tigdt = i j dz = 27i.
z 0 0

C

2. f(z) = (z —z,)™ m s an integer, z, is a constant. ¢ is circle of radius p with

center at z, counter clockwise.

Solution: ¢ can be represented in the form

4
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z(t) = z, + p(cost +isint) =z, + pe™,0 <t < 2m.

Then  f(2)=(z—z)" =p™e™,  dz=ipe”dt.

2z 2z
I(Z -1, )m dz = J pmeimtipeitdt _ ipm+1J' ei(m+l)tdt
0 0

C

= jpm+l _I";R [cos(m + 1)t +isin(m + 1) t]dt

When m = —1, p™*! = 1,c0s0 = 1,sin0 = 0, SO that the integral equals

if;” dt = 2xi. For m = —1, the two integrals vanish. Hence

J(Z—Zo)m ={27ri, m=-1

0, m = —1 and integer.

3. Integrate f(z) =Re z=xfrom0to 1 + 2i
(@) along c,, straight line joining origin to 1+2i
(b)along ¢ containing of ¢, and ¢, straight lines from originto 1 and 1 to 1

+21.

Solution:

@z(t)=t+2it,0<t<1, 2t)=1+2i flz()) ==x(t) =1t

1
[Rezdz :It(1+2i)dt:%+i.
0

(b) Along c,, z(t) =t,2(t) = 1,f(z(t)) =x() =t0 <t < 1.

Along ¢, z(t)=1+it,2(t) =i, f(z(t)) =x(t) =1, 0=t < 2.

Hence j f(z)dz = j

G

1 2
) 1 ..
f(z)dz+ | f(2)dz=|tdt+|idt==+2i.
(2) c[() JrdesJide=7

5
WhatsApp: +91 7900900676 www.AgriMoon.Com



Line Integral in the Complex Plane
Thus the integral is dependent on the path.
13.3 Bounds for the Absolute Value of the Integrals

13.3.1 ML- inequality

<ML, where L is the length of ¢ and M a constant such that |f(z)| < M

if(z)dz

everywhere on .
Proof: |5, = | Zn=y F({) Az, | < ooy IF (G042, | S MET |4z, |

Now |Az,,| is the length of the chord whose endpoints are z,,_, and z,, Hence

the sum on the right represents the length L* of the broken line of chords whose

endpoints are z,,z,,...,z,(= z). If n approaches infinity such that max |At,, |
and so max |Az,, | tends to zero, then L* approaches the length L of the curve C,

by the definition of the length of the curve. This proves the ML- inequality.

13.3.2 Examples

1. Evaluate jRe(zz)dz, where c is from 0 to 2 + 4i represents
Cc

(a) a line segment joining the points (0,0) and (2,4),
(b) x-axis from 0 to 2, and then vertical line to 2 + 4,

(c) parabola y = x2.
Solution: (a) Equation of Cis z(t) =t + 2it = (1 + 2i)t, 0=t <2

z2'(£) = (1 +20) f(z(t)) = Re(2%(t)) = Re(t*(1 + 2i)*) = Re((—3 + 4i)t?) = —3¢?

Hence, we obtain 1= [ f (z(1)) z'(t) dt = j(—3t2) (1+2i) dt = —8(L+ 2i).

6
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(b)cyisz(t)=t,0=t =<2
C,iSz(t)=2+42it,0 <t <2
Forc, =z(t)=1, f[z(t]) = Re(z?) =1t?

Forc, z(t)=2i, f(z(t)) =Re((2+ 2it)%) = 4 — 4¢*

Hence, we obtain

L= [ f(z(t))z (t)dt+ [ £(z(t))z (t)dt

C, C,

= [ t3dt + [) (4 — 4t?)2idt

=[Z—5+ 2:1[4::—%::3)]3 = (1—20)

(c) The parametric form of the curve y = x* can be written as
z=z(t) =t +it? 0<t<2

So z (t)=1+2it, and

f[z[t:]) = Re [:z:[t:]) = Re(t 4+ it?)*=(t* —t*)

Hence I =[f(z(t))z (t)dt= j(t2 —~t*)(1+2it) dt

O
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Module2: Complex Variables

Lesson 14

Cauchy’s Integral Theorem and Cauchy’s Integral Formula

14.1 Cauchy’s Integral Theorem

A simple closed path is a closed path that does not intersect or touch itself. A
simply connected domain D in the complex plane is a domain such that every
simple closed path in D enclosed only points of D. A domain that is not simply

connected is called multiply connected.

14.1.1 Theorem (Cauchy’s Integral Theorem)

If £(z) is analytic in a simply connected domain D, then for every simple

closed path C in D, [ f(z)dz=0 (14.1.1)
C

Proof: We have from (13.2.2),

4) f(z)dz =<ﬁ(udx—vdy)+i j(udy+vdx).

c C (&

Since f(z) is analytic in D, u and v have continuous partial derivatives in D.

Hence by Green’s Theorem

E:[ (udx —vdy) = J;J.(—% - %uj dxdy,

where R is the region bounded by C. By Cauchy-Riemann condition v, = —u,,,

o

the RHS vanishes. Similarly the second integral also vanishes.
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14.1.2 Examples
1. q:)ezdz=0, choszdz=0, gSz”dz:O, n=0,12,... for any closed path Cas
c c c

these are all entire functions.
2. gSsecz dz=0, C s the unit circle, as secz has singularities at ig,iz—”,

c

outside the unit circle.

3. cf;%dz =0, C isunitcircle, z = +2iare outside the unit circle.
el +

2z
4. ¢z dz= [eie" dt=27i, C:z(t)=€" is the unit circle. Here 7 is no analytic.
C 0

2
= je*”‘.ieit dt =0, C is the unit circle taken counter clockwise. iz Is not
yA

V4
0

N|o_
NN

5. §

analyticat z=0.

2

cﬁ% dz=2zi, C is the unit circle taken counter clockwise.

C

14.1.3 Theorem (Independence of Path): If f(z) is analytic in a sSimply
connected domain D, then the integral of f(z) is independent of the path in D.
Proof: Let z, and z, be any points in D. Consider two paths C; and ¢, in D
from z, to z, without further common points. Let C, = be the path €, with
orientation reversed. Integrate from z;, over C, to z, and over C, * back to z,.

This is a simple closed path, and Cauchy’s theorem applies under our

assumptions and gives zero:

jfdz+jfdz=o,

C, c,

= jfdz:-jfdz:jfdz.
C, C,

C
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This proves the theorem for paths that have only the endpoints in common. For
paths with finitely many further common points the above argument is applied

to each loop.

14.2 Principle of Deformation of Path

The idea is related to path independence. We can imagine that path €, was
obtained from (; by continuously moving €, (with ends fixed) until it coincides
with C,. As long as our deforming path always contains only points at which
f(z) is analytic, the integral retains the same value. This is called the principle

of deformation of path.

14.2.1 Theorem (Existence of Indefinite Integral)

If f(z) is analytic in a simply connected domain D, then there exists an
indefinite integral F(z) of f(z) in D, thus F'(z) = f(z) which is analytic in D,
and for all paths in D joining any two points z, and z, in D, the integral of

f(z) from z, to z, can be evaluated by
| reaz=Fe) - FG).

Proof: Since f is analytic in , the line integral of f(z) from any z, in D to any z
in D is independent of path in D. We keep z, fixed. Then this integral becomes

a function of z, say F(z).

F(z) = f f(s)ds
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J-z+ Az J-z +hz

Now F(z + Az) — F(z) = f(s]ds—f f(s)ds = f(s)ds,

where the path of integration from z to z+ Az may be selected as a line

segment.

Since f:rﬂz ds = Az, we can write f(z) = if;mzf(zjds. So

F'fz+ﬂz] F(z)

— @ == [77I() - F@)]ds.

Since f is continuous at z, for each positive €, >0 3 |f(s) — f(z)| <€

whenever |s — z| < &.Choosing |Az| < &, we have

|F(z+Az)—F(z)

- 1(z) <ig|Az|:g

‘ Az |Az|
that s, lim -~ ZHA2)=F(2)_ )
Az—0 AZ

of, F'& == {z).

Since z is arbitrary, F is analytic in D.
Further if G'(z) = f(z), then F(z) — G(z) is constant in D. That is two

independent integrals differ by a constant.

14.3 Cauchy’s Theorem for Multiply Connected Domains

Consider a doubly connected domain D with outer boundary curve ¢, and inner

curve C,. If f is analytic in any domain D* that contains D and its boundary
curves, then jcl f(z)dz = jcz f(z)dz, both integrals being taken counter

clockwise (or clockwise, full interior of £, may not belong to D*.
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Cauchy’s Integral Theorem and Cauchy’s Integral Formula

In general: let

(@ C beasimple closed curve (counter clockwise)

(b) C,,...,C, are simple closed curves (all in counter clockwise directions)

and interior to C and whose interiors have no points in common.

14.3.1 Theorem: Let C and C, .... C,, be simply closed curves as in (a) and (b).

If a function f is analytic throughout the closed region D. Then

As a consequence of the above results we have the following important

observation:

I(Z_Zo) {Zm m=-1

m = —1 and integer,

for counter-clockwise integration around any simple closed path containing z,

in its interior.

14.3.2 Examples

1. ge*dz=0, C is unit circle, (Cauchy’s Theorem is applicable), as e~=" is

analytic in the given domain.

2z ) ) 2 . .
= j ie"dt =¢" | (;z:o. Here Cauchy’s Theorem is not applicable.
0

:—Zm #i, C is unit circle, (Cauchy’s Theorem is

e Ly

c c(z

applicable)
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4, 95 dzg_ =2zi, Cisthe circle |z| = m,as 3i is inside this circle.
2 z-3i

5. gﬁ%dz:o, (using Cauchy’s Theorem for doubly connected domain) C is a

C

circle |z| = 2 counter clockwise and |z| = 1 clockwise.
6. C, is upper semi-circle of |z| = 1, clockwise.

C, is lower semi-circle counter-clockwise.

1 0 - it ) 1 2 -
Ilz({;dz:i%dt:—ﬂl and IZ:C{;dz_;[%dt_m

I, and I, are not same, i.e., principle of deformation of paths is not applicable
since the curve €, cannot be continuously deformed into C, without passing

through z=0 at which f(z) is not analytic.

<_|52(2+ where C is any rectangle containing the points z = 0 and z = 2

c

inside it.

Solution: Enclose points z = 0 and z = 2 inside circles €, and C, respectively

that do not intersect. Then applying Cauchy’s integral theorem for triply

connected domains, we get

dz dz dz
(fz(z+2) :£Z(Z+2)+‘[ 2(z+2)

G

Rt B I i ———2| 0+0-27i)=0.
I z+2 I e 1+2 (2 )
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14.4 Cauchy’s Integral Formula

14.4.1 Theorem: Let f(z) be analytic in a simply connected domain D. Then
for any point z,, in D and any simple closed path C in D that encloses z,
1 ¢ f(2)

f =— dz,
() 27l g 71-1, :

(C is taken counter clockwise direction.)

14.4.2 Examples

I ¢’ dz = 2rie®, forany C which has z, =2 as interior point
22 0,  forany C whichhas z,=2 as exterior point

2. IZ@E' C:|Z|=1

Now 2-7=2-Z—2-% on c.Hence
Z Z

=4 AT U E YL A
Y2;-1 20 1 272772

The integrand is not analyticat z = 0 and z = i We write

22+1 z2°+1 (1 i
I:C'f) l—cﬁ » dz:2m[z+1j—2m.1:?.

cz-=- ¢

2

14.4.3 Theorem (Derivatives of Analytic Function)

135 WhatsApp: +91 7900900676 www.AgriMoon.Com



136

Cauchy’s Integral Theorem and Cauchy’s Integral Formula

If (=) is analytic in a domain D, then it has derivatives of all orders in D, which
are then analytic functions in D. The values of these derivatives at a point z, in

D are given by

f'(z,) iqg 1@ 4

“27i ) (z-17,)

and in general

1
(z) 27

cﬁ 1) -dz, n=12,...
2 (z-z,)™

Here C is any simple closed path in C that encloses =z, and whose interior is a

subset of D.

14.4.4 Examples

1§ dz =27 (c0S2)'|,_,,= ~27isinzi = 2z sin h(z).

- =xi
C

(z— i)

2. For any curve C for which 1 lies inside and +2i outside

e’ .d [ e
C‘f(z—l)z(zz ) :2”'5(22 +41_1

| e’ (2 +4)-e*.2z 6eri
— 27i s ==
(22 +4) . 25

14.4.5 Cauchy’s Inequality: Let f(z) be analytic within and on ¢:|z —z,| =r

£ )| < 2

.r.?‘!

and |f(z)| = M on C, then
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14.4.6 Liouville’s Theorem: If an analytic function f(z) is bounded for all

values of z in the complex plane, then f(z) must be a constant.

Proof: Let [f(z)| = k ¥ z. By Cauchy’s inequality

If z)l== foranyr.

Taking r — «, We get £ (z,) = 0.Since z, is also arbitrary, f(z,) = 0v z S0

F must be a constant.

14.4.7 Maximum Modulus Principle: If a function f is analytic and not

constant in a given domain D, then |f(z)| has no maximum value in D.

14.4.8 Corollary: Suppose that a function f is continuous in a closed and

bounded region R and that it is analytic and not constant in the interior of r
Then the maximum value of |f(z)|in R, which is always reached, occurs

somewhere on the boundary of r and never in the interior.

14.4.9 Examples

dz .
l.1=¢p———, C:z-il]=2
§>(22+4)2

The integrand is not analytic at z = 2i. The point z = 2i lies inside the domain

but z = —2i lies outside it. So

f(z) dz where f(z) = 1

CJS( 2|) (z+2|) Sﬁ(z—Zi)z' (z+2i)?

. . T
=27 f'(21)=—
12 =1
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4 2
2 I=<_[>(32 +52°+2)dz
C

D’ , Where C is any simple closed curve containing the
Z+

point z = 1 inside its interior.

27

| =2
3!

d—3(324 +52°+2)| =-24ri

dz® - '
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Module 2: Complex Variables

Lesson 15

Infinite Series, Convergence Tests, Uniform Convergence

15.1 Infinite Series

Let p, k = 1,2, ... be a set of real or complex numbers. Then

o, =Lio by =pytp, +o (15.1.1)

Is an infinite series of numbers and p, is its kth term. The partial sum s, of the

series is defined by

5,= Epk =E§=1Pk =Py TPy T T Py

The remainder of the series (after the nth term) is defined as

—L x

R, = tic=n+1P%x = P41 TPnsz +

The series (15.1.1) is said to be convergent if the sequence {s,} of the partial
sums is convergent. The limit S of the sequence {s,}is called the sum of the

series.

15.1.1 Theorem: A necessary condition for a series X p, to be convergent is

lim, .. p, = 0.
Proof: Suppose that the series X p,. IS convergent. Then
limS,=S5and lim S5,_;, =5.

1 —HD fi—ao
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Since p, =5, —5,_,. We get

li =lmS,—limS, ,=5S—-5=0.
15.1.2 Theorem (Cauchy’s criterion for convergence): The series Zp, IS
convergent if and only if for any given real positive number = = 0, there exists a
natural number n such that

IS, —S,.—,| <& forall n,m = N.

n

15.1.3 Theorem: The series Xp,, where p, =x, +iy,, of complex numbers
converges to s = x +iv if and only if the series of the real parts X x,converges to

X and the series of the imaginary parts X y, converges to v.

15.1.4 Geometric Series

Consider the geometric series X=_, »*, where r is any real number. We now find

the conditions for the convergence of this series.

First consider the sequence of partial sums

—?"n
Sp=ltr+ri4otrni= T
m
or, S,——=-—
1-—r 1-r
Therefore, |5, ——=|= ‘—1’"_'?“ = l'l’ﬂl
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Note that |r|* — owhen |r| < 1, hence the geometric series converges to

1/(1—r), when |r| < 1.
When |r| = 1, |r|™ = = aS n — . SO the geometric series diverges in this case.

For r = 1, each term in the series is unity. Hence the partial sum s, =n — «as

— oo . Thus the series is divergent in this case.

For r = —1, the terms in the series are +1 and 1 alternatively. Now the sequence
{51 has two subsequences with limits 0 and 1. Hence in this case, the sequence

{5..1does not converge and consequently the series does not converge.

15.1.5 Example: Using the above argument, one can show that the series

Y=_,z"converges to 1/(1 —z) if |z] < 1. Here z is complex variable.

15.1.6 Harmonic Series:

Consider the harmonic series E:Zii. We show that this series is divergent.

The sequence of partial sums is defined by
s,=1+ ! + -+ !
mo 2 n

1 1

_|_

nt+l nt2

1 1 1 o
_|_ aen

ntp ntp ntp ntp

and |s S

ntp rz|

1
LR e

Note that -2 == when p == Thus |s,, — S, = 2. This shows that for = <
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one cannot satisfy the condition |S,., — 5,| < en = N,p = 1,2,.... This violates

ntp
the condition for Cauchy convergence. By Theorem 15.1.2 we conclude that the

harmonic series is not convergent.

15.2 Tests for Convergence

The following results are frequently used to test the convergence of an infinite

Series.

15.2.1 Comparison Test: Let X=_,p, and X*_,q, be two real series with

positive terms and p,, < kq,for any real positive k and » = 1,2, ... Then,

(i) convergence of the series £=_, q,, iImply convergence of the series ¥*_,n,,,
(ii) divergence of the series £=_,p,, implies the divergence of the series

Z::D qn'

15.2.2 Limit comparison test ¥*_,p, and X*_,q, be two real series with

positive terms and lim,, __ Zﬂ =[,0.< [< e

m

Then, both the series £=_,p, and X=_, q,, converge or diverge together.

15.2.3 Theorem: The series ini" p>0 is convergent if p = 1 and divergent if
n=1

p =1

Proof: We write
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The last series is a geometric series with common ratio = = —. Therefore, the

2F

1

=1
bl o

<lorp>1 For o=p=1,

R

series is convergent if r= gni Since the

harmonic series Z%is divergent, applying the comparison test, the series

Zipis also divergent for 0 < p < 1,
n

n=1

15.2.4 Example: Prove that the series i L

Is convergent. Also find its
=n(n+1)

sum.

Solution: We can write

5—1+1+ . 1 _(1 1)+(1 1)+ +(1 1 )_1 1
" 12 23 nn+1) 2/ \2 3 n n+l/ = n+1
Now lim, . 5, = 1, SO the given series is convergent and the sum of the series is

1.

15.2.5 D’ Alembert’s test (Ratio test): Let X p be a real series of positive

terms or a complex series. Let
lim | 2241

11—+ p?’!

Then, the series Xp, is (i) convergent if ¢ < 1 and (ii) divergent if ¢ = 1. The

ratio test does not give any information on convergence of the series when ¢ = 1.

15.2.6 Examples: Apply ratio test to the following series
(i) =, (i) x (iii) Tniz™

Er.‘1.
(nt+1)’

Solution:
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n

In+2

Snsa| — iy

(i)

N = |z|.

z| = (i) Iz] . Hence lim
1+;

Gn

Therefore, the series is convergent when |z| < 1 and divergent when |z] = 1.

The test fails when |z| = 1.

1
nt2

(i) |en=s . S0 lim

=0<1

z —H0

Cnts
n

Gn
So the series is convergent for all =.

(i) Here = |(n+ 1)zl = (n + 1)|z| and SO lim,, _, |22

=aow = 1.

T —H0

i B 1
En

So the series is divergent for all z.

15.2.6 Examples When Ratio Test Fails

(i) The series £~ is divergent. However, lim, _, %5 = 1

2y

(i) The series T is convergent. However, lim, _,,, <52 = 1

Bn

15.2.7 Cauchy’s Root Test: Let X p.be a real series of positive terms or a
complex series. Let lim__ |p,|*™ = ¢. Then, the series L p, is (i) convergent if
¢ < 1 and (ii) divergent if ¢ = 1. The root test does not give any information on

the convergence if ¢ = 1.

15.2.7 Example: Let p, = (1+ =)™ ,p >0 . Using the Cauchy root test we

have
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f 1 _» 1
)" =1+ ) =———
(145"

Now, lim

T —HD

So the series X p,, IS convergent.

15.3 Alternating Series

A real series in which the terms are alternatively positive and negative is called

an alternative series and is of the form X=_,(—1)"p,. », = 0. The following

theorem gives a sufficient condition for the convergence of an alternative series.

15.3.1 Theorem (Leibnitz theorem): Let X*_,(—1)"p,. p, =0 be an

alternative series satisfying the following conditions
(i) The sequence {p, } is non-increasing, that is »,., = », for all n, and

(i)lim, .. p, = 0.
Then, the series X*_,(—1)"p,, IS convergent.

15.3.2 Examples: Using Leibnitz Theorem, we can conclude that the following

series are convergent:

() T (i) e

15.3.3 Absolutely Convergent Series
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Let £ p, be an arbitrary series of real or complex numbers. If the series of
positive terms X |p, | IS convergent, then we say that the series X p, is absolutely
convergent. If the series X p, is convergent but X |p, | is divergent, then the

series is called conditionally convergent.

15.3.4 Example: The series Z(—l)“% Is conditionally convergent.

15.4 Uniform Convergence of the Series of Functions

Let f,(z) + f.(z) +-~ Dbe a series of single-valued complex functions defined in
a domain D (or a series of real functions defined on a closed interval). Let

Su(2) = £1(2) + £o(2) + -+ £.(2) pe the nth partial sum. If a point z = z, in D, the
sequence {5, (=)} of partial sums converges to f(z,), then we say that the series
¥ f.(z,) converges to f(z,). This convergence is called pointwise convergence of

the series X £.(z).

We say that the series X £, (z) converges uniformly to £(z) , if, for a given real
positive number = = 0, there exists a natural number ~ independent of z, but

dependent on = such that
15, (z)— f(z)| =& for n=N.

Thus, a series which is uniformly convergent is also pointwise convergent.
Weierstrass’s M-test gives sufficient conditions for the uniform convergence of

a series.
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15.4.1 Theorem: (Weierstrass’s M-test) Let X £ (z) be an infinite series
defined in some domain D of the complex plane and let {a7,} be a sequence of
positive terms, where |f,(z)| = M, for all n and for all z in D. If the series ¥ M,

Is convergent, then the series X £, (z)is uniformly and absolutely convergent.

15.4.2 Example: We discuss the uniform convergence of the series X E‘ﬂ'zll on
the disk |z| = 1.
Note that
z"—1 zt 41 2
= ol J—
(2 n? + |z|2l T n? +|z|? ::nz

forall zin |z| < 1.
Since, the series ¥ 1/n? is convergent, the given series is uniformly convergent.

15.4.3 Example: We show that the geometric series 1+ z + z% + -+ IS

(i) uniformly convergent in any closed disk |z| = r < 1.

(if)not uniformly convergent in the open disk |z| < 1.
We have

S,(D=1+z+z" 44271

and f2)=5() =lim,__5.() =—=.lzI < 1.
In the closed disk |z] =+ < 1, we have

1 1
=
1-|=l 1-r

[1—z|=1—|z|=1—roOr
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Then 15,(2) —s(2)| = |zt 42" 4| = | | = =

—= 1—r"

[y

Using » < 1, the right hand side can be made as small as necessary by choosing

n large enough.

Hence, |5,.(z) — f(z)| < = for » = N and for all z. This shows that the given series

is uniformly convergent.

If we consider the open disk |z| < 1, we can find a z for a given n and a real

number k (no matter how large) such that

z?!

1 B

|z|™

= =k
1—|z|

by taking |z| sufficiently close to 1. Thus, for no N we can have
|5, (z) —s(z)| = = for every z in the open disk |z| = 1. Thus N depends both on =

and = So the series is not uniformly convergent.
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Module2: Complex Variables

Lesson 16

Power Series

16.1 Introduction

A power series in powers of (z — z,) is a series of the form
roCn(Z—29)" = co+c1(z—2g) + c3(z—2g)* + - (16.1.1)

where z is a complex variable and ¢g, ¢y, ... are complex (or real) constants,
called the coefficients of the series, and z, is a complex (real) constant, called

the center of the series.

If z, = 0, we obtain a power series in the powers of z:

L=al

Z CpZ™ = Cp+ €12+ €225 + -+
n=0
16.1.1 Examples

1. It can be seen easily that the series 3>,z = 1+ z + z% + --,, converges

absolutely if |z| < 1 and diverges for |z| = 1.

n 2
2. The series T;_o— = 1+ 2+ —+ - is absolutely convergent for every z. In

fact, by the ratio test, for any fixed z,

zﬂ+1/
(n+ 1)! _ |z|
Zﬂfn, n+1

= 0asn— oo,
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16.1.2 Theorem: (Convergence of a Power Series)

(@) Every power series (16.1.1) converges at z = z,.

(b) If (16.1.1) converges at z = z, # z,, it converges absolutely for every z
closerto z, than z,, i.e., |z — z,| < |z, — 2.

(c) If(16.1.1) diverges at z = z, then it diverges at every z further away from

z, than z,.

Proof:

(a) The proof follows by observing that for z = z, the series reduces to a,.

(b) Since X ,a,(z; —zy)™ is convergent, the necessary condition for the
convergence of a series implies that the n-th term a,,(z; — z,) — 0as n — oo.
Hence the terms a,(z, —z,) are bounded. So there exists M such that

la, (z; —zy)| = M for all n. Thus we have

T

=M

T

—Zp Z— 2z

|'ﬂ-ﬂ[:z_ Zﬂjﬂl = I':[*J-illi'r_zlllﬂﬂl 3 |"t“-1-i||z_zlllwl

1 0 Z) — I

=ME".

Now for k < 1, ¥ k™ is a convergent geometric series with common ratio k.

Therefore 3 a,,(z — z,)™ converges absolutely for |z — z,| < |z, — 24].

(c) The proof follows assuming contrary to assumption.

16.2 Radius of Convergence

Let R be the radius of the circle with center at z, that contains all points at

which the series is convergent and the series is divergent at all points outside it.
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Then |z —z,| = R is called the circle of convergence and R is the radius of
convergence. The power series may or may not converge on the boundary. If

R = 0, the series is convergent only at z =2z, and if R = oo, the series

converges for all z.

16.2.1 Examples
1. The series Zf;converges for |z|<1. Here R=1.

2. The series Z% converges for z = —1 but diverges for z=1. Here R=1.

3. The series 3’ z™ diverges for z = 1.Here R=1.

16.2.2 Theorem (Radius of Convergence) Let lim,,_,., | “::| = L. Then the

radius of convergence of the power series }» a,(z — zy)" IS R = % (The case

L = 0and L = = is included). (Cauchy-Hadamad formula)

Proof: By the ratio test, consider

a,.q

. Ap:1(Z —Zp)" .
lim | = lim

z— 2z =Llz— z,].
lim | =275 = lim |z — 2ol = Liz—z,

T

If L = 0then for all z, the power series will converge and sO R = oo, If L = oo

then I%IIZ—ZUI > 1 for z # z, and all n > N (for some N). Hence the

series will not converge for any z. So R = 0. In all other cases, the series will

converges for L|z—zy| < 1 0r |z — zy| < % and diverges for L|z — z,| = 10r

1 1. .
|z — zy| = o Hence R = LIS the radius of convergence.
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16.2.3 Example: Consider the series » >, % (z — 30"

L1 2n+2)! n)*] = 2n+1D2n+2)
T |+ D 200 | e m+ 1%

1 . . 1 .
Hence = e So the power series converges for |z — 3i| < : and diverges for

o1
|z — 3i| =~
4

16.2.4 Remark: We can also take R = Ll where L* = lim (|aﬂ|lfﬂ).

n—oo

16.2.5 Examples

2 L1
1. For the series Z% we find R = i

i ; ' . n+1)12"
2. Consider the series Zj—n (z+ 1—1)" Here ( 2”*1) %: rl;r1_>OO

Hence R = 0, that is, the series convergesonly at z = —1 + 1.

z z l.f{n
3. For the series 2, (1 +f—1) z™, note that lim ((1 +5) ) = e2. Hence

n
R=e"2
4. Take the series ¥ n'®™ z™. LetL= Iim(n'”'““)%. So
loglog L = limtim < In In(n""") = Iimliml(ln(ln n)2=0.
n n
Hence L=e’=10r,R=1.

E.Zil"I:

5. For the series 2,

a > 0, let p, denote the nt" term.

4o’
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N4z n. o
Prn4a| _ £ 4'n

Pn

Then

Am+1 I:']‘?.+ 1:]'1 I

Hence the series converges for |21<2 and diverges for 121> 2.

6. Zﬂ—;z“ p IS a positive integer. Here
T

=(n —|—1]( )p—}oo

(n+ lj?’ n!

Hence R = 0.

72

, Z, 11
Z'Jt+1:' 2

2m:

|Z|ZJ‘T+1

— Ofor|z] < 1.

2
2 J"t+1zl|"t

Hence the series converges for |z| < 1.

an(lzz;l) Zn_{2+1jn( ) :Z’ﬂ_{ﬂﬁl”‘rC
g. "

(1+2)"*1  nis™
(n+1)15M+1 (14207

_J1+2i] 45

.:{11+ 1:] 5(n+1)

Hence R = co.
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9. ¥n"z",

10, ¥

n —
anasn’ R

16.3 Results on Power Series

If any given power series > ,a,z™ has a nonzero radius of convergence
R(R > 0), we write its sum a function f(z);

flz) = Z a,z", |z| < R.

n=0

We say that f(z) is represented by the power series or it is developed in the
pOwWer series.

16.3.1 Theorem: The function f(z) in (1) with R = 0 is continuous at z = 0

Proof: £(0) = a,. Nowf(z) converges absolutely for |z| < for any r < R
Hence the series

Ziulﬂﬂlrﬂ_l

=2 ola,lr™ with r = 0 converges.
Let

2olay|lrt =S5(=0). Thenfor 0 < |z| = r,
|f(2) — aol =

S
n=0
= |z|S < €,

L=a] o0
< 121 ) la,llzl™ <zl ) la,lrt
n=0 n=>0

For |z| < & (6 <r,é< E) Hence f is continuous at z = 0.

155

WhatsApp: +91 7900900676

www.AgriMoon.Com



Power Series

16.3.2 Theorem: Suppose that the power series ., a,z" and ¥ >, b, z" both
converge for |z| < R (R > 0) and have the same sum for all these z. Then these

series are identical, i.e., a, = b,¥Yn=0,1,2, ...

Proof: Given ag+ a,z+a,z*+---=by+b,z+b,z*+--V|z| <R.

Taking z = 0, we get a, = by.

Assume a,, = b, Vn < k. Then

k+1 o . R+l 4

Ap1Z = b1z

Dividing both sides by z¥*! and then taking z — oo, we get a.q; = by.q.
Hence by Mathematical induction a,, = b,, ¥ n and so the two power series are

identical.

Term by term addition or subtraction of two power series with radii of

convergence R, and R, yields a power series with radius of convergence at

least equal to the smaller of R, and R,.
Term by term multiplication of two power series
flz)=2720a,z" and g(z) =2 72,b,z"
means the multiplication of each term of the first series by each term of the

second series and the collection of like power of z. This gives a power series

and is given by
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Power Series
agby + (aghy + a;by)z + (agh, + ayby + azby)z* + -

== Z(ﬁubﬂ + -t ﬂﬂbujzﬂ
n=0

This power series converges absolutely for each z within the circle of

convergence of each of the two given series and has the sum

s(z) = f(z)g(z)

16.3.3 Theorem: The derived series of a power series has the same radius of

convergence as the original series.

Proof: f(z)=2X,2,a,z" have the same radius of convergence

By +4

R =1lim,__

The series after differentiation is

(= a}

f(z) =Znaﬂz“‘1 =a,+2a,z+3azz’+ -

n=1
Now

n|ia n a a
lim Ol i (—) ]im| nit| _ g |Gnrt| _ g
n—oo (‘H‘, + 1j|ﬁn+1| n—w \1 + 1/ n—c a,, n—= | a,

16.3.4 Example: Consider the series
Z:ii(?zi)zﬂ =z2+323+6z* +102° + -

Then
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n+1)n
( 2) z‘ﬂ+1 n+1

nn—1) - = n IZI_}Izl
—2 ¥4

So the series converges for R << 1 and diverges for R > 1.

16.3.5 Theorem: The power series Ziu%i’“” = agz + %32 + --- obtained
n+

by integrating f(z)=2X=,a,z" term by term has the same radius of

convergence as the orginal series.

16.3.6 Theorem: A power series with a nonzero radius of convergence R
represents an analytic function at every point interior to its circle of
convergence. The derivatives of this function are obtained by differentiating the
original series term by term. All the series thus obtained have the same radius of

convergence as the original series. Hence each of them is an analytic function.

Proof: Consider the two series f(z) = Y. 2 a,z",f1(2) = 2.2, na,z" !
Let f(z) have the radius of convergence R. We will show that the function f is

analytic and has derivative f,(z)in the interior of the circle of convergence.

f(z + Az) — N Az)" — 2
(z + ﬁi fizj_ﬁ(ﬂ:;aﬂ [(z—l— ﬁi A—

_ Z a,Az [(z+ Az)"2 + 22 (2 + Az)" 3 + -+ (n — 17" 2]

n=2
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The bracket contains (n — 1) terms, and the largest coefficient is (2 — 1). For
|z| = Ry, |z+ Az| = Ry, Ry < R, the absolute value of the series is less than or

equal to

< |az|Z|aﬂ | (n— 1)?R1-?
n=2

< 1871 ) la, | n(n— DR}
n=2

The series 2.2 a,n(n— 1)RE? is the second derived series of f(z) at
z = R, (Ry < R) and converges absolutely. Let K(R,) be the sum then

| f(z+Az)-f(z2)
Az

- fl(z)

<|Az]K(R,)—>0 as Az —0.

This completes the proof of the theorem.

16.3.7 Examples:

T
1. f(z) = ;';Eﬁ. Differentiating twice, we get ¥.2,z" 2 which is

convergent for |z| < 1and is divergent for |z| > 1.

2. Y2y i—n (z — i)™ Differentiating, we get 3.2, 6™ (z — i)™ * whose radius of

n=1

1

. . il 1
convergence is lim iy

N0 on41

3. ,_,f;zn(n—l]G)ﬂ. Consider the seriesY, =, G)n Differentiating this

twice and multiplying by z2, we get the original series. Now clearly the

radius of convergence of this new series is 5.
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4. 320 (f)ﬂ Differentiating the series 3, G)ﬂ term by term k times and

T

ZR - - - -
multiplying by o we get the original series. Now the radius of convergence

dg@fb&
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Module 2: Complex Variables

Lesson 17

Taylor Series and Laurent Series

17.1 Taylor Series

The following theorem shows that a Taylor series can be found for an analytic

function.

17.1.1 Theorem: Let f(z ) be analytic in a domain D and let z = z, be any

point in D. Then there is a unique Taylor series

flz) =2 _pa,(z—zp)", (17.1.1)
where
1o, 1 f(z) .
a, = n!f (zg) = 2mi ). =z dz (17.1.2)

and (€ contains z,. This representation is valid in the largest open disk with
center z, in which f(z) is analytic. The remainder R, (z) of (17.1.1) can be

represented as:

(z—zp)" f(z)

R.(2) = 2mi (z5 —zo)"* (2" — 2)

dz* (17.1.3)

The coefficient satisfy the inequality |a,,| < Eﬂ where M is the maximum of
s

|f(z)|on acircle |z — z,| = r in D whose interior is also in D.

Proof: By Cauchy’s integral formula, we have

161 WhatsApp: +91 7900900676 www.AgriMoon.Com



Taylor Series and Laurent Series

f(z)= 1_ f(z) dz’ (17.1.4)

e
2mi ), z° — 2

for z lying inside €. Now

1 1 1
z'—z ' —zo— (2—Zp) (1—{_3“)[2*—2.])
¥4 _Zu
1 z—z2 Z— Zp\* zZ—Zy\"
= 1+ "+( ") 4ot ")
" — Zg ZT— Zy ZT— Zp T —Zp
+(Zz_zu)'ﬂ+1 1
S 1 Z—%o
zZ" — Zp

#+ 1, we can do so as z* in on € and we

This expansion is valid for |

T
choose z inside the circle of radius r with center z, so that | — ‘:‘ <1,
=0
Thus
1 1 zZ—zZ Z — Zp\* Py Zocin}
— = — [1+ * "+(Z* ") + et (= ")
£ —Z £ — I Z —Zj — Z — £y
1 zZ— 7 n+l
+— (Z “) (17.1.5)
-z —Zy

Using (17.1.5) in (17.1.4), we get

Z—Zy (z— 2o)?
1@ =g ], 16 J[ SN
(z—zp)" 1 (z—z¢)"""!

dz”

(Z* _Zu)ﬂ+1 z* —Z(Z* _ Zu]ﬂ+1
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1 & _ &
LA @) g zmn [ @)
2mi ), 77—z 2mi Jo (27 —zy)*
z—zZp)" z”
4 ( ‘u] J' *f( ]ﬂ+1 dz’
2mi c (z°—zy)
(z —zo)™*! fz)
+ dz” 17.1.6
2mi c (" —2z)(z" — zp)™*! z ( )

This is Taylor’s formula with remainder term.

Since analytic functions have derivatives of all orders, we can take n in (17.1.6)
as large as possible. If we let n — oo, we get (17.1.1). Clearly, (17.1.1) will

convergence and represent f(z) if and only if

limR,(z)=0.

H—oD

Since z* ison € and z is inside C, |z* — z| = 0. Since f(z) is analytic inside

ﬂzgj, i.e.,

and on (, it is bounded, and so is the function

ZF—2

=M, VzZon C.

Also C has the radius r = |z* — z,| and the length 27mr.

Hence by the ML-inequality, we get from (17.1.3)

z — zg|**L z"
Rﬂ:—l ol - ﬂ-*] —dz’
2m c (z°—z)(z° — zp)
{lz—zﬂlﬂ+1m*2
< - ’TTTﬂ+1
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z_zu n+1

=M"T|

r

Now |z — z,| < r as z lies inside €. Hence the term on the right — 0as n — co.

Hence the convergence of the Taylor series is proved. Uniqueness follows since

power series have unique representation of functions.

Finally

z" M
f@) 1dz" = —.
c (Zx_zl]]m- rt

I =
| 'i'i.l 211_

17.1.3 Maclaurin’s Series

A Maclaurin’s series is a Taylor series with center z, = 0. That is,

— (0
flz) = Zfﬂ—?fr )z“, |z| < Ry .
n=0

A point z = ¢ at which f(z) is not differentiable but such that every disk with
center ¢ contains points at which f(z) is differentiable. We say that f(z) is

singular at ¢ or has a singularity at c.

17.1.3 Theorem: A power series with nonzero radius of convergence is the

Taylor series of its sum.
Proof: Given the power series

f(zj =ag+ ﬁi{:z— Zujl—|- {IZ(Z— zu]2_|_
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Then f(zy) = ay. Now
f'(2) = ay +2a,(z— zg) + -

Thus f'(z,) = a4. Further,
f'(2)=2a;,+3+2a3(z— zg) + -
Thus ' (z,) = 2as,.

In general, f*(z,) = n! a,,. With these coefficients the given series becomes

the Taylor’s series of f(z).

17.1.4 Remark: Complex analytic functions have derivatives of all orders and
they can always be represented by power series of the from (17.1.1). This is not
true in general for real valued functions. In fact, there are real functions for
which derivatives of all orders exist but it cannot be represented by a power

Series.

_1 y. a1
Consider for example, f(x)=e sz’ x#0 =0, x=0

This function cannot be represented by a Maclaurin’s series since all its

derivatives vanish at zero.

17.1.5 Examples:

n!

{l—z n+1?

1

1. f(zj=1— Then f*(z) =

—Z

f™(0) =n! Hence the Maclaurin’s

expansion of f IS the geometric series

%: ezt =1+z+z"+--, |z =1
—Z
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f(z)is singular at z = 1. This point lies on the circle of convergence.

n 2
2. f@=€e=FRo-=1+z+"+
n!
_ W f__q3n z0 _ __EE _j .
3. cosz= oD =gt
N _ oo . n zZ]'.I.-l'j_ B _ﬁ f 3
4osinz =R (DT =z et
5 ‘nh . z2hH -
' Sin Ez)_ n:Dm—Z_F;—F;—F
on z20 B =2 7%
6' CGSh{:‘Z] - “zD{En:]: —_ 1+ 21 + 4! + .

7. Ln(l1+z) =z—2—2+2—3—|—---, lz] < 1.

8. Ln(f) = 2(z+2—3+§+---), lz| < 1.

1-=

9 1 __ 1 _

1+z2 1—(—z2)

10. To find Maclaurin’s series for f(z) = tan™' z,

L 1224zt 284 |zl =1

fl2)=

14=z2

Integrating the power series term by term:

. z? z°
tamtz=z——4+——--, Jz|=1

3 5

representing the principal value of tan=? z.
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17.2 Laurent Series

The following theorem gives the conditions for the existence of a Laurent’s

Series.

17.2.1 Theorem: If f(z) is analytic on two concentric circles €, and €, with
center zg and in the annulus between them, then f(z) can be represented by the

Laurent series

o0

- b
f(2) =Zﬂn(.z—2u]“+ Z&_—;u)ﬂ
n=0

n=0

by by
=ag+a,(z— zg) +a(z— zg)*+---+ +

+o (17.2.1)

consisting of nonnegative powers and the principal part (the negative powers).
The coefficients of this Laurent series are given by the integrals

a

T

1 f(z’)

S 2mi ), (27— zp)"!

dz*, b, ZTEIJ’ (z" —zp)™ ! f(z)dz" (17.2.2)

taken counter clockwise around any simple closed path € that lies in the annulus

and encircles the inner circle.

This series converges and represents f(z) in the open annulus obtained from the
given annulus by continuously increasing the outer circle €, and decreasing €-

until each of the circles reaches a point where f(z) is singular.
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In the special case that z, is the only singular point of f(z) inside C5, this
circle can be shrunk to the point z,, giving convergence in a disk except at the

center.

Proof: By Cauchy’s integral formula for multiply connected domains, we get

@) .. 1 f(z)

2mwi ), 2" —Z 2mi ), z°—z
1 A

f(z)=g(z)+ h(z)+ dz* (17.2.3)

where zis any point in the given annulus and both €, and C, are counter-

clockwise. Now g(z) integral is exactly the Taylor series so that

90 =5 [ L2 ar =% a2

2mi ), z°—1Z
1 n=>0

/ s 1 BN flz*) .
with coefficients a,, = — | P dz".

Here €, can be replaced by € by the principal of deformation of path as z, is a

point not in the annulus.

To get the expansion for k(z), we note that [==22| < 1 for z"on €, and z is the
Z—Ip
annulus.
Now
1 B 1 _ —1
z"—z z°—z9g—(z—2zy) _ _EZ—Z
° ° (z Z“](l z—zn)
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1 z'—z z" — Z\ > z" — Zg\ "
=— 1+ "+( ") +---+( ")
Z_zu Z_zu E_Zu E_Zu

&
B 1 (z —zu)
Z—Z°\Z—Z

n+1l

Multiplying by 2 and integrating over €, on both the sides, we get
f(z J 1 f
h(z) = - me " 2mi|z— Zy fz)az
1
+——F | (z7

(z — z9)? Cy

—zg)f(z*)dz" + - + f (2* — zo)"f(2")dz’

+R,(2),

where,

]ﬂ+1

(z* —
2mi(z — zu]“”ﬂg (z —z%)

R, (z) = f(zHdz".

The integral over €, can be replaced by integrals over C.

We see that on the right, the power iIs multiplied by b, as given in

{Z—Zu:]"
(17.2.2). This proves Laurent’s theorem provided lim,, .., R}, (z) =

Now if the principal part consists of finitely many terms only, then there is
f{,z]

nothing to prove. Otherwise, we note that in R;,(z) is bounded in the

f 'fz*‘]

absolute value, say < M" Vz" on (€, because f(z") is analytic in the
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annulus and on €5, and z* lies on €, and z outside, so that z — z* + 0. From

this and the ML-inequality, we get

1
* * n+l s —
R, (z) = 2z — zg [ |z* — zo|"*"M*L (L= Length(,)

- 0asn— o.

ML |z" —zy|™!
2m

zZ— 2z

The first series in (17.2.1) is a Taylor series (g(z)) and hence it converges in
the disk D with center z, whose radius equals the distance of that singularity of
g(z) which is closet to z,. Also, g(z) must be singular at all points outside

C,where f(z)is singular.

The second series in (17.2.1) representing h(z) is a power series in z =

Z—Zp

Let the given annulus be r, < |z — z4| < r; Where r,and rare radii of C, and

. 1 1 J ..
C, respectively. Then — = |z| = —. Hence this power series in z must converge
Tz L

at least in the disk |r| < L This corresponds to the exterior |z — zy| = r, of
Tz

C-, so that h(z) is analytic for all z in the exterior E of the circle with center z,
and radius equal to the maximum distance from z, to the singularities of f(z)

inside €,. The domain common to D and E is the open annulus.

17.2.2 Remark: The Laurent series of a given analytic function f(z) is unique
in its annulus of existence. However, f(z) may have different Laurent series in

two annulus with the same center.
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17.2.3 Examples:
1. f(z) =z~ sin z, with center 0.

. B 73 75
Z7°smz=z"" z——+5r+

1 1 1 z7 zZ°
S 4+ — 4 — — ...
Z“‘ 31z 51 71 gl

for |z|>0. Hence the annulus is the whole complex plane except the

origin.

+ -, |z| = 0.

3 f(z)= —Zﬂ 0z, zl <1
and

1 ~/ NS ENT
F@=-— j——;‘zﬂﬂj e

valid for |z| = 1.

4. f(z) =
From the previous geometric series, we get by multiplying zia
1 1 1 1
33—34_3_3+z_2+z+1+ 0<|z| < 1.
1 1
pompr il S S
5. f(z) = z; center 0
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—2z+3 B 1 1

z2—-3z+2 z—1 z-2

B 1 N 1

T 1-z _Z
2(1-%)

= Nz +2 T, (5) for|z| < 1 (first for |z| < 1 and second for

=—+-z+_-z"+
2 "477g”
. 1 1 1 1
We can also write f(z) = — +-—= ) )
— f:u;ﬁ — f:uzi—jifor|z| = 2 (first for |z| > 1 and second for |z| = 2)
= To(1+2") o,
iy ey
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Module 2: Complex Variables

Lesson 18

Zeros and Singularities

18.1 Singular Points

A function f(z) is singular or has a singularity at a point z = z, if f(z) is not
analytic at z = z, but every neighbourhood of z = z, contains points at which
f(z)is analytic. Then we say that z = z, is a singular point of f(z).

The point z = z, is called an isolated singularity of f(z) if z=z, has a

neighbourhood without further singularites of f(z).

18.1.1 Example: The function f(z) = tan G) has a non-isolated singularity

atz = 0.

18.1.2 Example: The function f(z) = tan(z) has isolated singularities at

z =i%, 37 ete

18.2 Poles

Isolated singularities of f(z) at z = z, can be classified by the Laurent series

L=

- b
f(z]=Zaﬂ(z—zu]“—|— Z(z——;u]“ (18.2.1)
n=0

n=0

valid in an immediate neighbourhood of the singular point z = z, at z, itself,

that is, in a region of the form 0 < |z — z,| < R. The sum of the first series is
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analytic at z = z,. The second series, containing the negative powers, is called

the principal part of (18.2.1). If it has only finitely many terms, it is of the form

b,y b, b,
+ fod—2 b,
z—zy (z—2zp)* (z —zo)™

=0 (18.2.2)

Then the singularity of f(z) at z = z, is called a pole, and m is called the

order of the pole. Poles of the first order are called simple poles. If the

principal part of (18.2.1) has infinitely many terms, we say that f(z) has an

isolated essential singularity at z = z,.

18.2.1 Examples:

1 3 - .
1. f(z) = G2) + — has a simple pole at z = 0 and a pole of fifth

order z = 2.

2. f(z2)=elz=1+ i +——+ - has an isolated essential singularity at

2IE

3. f(z) =sin G)

_ v (="
n=0 (Zn+1)1z2n+1
1 1 1
— > _ + + .

z 3!z 5iz5

has an isolated essential singularity at z = 0.

4. f(z) =z Ssinz=—— —+———z2 +-.

z¢  6z® 120 5040 H 1zl =0

has a pole of order four at z = 0.
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. —+—+-+1+-, 0<]zl<1
F4 F4 F4

5. fl2) =——~=
z¥—z _i_i_..., Igl}]

The first expansion shows that there is a pole of order 3 at z = 0. The second

expansion has infinitely many terms of negative power. But it is no

contradiction as this later expansion is valid for |z| = 1.

18.2.2 Theorem: If f(z)is analytic and has a pole at z =z, then

|f(z)| —= 0 as z — zy in any manner.
0 y

18.2.3 Example: f(z) = iz hasapoleatz=0and [f(z)| = asz — 0in

any manner.

18.2.4 Theorem (Picard’s Theorem): If f(z)is analytic and has an isolated
essential singularity at a point z,, it takes on every value, with at most one

exceptional value, in an arbitrarily small neighbourhood of z,.

18.2.5 Example: The function f(z) = ez has an isolated essential singularity
at z = 0. It has no limit for approach along the imaginary axis. It becomes
infinite if z — 0 through negative real values. It takes on nay given value
¢ = cge'® # 0 in an arbitrary small neighbourhood of z = 0. Letting z = rei?,
we must solve the equation

{cos 8—i sin E]Kr

1 .
elz=e r= cge’”

for  and 8. Equating the absolute values and the arguments, we have
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cos 8 . .
e = cp 1.6, co0s0 =rincygand —sinf =ar.

From these two equations and cos®@ + sin? 8 = r*(Incg)* + a*r* =1,

we obtain the formulae

o

T2=;and tan @ = — .
(Incy)? +a? In g

Hence r can be made arbitrary small by adding multiples of 2w to e, leaving

¢ unaltered.

18.2.6 Removable Singularity

We say that a function f(z) has a removable singularity at z = z, if f(z)is
not analytic at z = z, but can be made analytic there by assigning a suitable
value f(zy). Such singularities are of no interest as they can be removed.

sinz

18.2.7 Example: The function f(z) =

becomes analytic at z = 0 if we

F4

define £(0)=1.

18.3 Zeros

A zero of an analytic function f(z) in a domain D is a z = z, in D such that
flzg)=0. A zero has order n if not only if f but the derivatives
fof - fm Y are all 0 at z = z, but £ (2y) # 0. A first order zero is
called a simple zero. For a second order zero f(zy) = f'(z) =0 but

f'(zy) # 0.
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18.3.1 Examples:

1. The function (1 + z?2) has simple zeros at z = +i.

2. The function (1 — z*)? has second-order zeros at z = +1 and +i.
3. The function (z — a)? has a third order zeros at z = a.

4. The function e= has no zeros.

5. The function sin z has simple zeros at z = 0,+m, +2m, ... and sin? z has

second-order zeros at these points.

6. The function (1 — cos z) has second-order zeros at 0, +2m, +4, .....

18.3.2 Taylor Series at a Zero

At an nt*-order zero z = z, of f(z),the terms f(zy),f' (2¢), ..., f® V' (zp) are

all 0 and £ (z,) # 0. Therefore, the Taylor series is of the form

f@)=a,(z—zy)"+a,.(z—z5)" ! + -

=(z—zp)"[a, + ay1(z—2p) + a,.2(z— Zujz + -] (18.3.1)

Conversely, if f(z) has a such a Taylor series then it has an n**-order zero at

Z:Zu.

18.3.3 Theorem: The zeros of an analytic function f(z)(= 0) are isolated, i.e.,
each of them has a neighbourhood that contains no further zeros of f(z).

Proof: In (18.3.1), the factor (z — z,)™ is zero only at z = z,. The power series
in the parenthesis represents an analytic function say g(z). Now
g(z)=a, #0.Since g(z) is also continuous, g(z)=0 in some

neighbourhood of z = z,. Hence f(z) # 0 in some neighbourhood of z = z,,.
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18.3.4 Theorem: Let f(z) be analytic at z = z, and have a zero of nt*-order at

Z = zy. Then 1/f(z) has a pole of n**-order at z = z,.

The same holds for :{—{3 if h(z)is analytic at z = z, and h(zy) + 0.

18.3.5 Analytic or Singularity at Infinity

Infinity (o0) has been added to the complex plane resulting in the extended

complex plane. The extended complex plane can be mapped into sphere of

diameter 1 touching the plane at z = 0. The image A* of a complex number A
Is the intersection of the sphere with the segment from A to the “north pole” N.

The point oo Is the image N.

The sphere representing the extended complex plane in this way is called the
Riemann number sphere. The mapping of the sphere onto the plane is called

stereographic projection with center N.

Thus for investigating a function f(z) for large |z|, we set z =21 and

investigate f(z) = f&) = g(w) in the neighbourhood of w = 0. We define

f(z) to be analytic or singular at infinity if g(e) is analytic or singular at

w = 0.

We also define g(0) = lim,,_. , g () if this limit exists. We say that f(z) has a
nth-order zero at infinity if f G) has such a zero at @ — 0. Similarly we define

poles and essential singularities.
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18.3.6 Examples:

2

1. The function fr[zj=l2 is analytic atoo. Since g(w)= w* is analytic

at w = 0 and f has a second-order zero at co.
2. The function f(z) = 23 is singular at e and has third-order pole there since

the function g(w) = f G) = % has such a pole at e = 0.

3. The function f(z) = e? has an essential singularity at o since e/ has such
a singularity at @ — 0. Similarly, cos z and sin z have essential singularity at

o0,

By Liouville’s theorem a bounded entire function is constant. Hence a non-

constant entire function must be unbounded. Hence it has a singularity at <o, a

pole if it is a polynomial or an essential singularity if it is not.

18.3.7 Meromorphic Function

Let f(z)be analytic function and it has only singularities in the finite plane
which are poles. Then f(z) is called a meromorphic function. Some examples
of meromorphic functions are rational functions with nonconstant denominator,

trigonometric functions tan z, cot z,sec z and cosec z.

18.3.7 Examples:

1. f(z) =cosecz =

gin =

Here z = 0 is a singular point of f. Now we can write

1 1

sin z z3 z3
z—grtert e
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1 z? g4 -
=—[1___|___|_...l

Z 3! 5!
1 =z ]
=7 + 3 + higher powersof z.

The principal part of the Laurent series is the single term i

Hence, z = 0 is a simple pole.

2. f(2) = —
_1[ 1 4 1 ]
T 2l1-z 1+z
1 11 1
S _1—1+_—]
PR Py
1 17, z—17"
= — — —_ -1 —
2(3 1) +4_1+ 2 ]
1 1] z—-1 (z—1)*
Sy T a1 Y N
2(3 1) +4_1 T gV l

which is valid for |z — 1| < 2.
Hence z = 1 is a simple pole.

Alternatively, we can express

_1(+1T1+1h z+1I1
f(2)=5(z 1 >
1 4,1 z+1 (z—-1* .
=E(z—|— 1) —|—1 1+ 2 + 1 + higher powers of (z+ 1)

for|z+1| <2
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Hence z = —1 is simple pole.

Suggested Readings
Ahlfors, L.V. (1979). Complex Analysis, McGraw-Hill, Inc., New York.

Boas, R.P. (1987). Invitation to Complex Analysis, McGraw-Hill, Inc., New
York.

Brown, J.W. and Churchill, R.V. (1996). Complex Variables and Applications.
McGraw-Hill, Inc., New York.

Conway, J.B. (1993). Functions of One Complex Variable, Springer-Verlag,
New York.

Fisher, S.D. (1986). Complex Variables, Wadsworth, Inc., Belmont, CA.

Jain, R.K. and lyengar, S.R.K. (2002). Advanced Engineering Mathematics,
Narosa Publishing House, New Delhi.

Ponnusamy, S. (2006). Foundations of Complex Analysis, Alpha Science
International Ltd, United Kingdom.
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Module 2: Complex Variables

Lesson 19

Residue Theorem

19.1 Residues

If £f(z) has a singularity at z = z, inside a simple closed curve C, but is otherwise
analytic on € and inside €, then we can expand the function f(z) in a Laurent

series as

f(Z]=Zaﬂ(z—zu]“+ by + b, + ..

z—zy (z—2zp)*

n=0

This series is convergent for all points near z = z, (except at z = z,) in the same

domain of the form 0 < |z — z,| < R.

1

Z—IZp

of this Laurent series is

Now the coefficient b, of the first negative power
given by

1
b — = d =
1 zﬁi_[:. f(z')dz

f f(z)dz* = 2mib, (19.1.1)
c

We define b, to be the residue of f(z) at z = z, and denote it by

by
= lim f(=z) (19.1.2)

:xn
19.1.1 Examples:
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1. We want to integrate f(z) = z~*sin z around the unit circle . Consider the

Laurent series expansion as

sinz_ 1 1 A
z¢  z3 31z 5!

f(z) =

This is convergent for |z| = 0. Hence b, = L

1

2. Here we integrate f(z) = clockwise around |z| = i The function f(z)

33_34
has singularities at z = 0 and z = 1. However, z = 1 lies outside the circle

C. So we can expand f(z) in Laurent series at z = 0 as

1 1 1
f@)=5+5+=-+1+--, 0<]z[<1
z z z

Note that the residue is 1 and we get

1
J; z3—z“dz = — 2mi ]zi:IEJI Res f(z) = — 2mi

19.1.2 Residue at Simple Pole

For a simple pole at z = z,, the Laurent series is

b
flz) = 1 +ag+a,(z— zg)+a,(z— zy)*+-- (0
Z_ZI]

< |z —zy| < R).

This implies that
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(z—2z9)f(2) = by +ag(z—zp) +a,(z— z¢)* + -

So lim,_, (z — z9)f(z) = by = lim,_, Res f(z).

Ly R T - q z+i =1I]i=_ .
19.1.3 Example: lim T llmgi i) 2G0GD — 2D oi
19.1.3 Remark: Suppose we have f(zjl:%, where p and g are analytic,
q

p(zy) # 0and g(z) has a simple pole z, so that f(z) has a simple pole z,. So by

Taylor series, we find

1) = (2= 20)4' )+ E 20 g (zg) + -
S0 lim,..,(z = 20)f (2) = lim, -, (Z — 20) 25
= (2~ 2)p(2)
0 (7— 20)q'(20) + T 7 (20) + -
_ p(zo)
q'(zo)

19.2 Residue at Pole of Any Order

If £(z) has a pole of any order m > 1 at z = z,, then its Laurent series can be written

as

bm m—1 Ih':L
—z)"  z=zg)™ + z_zu+ﬂu+ﬂ1[z zy)

f(z) =

where b,,, = 0.
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The residue of f(z) at z =z, is b,. If we multiply both sides by (z — z,)™, we
get
(z—20)"f(2) = by + b1 (z— 2g) + -+ by(z—zo)™"

+ag(z—2z9)™+a,(z—zg)™ ! + -

The residue b, of f(z)at z = z, is now the coefficient of the power (z — zo)™!
in the Taylor series of the function g(z) = (z — zo)™ 1 f(2) with center at

Z = Zj. SO

1

by = (m —1)!

g™ (zy)

(by Taylor’s Theorem). Hence, if f(z) has a pole of the mt*-order at z = z,, the

residue is given by

1 dm1
!LI;; Res f(z) = m!ﬂ; {W [(z— zu]mfiz]]}

19.2.1 Example: The function f(z) = ﬁ has a pole of second order at
z=1.50
lim Res f(z) = limi[ 50z ]
z—1 z—=1dzl(z+ 4)
_ ]im£[50(3+ 4) — 50z T 200 _g
z—1dz (z +4)2 z—1 (z +4)*
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19.2.2 Residue Theorem: Let the function f(z) be analytic inside a simple closed
path € and on C, except for finitely many singular points z,,z, ..., z;, inside

C . Then the integral of f(z) taken counter clockwise around € is given by

k

f f(z)dz = 2mi ) Res f(z)
C = z=zj

Proof: We enclose each of the singular points z; in a circle €; with radius small
enough that these kcircles and € are all separated. Then f(z)is analytic in the
domain D bounded by € and C4,...,C; and on the entire boundary of D. From

Cauchy’s integral theorem, we thus have

L f(z)dz =i£j f(z)dz
k

= 2mi Res f(z)
0 Z=%;

= 2mi ) Res f(z).

=t

19.2.3 Examples:

1. FindI = ﬁ: 4;33 dz, where € is simple closed path that

(@) encloses 0 and 1,

(b) O is inside and 1 is outside,
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(c) 0 and 1 are outside,

(d) 1isinside, o is outside.

R 4 —3z _k 4—33_ 4
zfl]sZ(Z—lj_zl—Ivll} z—1 N

4 —3z 4 -3z
Res———— =1lim =1

z=12z(z—1) z-1 z

Hence (@) I = 2mi (—4+ 1) = —6mi, (b) I = —8mi, (c) 0, (d) 2mi.

2. 24z —2mi [Res 222 4 Res tanz]

C =21 =1 22-1 z=—1z22-1

[tanz tan(—1) ‘
= 2mi > + — = 2mitan(1)

3.Evaluate ] = §_ (;g_z; bR zef) dz, C isellipse 9x% + y* = 9.

The first term in the integrand has simple polesat z = +-2 and z = +21.

The poles at +2 lie outside the curve C. So the first pole of I is

EHZ‘? ZEHZ‘T
I, = 2mi|Res + Res
1 =2iz*—16 =z=-20z% — 16
ze®" ze®"
= 2mi L}im - + lim -
=2 (z2 —4)(z+2i) ==-2(z*—4)(z + 2i)
2L —2i —Ti
= ETIL'[ -+ ] =
—32i 32i 4

For the second term
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3 PO L
zezr =z —
z 2122

T
=z4+m+—+--
2z

T e . . 2

So Reﬂs ze: =, and then the second term of the integral is 2mi “? = mli.
F=

Hence I = m3i —“f = i (% — 41).

4. Evaluate the integral ¢, -

dz, C:|z — 2| = 4. We can write

jg z—23 dz — z—23 iz
c —4z-5 e (z—5)(z+1)
= 2mi |Res z—23 + Res z— 23 ]
z=5 (z—5)(z+ 1) z——1(z—5](z—|—1]
= 2mi E—|—_—24 = Bt
6 —6

5. Evaluate I = jlz|= ,tan(mz) dz. The function tan(mz) has simple poles at

_|_

I:q
H—
M|r—~
M|Lu

.of which only z = +~ lie inside the contour. So

I =2mi

Rels tan(mz) + Resl tan(mz) ]

z=3 z=-3

(=1

= 2mi |lim (z — %)tan(nz] + lim (z + %)tan(nz)]

—— J= L —

[ ]

J 1 1 ,
= 2 ————] = —4i.
| T T
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6. Evaluate §_ £oshTE) Gy C:lz] = 4

z¥ 4522 +4

The integral has simple poles at z = +i, +2i and they all lie inside the contour.

Now for poleat z = a

p(a)  acosh{ax)  cosh{am)
P (a) 4 a®+10a 4aZ+10°

R:es f(z) =
So,

I = 2mi [RESf (z) + R:e_s_f (z) + R:ezs_f (z) + Ejgg f (z]]

_9 ‘[cnsh(ﬁtij_kcnsh(ni] cosh(Z2mi) cnsh(Zﬂ:ij]_ 411
i 6 6 6 1 3
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Module 3: Fourier Series and Fourier Transform

L esson 20

| ntroduction

Before we start discussion on Fourier transform it is verpontant to discuss Fourier
series firstly because it gives a pathway to understand €&owansform. Fourier series
has a wide range of applications, viz. in analysis of curfemt, sound waves, image
analysis and many more. They are also used to solve diffaleguations. In a general
sense, we use Fourier series to represent a periodic fasctladeed, not only periodic
functions but also to represent and approximate functiefised on a finite interval.

20.1 Periodic Functions

If a function f is periodic with periodl” > 0 thenf(t) = f(t+T), —oo <t < oco. The
smallest ofr’, for which the equalityf (¢) = f(¢t + T) is true, is called fundamental period
of f(t). However, ifT is the period of a functiorf thennT', n is any natural number, is
also a period off. Some familiar periodic functions as@ z, cos x, tan z etc.

20.1.1 Propertiesof Periodic Functions

We consider two important properties of periodic functibhese properties will be used
to discuss the Fourier series.

1. It should be noted that the sum, difference, product amdept of two functions is
also a periodic function. Consider for example:

f(z) = sinx + gin 2z + cos 3z,

. 2 2
period: 2w gzw Eﬂ

Period off = common period ofsin z, sin 2z, cos 3z) = 27

One can also confirms the period of the functjgn) as

f(z + 27) = sin(z + 27) + sin(2z + 27) + cos(3x + 27)
= sin(x) + sin(2z) + cos(3z) = f(x)
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2. If a function is integrable on any interval of lendih then it is integrable on any
other intervals of the same length and the value of the iategithe same, that is,

a+T b+T T
/ f(z)dz = / f(z)dz = / f(z) dz for any value otz andb
a b 0

This property has been depicted in Figure 20.1.1.

)

v

b+T

a+T

Figure 20.1: Area showing integral of a typical periodicdtion

20.2 Trigonometric Polynomialsand Series

e Trigonometric polynomial of order is defined as

—ao—l—z (akcos——i-bksinﬁTkI)

Herea, andb, are some constants. Since the sum of the periodic functigais a
represents a periodic function. Therefstewill be a periodic function. What will
be the period of the functiof,? The period can be identified simply by looking at
the common period of the functions involved in the sum as

. . T . TX 2rx . nmx nmwx
Period ofS,,(z) = common period 0(008 sl =, cos ——, ... sin , COS —)

l l e l
=2 /(r/l) =
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¢ The infinite trigonometric series

> Tkx Tkx
S(z) =ag + ; <akcosT + by sin T) ,

if it converges, also represents a function of pedbd

Now the question aries whether any function of period 2/ can be represented as
the sum of a trigonometric series? The answer to this quesiaffirmative and it

is possible for a very wide class of periodic functions. la tiext lesson we will see
how to obtain the constanés andb,, in order this trigonometric series to represent
a given periodic function.

Remark 1: Though sine and cosine functions are quite simple in nature but their sum
function may be quite complex. One can see the plot of sin x +sin 22+ cos 3z in Figure 20.2.
However, the function has a period 27 which isa common period of sin x, sin 2z, cos 3.

f(x)

0 2 4 6 8 10 12 14

Figure 20.2: Plot of a trigonometric polynomiglz) = sin z + sin 2z + cos 3z
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20.3 Orthogonality Property of Trigonometric System

We call two functionss(x) andq(x) to be orthogonal on the interval, 4] if

b
| otarwtads =0
a
With this definition we can say that the basic trigonometyistem viz.
1,cosx,sinz, cos 2x,sin 2z, . . .

is orthogonal on the intervél-=, x| or [0, 2x]. In particular, we shall prove that any two
distinct functions are orthogonal.

To show the orthogonality we take different possible corabon as:

For any integer n # 0: We have the following integrals to show the orthogonalityref
function1 with any member of sine or cosine family

™ . - - ﬂ-
/ L+ cos(nz) de = nlnz) " 0, / 1-sin(nz)dz = _cos(na)im 0
—TT n —TT o n o
We have also the following useful results
™ s 1 2 T - 1 B 2
/ cos®(nx) dz = / LT =, / sin®(nax) do = / 1~ cos(2nz) =
—n r 2 L%, L 2

For any integer m and n (m # n): Now we show that any two different members of the
same family (sine or cosine) are orthogonal. For the cosimely we have

/ cos(nz) cos(maz)dr = % / [cos(n +m)z + cos(n —m)z] de =0
and for the sine family we have

/7T sin(nz) sin(mz) dex = %/W [cos(n —m)x — cos(n +m)z] dz =0

T -7
For any integer m and n: Here we show that any two members of the two different
family (sine and cosine) are orthogonal

/ " sin(nz) cos(ma) dz = 0

—T

Note that the integrand is an odd function and thereforerttegyral is zero.

The above result can be summarized in a more general settthg following theorem.
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20.3.1 Theorem

The trigonometric system

T . T 2rx . 21x
1, cos —, sin —, cos ——, sin IR

l s I

is orthogonal on theinterval [—i, ] or [a,a + 21|, where a isany real number.

Proof: Note that the common period of the trigonometric system

T . TX 2rx . 27X
1, cos —,sin —, cos ——, sin —, . ..
[ [ [ [
Is 2{. Similar to the evaluation of the integral appeared abowhtwv orthogonality of the
basic trigonometric system, we have the following results:

N nwx a2 prr nwx 0 ifm#n
a) coS cos — dx = cos cos — dx = i
-1 [ [ a [ [ I ifm=n 75 0
L ooz | nox a2 mmz | nax 0 ifm#n
b) sin sin — dz = sin sin — dz = _
] l ! a l l I Tm=n#0
L mmz onmx o2 mpr nmx
C) / sin cos — dx = / sin cos —dz =0
_ l l a l l
This completes the proof of the above theorem. n

To summarize, the value of the integral over length of peobiditegrand is equal to zero
if the integrand is a product of two different members ofdngmetric system. If the
integrand is product of two same member from sine or cosinelyahen the value of

the integral will be half of the interval length on which theegral is performed. These
results will be used to establish Fourier series of a functibperiod2/ defined on the

interval [—(, ] or [a,a + 2[]. It should be noted that far= = we obtain results for standard
trigonometric system of common periodl.
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Module 3: Fourier Series and Fourier Transform

Lesson 21

Construction of Fourier Series

In this lesson we shall introduce Fourier series of a piesewbntinuous periodic func-
tion. First we construct Fourier series of periodic funofi@f standard periozir and then
the idea will be extended for a function of arbitrary period.

21.1 Piecewise Continuous Functions

A function f is piecewise continuous da, b| if there are points
a<ti<to<...<t,<b

such thatf is continuous on each open sub-interyak; ), (¢;,¢;+1) and(t,, b) and all the
following one sided limits exist and are finite

Jim f(#), Hm f(2), lm f(t), and lim f(t),j=12..n

This mean thayf is continuous orja, b] except possibly at finitely many points, at each
of which f has finite one sided limits. It should be clear that all camiuns functions are
obviously piecewise continuous.

21.1.1 Example 1

Consider the function

3, forx = —m;
z2, for —m <z < 1;
flz) = 5 :
1—2a2% for1<az<?2;
2, for2 <z <n.

At each point of discontinuity the function has finite oneditimits from both sides. At
the end points = —7 and~ right and left sided limits exist, respectively. Therefde
function is piecewise continuous.
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Construction of Fourier Series

21.1.2 Example 2

A simple example that is not piecewise continuous includes

f(x){o’ v

™" xe€(0,1],n>0.

Note thatf is continuous everywhere exceptrat 0. The functionf is also not piecewise
continuous orio, 1] becauséim,_y f(z) = cc.

An important property of piecewise continuous functionsasndedness and integrability
over closed interval. A piecewise continuous function otoaed interval is bounded and
integrable on the interval. Moreover, fif and f, are two piecewise continuous functions
then their productf; f>, and linear combinationr; f1 +cs f2, are also piecewise continuous.

21.2 Fourier Series of &7 Periodic Function

Let f be a periodic piecewise continuous functionen, =] and has the following trigono-
metric series expansion

(0]
~ 30 A Z ay, cos(kx) + by sin(kx)] (21.1)
k=1
The aim is to determine the coefficients k¥ = 0,1,2,... andbg, k = 1,2,..... First we

assume that the above series can be integrated term by terits antegral is equal to the
integral of the functiory over|[—r, 7], that is,

/_7; f(x)dx = /:T%dxjt ; (ak /_:cos(k:x) dz + by /_7; sin(kx) dx)

This implies
1 ™
= /_7r f(z)dx

Multiplying the series byos(nz), integrating ovef—=, 7] and assuming its value equal to
the integral off (z) cos(nz) over|—m, 7], we get

o0 T

/ f(z) cos(nz)dr =0+ Z (ak/ cos(nzx) cos(kx) dx + bk/

—T

cos(nzx) sin(kx) dx)
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Note that the first term on the right hand side is zero becﬁ@rse)s(k:x) dz = 0. Further,
using the orthogonality of the trigonometric system we wbta

_ % /_ : f(x) cos(nz) dz

Similarly, by multiplying the series byin(nz) and repeating the above steps we obtain

/ f(z) sin(nx)

The coefficients,,, n =0.1,2,... andb,,, n = 1,2, ... are called~ourier coefficientsand
the trigonometric series (21.1) is called theurier seriesof f(z). Note that by writing
the constand, /2 instead ofiy, one can use a single formula®f to calculate.

Remark 1: In the series (21.1) we can not, in general, replacby = sign as clear
from the determination of the coefficients. In the procesbawe set two integrals equal
which does not imply that the functigi) is equal to the trigonometric series. Later we
will discuss conditions under which equality holds true.

Remark 2: (Uniqueness of Fourier Series)If we alter the value of the functiop

at a finite number of points then the integral defining Foudeefficients are unchanged.
Thus function which differ at finite number of points havecilydhe same Fourier series.
In other words we can say that ff ¢ are piecewise continuous functions and Fourier
series off andg are identical, thery(x) = g(z) except at a finite number of points.

21.3 Fourier Series of a&! Periodic Function

Let f(z) be piecewise continuous function defined[+1,] and it is2/ periodic. The
Fourier series corresponding f@r) is given as

. kmx
fo=2g Z {an C0S == 4 by, sl —— (21.2)

where the Fourier coefficients, derived exactly in the @amrhanner as in the previous
case, are given as

1 /! kmx
—7/ f(l’)COSTdJ}', ]{52071,2,...
-1
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Construction of Fourier Series

k
/f sinﬂdx E=1,2,...

In must be noted that just for simplicity we will be discugskourier series afr periodic
function. However all discussions are valid for a functidao arbitrary period.

Remark 3: It should be noted that piecewise continuity of a functiosuiiicient for

the existence of Fourier series. If a function is piecewigstiouous then it is always
possible to calculate Fourier coefficients. Now the questidses whether the Fourier
series of a functiory converges and represengsor not. For the convergence we need
additional conditions on the functionto ensure that the series converges to the desired
values. These issues on convergence will be taken in théessrn.

21.4 Example Problems

21.4.1 Problem 1

Find the Fourier series to represent the function

f(a:){ -, —m<z<O0;

i) U< i <M

Solution: The Fourier series of the given function will represertrgoeriodic function
and the series is given by

WK

fla)~ Ly

5 (ap, cos(nx) + by, sin(nz))

1

{—/ 7le’+/ xdx} - _I
—T 0 2

m 0 m
ap =— f(z) cos(nz)dx = 1 {— / mcos(nx) dr + / x cos(nx) dx}
i ™ -7 0

__ [sin()]’ 1[{xsm<nx>}“_ " sin(na) }
- { n ]_WJFW n 0 /0 n d
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Construction of Fourier Series

It can be further simplified to give

1 0, n IS even,
——%, nisodd.

Similarly ,, n = 1,2, ... can be calculated as

0 ™
1
bn == l—/ 7 sin(nx) dx+/ x sin(nx) dx}
- 0

_ cos(nx)} 0 1 {_ {xcos(m:) }W " cos(nz) dx}
{ n . T n 0 +/0 n

After simplification we get

bp=—[l—2(=1)"={ .

1 -1 piseven;
n %, n 1S odd.

Substituting the values af, ands,,, we get

T 2

f(z) ~ 1= [cosx—l—

cos3x  cosdx
+

sin2x  3sin 3z
32 52 o ]

+ ..}—%[SSmx— 5 + 3

Remark 4: Let a function is defined on the intervigd/, ]. It should be noted that
the periodicity of the function is not required for develogiFourier series. However,
the Fourier series, if it converges, definegi/gperiodic function oriR. Therefore, this is
sometimes convenient to think the given functiomgeeriodic defined orR.

21.4.2 Problem 2

Expandf(z) =| sinx | in a Fourier series.

Solution: There are two possibilities to work out this problem. Thisyrba treated as a
function of periodr and we can work in the intervad, =) or we treat this function as of
period2z and work in the interval—r, 7).

Case I: First we treat the functionsinz| as~ periodic we havel = = = | = 5. The
coefficientq is given as

3 e

1 [T 2 [T 2
aoz?/ f(x)dx:—/ sinzdr = = [—cosz]y =
2 Jo ™ Jo

T
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The other coefficieni,,, n = 1,2,... are given by

™ 1 ™
ay, = — / sin x cos(2nx) dox = 7 / [sin(2n + 1)z — sin(2n — 1)z] dz
0 0

m
It can be further simplified to have

1| cos(2n+1)x|™ cos(2n — 1)z |7 1 [ 2 2 } 4
a —_— — f— = — —_ = -
" 2n+1 o on—1 lo| 7l2n+1 2n-1 7(4n? — 1)

m
Now we compute the coefficients, n = 1,2,... as

2 [T 2 (M1
b, = — / sin x sin(2nx) de = — / 5 [cos(2n — 1)z — cos(2n + 1)x] dz
0 0

s s
|-
0

sin(2n + 1)z

1 l_ sin(2n — 1)z

o on—1 o 2n + 1
Hence the Fourier series is given by
2 —4 cos 2nx

n=1

Case Il: If we treat f(x) as2x periodic then

™ 1 s
ap = —/ sin z cos(nx) dz = —/ [sin(n + 1)z — sin(n — 1)z] dz
0 0

cos(n — 1)z W] ~, T ) [—(—1)’“’1 +1 (=" 1-1
0

0 n—1

_'_
IS n+1 n—1

n+1

_ 1] cos(n+1)z
T

Thus, forn # 1 we have

0, whenn is odd;
an - 1 4 .
—+——, Whenn is even
The coefficient; needs to calculated separately as
2 [ 1 [" 1 2277 1
a1:—/ sinxcos:cdx:—/ sin2xdx:—[—cos :)3} =—[-1+1]=0
T Jo ™ Jo ™ 2 0 2T

Clearly, the coefficients,’s are zero because

1
/ f(z)sin(nx) / | sin z| sin(nz) de =0
————

odd function
The Fourier series can be written as

2 4 rcos2x cosdxr  cosbx cos 2nx
[ + + +. ] =2_2 Z

@ ~2-213 15 35 4n2—1

Therefore we ended up with the same series.
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Remark 5: If we develop the Fourier series of a function considerisgiriod as any
integer multiple of its fundamental period, we shall end uhwhe same Fourier series.

Remark 6: Note that in the above example the given function is an evestifun and
therefore the Fourier series is simpler as we have seen tigatdefficient,, is zero in this
case. The determination of the Fourier series of a giventiandecomes simpler if the
function is odd or even. More detail of this we shall see inlLtbgsore3.

Suggested Readings

Davis, H.F. (1963). Fourier Series and Orthogonal Funstiddover Publications, Inc.
New York.

Debnath, L. and Bhatta, D. (2007). Integral Transforms anelifTApplications. Second
Edition. Chapman and Hall/CRC (Taylor and Francis GrougwNork.

Folland, G.B. (1992). Fourier Analysis and Its Applicagorindian Edition. American
Mathematical Society. Providence, Rhode Islands.

Hanna, J.R. and Rowland, J.H. (1990). Fourier Series Toamsfand Boundary Value
Problems. Second Edition. Dover Publications, Inc. NewkYor

lorio, R. and lorio, V. de M. (2001). Fourier Analysis and #arDifferential Equations.
Cambridge University Press. United Kingdom.

Jeffrey, A. (2002). Advanced Engineering Mathematics ek Academic Press. New
Delhi.

Pinkus, A. and Zafrany, S. (1997). Fourier Series and lalefransforms. Cambridge
University Press. United Kingdom.

Stein, E.M. and Shakarchi, R. (2003). Fourier Analysis: Atrdduction. Princeton
University Press, Princeton, New Jersey, USA.

Peter, V. O'Neil (2008). Advanced Engineering Mathemat{€sengage Learning (Indian
edition)

Kreyszig, E. (1993). Advanced Engineering Mathematicsve8th Edition, John Willey
& Sons, Inc., New York.
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Module 3: Fourier Series and Fourier Transform

Lesson 22

Convergence Theorems

We have seen that piecewise continuity of a function is gafiidfor the existence of the
Fourier series. We have not yet discussed the convergeribe &burier series. Conver-
gence of the Fourier series is a very important topic to béoe&gd in this lesson.

In order to motivate the discussion on convergence, let astoact the Fourier series of
the function

fla+7) = f(a).

cos T, 0<z<m/2

f) = { —cosz, —m/2<x<0;

In this case the function is an odd function and theretgre= 0, n = 0,1,2,.... We
compute the Fourier coefficieiy by

w/2 /2
by = g/ f(z)sin(2nz) dz = é/ cos xsin(2nx) doe = §+
L - T Jo 7 (4n? — 1)

The Fourier series is given by

o0

f(z) ~ nz_:l by sin(2nx) = Z %

A n=1
Note that the Fourier series at= 0 converges t@. So the Fourier series gfdoes not

converge to the value of the functionzat 0.

With this example we pose the following questions in conioacto the convergence of
the Fourier series

1. Does the Fourier series of a functigfx) converges at a pointe [—L, L].
2. If the series converges at a paints the sum of the series equal tor).
The answers of these questions are in the negative because

1. There are Lebesgue integrable functions|-en, L] whose Fourier series diverge
everywhere oL, L.

2. There are continuous functions whose Fourier seriesgbvat a countable number
of points.
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3. We have already seen in the above examples that the Fearies converges at a
point but the sum is not equal to the the value of the functidhat point.

We need some additional conditions to ensure that the Foseges of a functiory(z)
converges and it converges to the functigi@). Though, we have several notions of
convergence like pointwise, uniform, mean square, etc. g dtick to the most com-
mon notion of convergence, that is, pointwise convergena®.{f,,}°°_, be sequence
of functions defined offu, b]. We say thaf f,,}>°_, converges pothlse t¢ on [a, 0] if
for eachr € [a,b] we havelim,, ., fn(z) = f(z). A more formal definition of pointwise
convergence will be given later.

22.1 Convergence Theorem (Dirichlet's Theorem, SufficienCondi-
tions)

Theorem Statement: Let f be apiecewise continuous function on[—L, L] and the
one sided derivatives of f, that is,

flx+h) - flzt)

nse[-L0) & ltim L8 =I@=M 4 o p

hli>%l+ h h—0+ h
(22.1)
exist (and are finite), then for eaghe (—L, L) the Fourier series converges and we have
fla+) + f(x o kmx
5 +Z an cos n SIN = .

At both endpoints = +L the series converges t¢(L—) + f((—L)+)] /2, thus we have

FLA) + (D)) _ a0, x4y
5 ?0 + Z(—l) an

Remark 1: If the function is continuous at a point that is, f(z+) = f(z—) then we
have

+ Z {an C08 2 4 by, sin k% (22.2)

In other words, iff is continuous withf(—L) = f(L) and one sided derivatives (22.1)
exist then equality (22.2) holds for all
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Remark 2: In the above theorem condition gnare sufficient conditions. One may
replace these conditions (piecewise continuity and onedsitrivatives) by slightly more
restrictive conditions of piecewise smoothness. A funeéticaid to bepiecewise smooth
on[-L, L] ifitis piecewise continuous and has a piecewise continaauvative. The
difference between the two similar restrictions owill be clear from the example of the
function
f(a) = { r?sin(1/x), x #0;
0, z=0.
It can easily easily be shown that derivative of the funcégist everywhere and thus the
function has one sided derivatives and satisfy the condit@f the convergence Theorem
(22.1). However the function is not piecewise smooth becthedim,_, f/(z) does not
exist as
, 2zsin(1/x) —cos(1/x), x #0;
o~
0, x =0.
If a function is piecewise smooth then it can easily be shoatléft and right derivatives
exist. Letf be a piecewise smooth function gaL, L] thenlim, .+ f/(x) exists for all
a € [-L, L]. This implies

lim, (@)= lim (mnf@+h%<ﬂ@)

T—a+ z—a+ \ h—0+ h

Interchanging the two limits on the right hand side we obtain
%@zlml(mnf@+m_f@g==mnfm+w—f®ﬂ

lim f

r—a+ h—0+ \Z—a+ h h—0+ h

Similarly one can shown the existence of left derivatives @&ample confirms that piece-
wise smoothness is stronger condition than piecewise rmatyi with existence of one
sided derivatives.

22.2 Different Notions of Convergence

22.2.1 Mean Square Convergence

Let {f}>_, be sequence of functions defined|arb]. Let f be defined oru, b]. We say
that the sequencg’,, }°°_, converges in the mean square sensgda [a, b] if

b
mJ/|ﬂ@—ﬁamﬁm=o

m—oQ

WhatsApp: +957900900676 www.AgriMoon.Com
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22.2.2 Pointwise Convergence

Let {fn}5°_, be sequence of functions defined pny] and letf be defined ora, b].
We say that{f,,}>°_, converges pointwise t¢ on [a,b] if for eachz € [a,b] we have

limy, 00 fm(z) = f(x). Thatis, for each: € [a,b] ande > 0 there is a natural number
N(e,x) such that

|fu(z) — f(z)| <eforalln > N(e, x)

22.2.3 Uniform Convergence

Let {f.}>°_, be sequence of functions defined [arp] and letf be defined orja, b]. We
say that{ f,,}°°_, converges uniformly tg° on [a, 0] if for eache > 0 there is a natural

m=1

numberN (¢) such that

|fn(x) — f(z)| < eforalln > N(¢), and for allz € [a, b]

There is one more interesting fact about the uniform coremeg. If{f,,}>°_, is a se-
guence of continuous functions which converge uniformlg fanction tof on{a, b], then
fis continuous.

22.2.4 Example 1

Letwu, = 2" on|0,1). Clearly, the sequenci., }>>, converges pointwise tq that is, for

n=1
fixedz € [0,1) we have li_)rn u, = 0. But it does not converge uniformly tocas we shall
n—oo
show that for given there does not exist a natural numhb€rindependent af such that
lup, — 0] < e. Suppose that the series converges uniformly, then forengiwith

iy — 0] < &, (22.3)

we seek for a natural numbe¥(s) such that relation (22.3) holds for > N. Note that

relation (22.3) holds true if

n Ine
r<e<—sn>_—
Inz

It should be evident now that for giverands one can define

Ine

N = [ ] . Wwhere][] gives integer rounded towards infinity

Inz
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It once again confirms pointwise convergence. Howeveris not fixed thenne/Inx
grows without bounds for € [0,1). Hence it is not possible to find which depends only
one and therefore the sequengg does not converge uniformly to

22.2.5 Example 2

n
Letwu, = —— on [0,1). This sequence converges uniformly and of course pointwise
n
For givene > 0 taken > N := [1] then noting[] > 1 we havdu, — 0| <2"/n <1/n <e
for all n > N Hence the sequenag converges uniformly.

Now we discuss these three types of convergence for thedf@aiies of a function.

e Let f be apiecewise continuous functiornon [—=, 7| then the Fourier series gf
convergence tg in the mean square sense. That is

v
lim
m—0o0

m
2
f(z) — [% —l—Z(akcoskarbksinkx)H dz =0
T k=1

e Let f be apiecewise continuous functioron [—=, 7] and the appropriatene sided
derivatives of f at each point in—m, ] exists then for each € [—=, | the Fourier
series off converges pointwise to the valgg(z—) + f(z+))/2.

e If fis continuouson [—x, ], f(—7) = f(x), and f’ IS piecewise continuousn
[—m, ], then the Fourier series gfconverges uniformly (and also absolutely)sto
on[—m,l.

22.3 Best Trigonometric Polynomial Approximation
An interesting property of the partial sums of a Fouriereseis that among all trigonomet-

ric polynomials of degre#’, the partial sum of Fourier Series yield the best approxonat
of f in the mean square sense. This result has been summarizedfollowing lemma.

22.3.1 Lemma

Let f be piecewise continuous function prr, 7] and let the mean square error is defined
by the following function
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™

N
2
E(co,...,en,di, ..., dN) :/ f— [%%—Z(ckcoskaﬂ—dksinkx)” dx
o k=1

thenE(ag,...,an,b1,...,bn) < E(co,...,cn,dy, ..., dy) forany realnumbersgy, ci, ..., cn
anddi, ds, ..., dy. Note thata;, andb,, are the Fourier coefficients of.

22.4 Example Problems

22.4.1 Problem 1

Let the functionf(z) be defined as

- < x <0

—,
f(x):{:c, 0<zx<m.

Find the sum of the Fourier series for all pointiar, 7.
Solution: At z = 0, the Fourier series will converge to

fOH)+f(0-) _O0+(-m) =
2 e D)
Again,z = +7 are another points of discontinuity and the value of theesaat these point

will be

flrz) + F(zm)h), L mt (5
2 2 ’

At all other points the series will converge to functionaluef (z).

22.4.2 Problem 2

Let the Fourier series of the functigiiz) = = + 2%, —7 < = < 7 be given by

s T 4 2 .
T+ NE—i_z:l(_l)n 3 coSNT — —sinny
n=

Find the sum of the Fourier series for all pointjinr, 7|. Applying the result on conver-
gence of the Fourier series find the value of

1 1 1 1 1 1
1+—=+ +?+"' and 1 + —

23 TETE T
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Solution: Clearly the required series may be obtained by substitutiag-m andx = 0.
At the points of discontinuity: = += the series converges to

fro) + f((=mt) _ (rtm®) + (m+7?)
2 2 ’

Substitutingr = +7 into the series we get

I 2n4 .
?JFZ _2_7T :>Zn2_€

n=1 n=1

At the pointz = 0 is a point of continuity and therefore the series will comgesto 0.
Substitutinge = 0 into the series we obtain

TR =T

Suggested Readings

Davis, H.F. (1963). Fourier Series and Orthogonal Funstiddover Publications, Inc.
New York.

Debnath, L. and Bhatta, D. (2007). Integral Transforms ahneliiTApplications. Second
Edition. Chapman and Hall/CRC (Taylor and Francis grougwNork.

Folland, G.B. (1992). Fourier Analysis and Its Applicasorindian Edition. American
Mathematical Society. Providence, Rhode Islands.

Jeffrey, A. (2002). Advanced Engineering Mathematics etdklr Academic Press. New
Delhi.

Pinkus, A. and Zafrany, S. (1997). Fourier Series and lalefransforms. Cambridge
University Press. United Kingdom.

Peter, V. O’Neil (2008). Advanced Engineering Mathemat{€sngage Learning (Indian
edition)

Kreyszig, E. (1993). Advanced Engineering Mathematicsve8th Edition, John Willey
& Sons, Inc., New York.

211 WhatsApp: +9177900900676 www.AgriMoon.Com



Module 3: Fourier Series and Fourier Transform

L esson 23

Half Range Sineand Cosine Series

In this chapter, we start discussion on even and odd funcBisrmentioned earlier if the
function is odd or even then the Fourier series takes a raih®le form of containing
sine or cosine terms only. Then we discuss a very importgmnt tif developing a desired
Fourier series (sine or cosine) of a function defined on aefiiniterval by extending the
given function as odd or even function.

23.1 Even and Odd Functions

A function is said to be an even about the pairit f(a — z) = f(a + x) for all z and odd
about the point if f(a —z) = —f(a + z) for all z. Further, note the following properties
of even and odd functions:

a) The product of two even or two odd functions is again an éweation.
b) The product of and even function and an odd function is ahfodction.

Using these properties we have the following results folRwrier coefficients

/ i / f(x)cos(nz)dz, whenf is even function about
COS nx

0, whenf is odd function about

whenf is even function about

/ f(@)sin(na) / f(z)sin(nz)dz, whenf is odd function about

From these observation we have the following results

23.1.1 Proposition

Assume that is a piecewise continuous function par, 7). Then
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Half Range Sine and Cosine Series

a) If f is an even function then the Fourier series takes the sinopie f

@ o : 27 B
f(z) ~ ) + Zan cos(nx) with an = — /0 f(z)cos(nz)dz,n=0,1,2,....

n=1

Such a series is called a cosine series.

b) If fis an odd function then the Fourier seriesfohas the form
@)~ basinte)  with b, = % / @) sin(nz) dz,n = 1,2,
n=1 0

Such a series is called a sine series.

23.2 Example Problems

23.2.1 Problem 1

Obtain the Fourier series to represent the functitn)

z, when0 <z <~
flz) =
2r —z, whenr <z < 2n

Solution: The given function is an even function abaut = and therefore

27
by = — (x) sin(nz) dz = 0.

T Jo

The coefficienty will be calculated as

1 27 1 T 2 1
ap = — f(x)dx:—{/ xdx+/ (27T—l')dl’1=—
T Jo 7| /o vi i

The other coefficients, are given as

2m T 27
ap = l/ f(z) cos(nz) dx = [/ zcos(nx) dr + / (2w — z) cos(nx) dx]
0 0 pi

3|

T
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Half Range Sine and Cosine Series

It can be further simplified as
2 0, whenniseven
——, whenn is odd

Therefore, the Fourier series is given by

f() T 4 cos +COS3{L'+COS51'
r)=——— T
2 0w 32 52

+ ] where0 < z < 27. (23.1)

In this case as the function is continuous ghds piecewise continuous, the series con-
verges uniformly tof (z) and we can write the equality (23.1).

23.2.2 Problem 2

Determine the Fourier Series gfiz) = 22 on [-r, 7] and hence find the value of the

o . 1 1
n+1
infinite serleszl(—l) — and Zl =
Solution: The functionf(x) = 22 is even on the interval f; 7] and therefore,, =0 for all
n. The coefficient, is given as

" _o

(", 3
—= de = = :
0= A SR
The other coefficients can be calculated by the general florams
L g ) i i N
i —/ 22 cos(nz) do = —/ 2% cos(nz) de = = l:EQM - —/ 2x sin(nx) dx}
0 0 nJo
Again integrating by parts we obtain

4 lxcos(nx) 7T_/7T cos(nx) dx} _ 4 lﬂ(—l)" _01 _ 4(—1)"
0

nm 0 n nm n n

—T

n

Therefore the Fourier series is given as

2 o0 _1\n
=14 Z 4(n21) cos(nx) for =z e |[-m 7. (23.2)
n=1

If we substituter = 0 in the equation (23.2) we get

2 o© n o0 n+1 2
m 4(-1) (-t o
0= 3 +Z1 n2 ; Z n2 127
n=

n=1

If we now substituter = = in the equation (23.2) we get

9 T 4(-1) 127 1 I
el e Tl lwtlu e
n— n= n=
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Half Range Sine and Cosine Series

23.3 Half Range Series

Suppose thaf(z) is a function defined o, /]. Suppose we want to express) in the
cosine or sine series. This can be done by extenglingto be an even or an odd function

n|[—1,]. Note that there exists an infinite number of ways to express$unction in the
interval[—7,0]. Among all possible extension ¢fthere are two, even and odd extensions,
that lead to simple and useful series:

a) If we want to expresg(z) in cosine series then we exterigr) as an even function in
the interval[—i, [].

b) On the other hand, if we want to expre&s) in sine series then we exteridr) as an
odd function in[—(, [].

We summarize the above discussion in the following propmosit

23.3.1 Proposition

Let f be a piecewise continuous function definedof. The series

S Z an cos 1L with an / f(z) cos @ dx

is called half range cosine series pof Similarly, the series

(o.9]
x) ~ Z by, sin # with by, / f(zx)sin m dx
n=1

is called half range sine series ¢f

Remark: Note that we can develop a Fourier series of a functjodefined in[0, ]

and it will, in general, contain all sine and cosine terms.isTseries, if converges, will
represent d-periodic function. The idea of half range Fourier serieeigirely different
where we extend the functighas per our desire to have sine or cosine series. The half
range series of the functiofnwill represent ai-periodic function.
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Half Range Sine and Cosine Series

23.4 Example Problems

23.4.1 Problem 1

Obtain the half range sine seriesfetrin 0 < z < 1.

Solution: Since we are developing sine seriesafe need to computg, as

! 1 1
2
bn, =7 f(x)sin @dx = 2/ e’ sinnrr = 2 [ew sin mrx‘(l) - "7/ e’ cosnmx d$] dz
0 0 0

1
=2 {—mr{ew cos mrx|(1) + mr/ e’ sinnmwx dx}} = 2n7(e(—1)" — 1) — n’r?b,
0

Taking second term on the right side to the left side and afteplification we get

~2nm [1 —e(—=1)"]
" 1 + n2x?

Therefore, the sine series pis given as

1—e
e’ —271'2 1+n22 smmm for 0<z<1

23.4.2 Problem 2

Let f(x) = sin &% on (0,1). Find Fourier cosine series in the range< = < I.

Solution: Sine we want to find cosine series of the functfowe compute the coefficients
an AS

l l
2 1 1 1-—
an:_/smﬂcosﬂdx:_/ {Smwﬂin%] "
0 0

Forn # 1 we can can compute the integrals to get

T

l
_ 1 _COSM +C08m 1 (=t N 1 N (-~ 1
= (7”'l1)7r (”—ll)W n+1 n+1 n—1 n—1
0
It can be further simplified as
{ 0, whenr is odd
Ay =
(

4 .
= Whenn is even
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Half Range Sine and Cosine Series

The coefficient; needs to calculated separately as

l l l [ 27

The Fourier cosine series ¢fis given as

2rx drx 6rx

T 2 4[0087 cos L cos L ]
+ ...

M= sl T3 T3 T 57

23.4.3 Problem 3

l l
1 2 1 2 l 1
alz—/ sin—ﬂxdx—— lcos—ﬂx —1 —(1-1)=0
0

Expandf(z) =z, 0 < x < 2ina (i) sine series and (ii) cosine series.

Solution: (i) To get sine series we calculaigas

2
2
/f sm@dx—2/ :csm%dx
0

Integrating by parts we obtain

nm nm nm

nwx 2 Z 2 2 nwx 4
b, = [x CcOS —— (——)} + — cos — dz = ——— cosnm.
2 0 0 2

Then foro < z < 2 we have the Fourier sine series

Oocosmr,mrx A ot et [l &) T Sl 53752005
:__Z :—(sm———sm——l——sm—+...>.

2 T 2 2 2 3 2

(i) Now we express(z) = z in cosine series. We need to calculatgor n # 0 as

2 2 nmwT . onmx [ 2 2 2 . onmx [ 2
ap = = rcos —dx = [xsm— (—)} — sin —— (—) dz
2 0 2 2 nw/lo 0 2 nmw

After simplifications we obtain

an = = (3) {Cos "ﬂ} T 47T (cosnm — 1) = o [(—=1)" — 1]

nmw \nmw 2

0

2
aoz/ rdr =2
0

Then the Fourier sine series pfx) = = for 0 < z < 2 is given as

The coefficient is given as

2 32 2 52

4 = nmT 8 T 1 3rx 1
= —Z 0s = ——(cos——l——cos—+—cos
7T —
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Half Range Sine and Cosine Series

It is interesting to note that the given functigiz) = =, 0 < z < 2 Is represented by
two entirely different series. One contains only sine tewhde the other contains only
cosine terms.

Note that we have used series equal to the given functiorulsedhe series converges for
eachz € (0,2) to the function value. It should also be pointed out that cere @educe
sum of several series by putting different values ef (0, 2) in the above sine and cosine
series.

Suggested Readings

Davis, H.F. (1963). Fourier Series and Orthogonal Funstiddover Publications, Inc.
New York.

Debnath, L. and Bhatta, D. (2007). Integral Transforms anelifTApplications. Second
Edition. Chapman and Hall/CRC (Taylor and Francis GrougwNork.

Folland, G.B. (1992). Fourier Analysis and Its Applicagorindian Edition. American
Mathematical Society. Providence, Rhode Islands.

Jeffrey, A. (2002). Advanced Engineering Mathematics ek Academic Press. New
Delhi.

Pinkus, A. and Zafrany, S. (1997). Fourier Series and lalegransforms. Cambridge
University Press. United Kingdom.

Peter, V. O'Neil (2008). Advanced Engineering Mathemat{€engage Learning (Indian
edition)

Kreyszig, E. (1993). Advanced Engineering Mathematicsve8th Edition, John Willey
& Sons, Inc., New York.
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Module 3: Fourier Series and Fourier Transform

L esson 24

Integration and Differentiation of Fourier Series

In this lesson we discuss differentiation and integratibtme Fourier series of a function.
We can get some idea of the complexity of the new series ififgpkt the terms of the
series. In the case of differentiation we get terms likén(nz) andncos(nz), where
presence of. as product makes the magnitude of the terms larger then ib@alrand
therefore convergence of the new series becomes more Hiffichis is exactly other
way round in the case of integration wher@appears in division and new terms become
smaller in magnitude and thus we expect better convergenttes case. We shall deal
these two case separately in next sections.

24.1 Differentiation

We first discuss term by term differentiation of the Fourieriss. Letf be a piecewise
continuous with the Fourier series

A Z an cos(nx) + by, sin(nw)] (24.1)
n=1

Can we differentiate term by term the Fourier series of ationcf in order to obtain the
Fourier series of’? In other words, is it true that

fl(x) ~ Z [—nay, sin(nz) + nby, cos(nx)]? (24.2)

n=1

In general the answer to this question is no.

Let us consider the Fourier series gfr) = z in [, 7]. This is an odd function and
therefore Fourier series will be ~ >>7 | 20" sin(nz). If we differentiate the series
term by term we gep >, 2(—1)"*! cos(nx). Note that this is not the Fourier series of
f'(z) = 1 since the Fourier series ¢fz) = 1 is simply 1.

We consider one more simple example to illustrate this faonsider the half range sine
series forcos z in (0, )

8 o= nsin(2nz)
cos T ~ %7; =1
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Integration and Differentiation of Fourier Series

If we differentiate this series term by term then we obtamghbries

16 2. n? cos(2nz)
it (4n? — 1)
This series can not be the Fourier series-efn » because it diverges as

16 n? cos(2n)

£0

nh—%lo 7 (4n2 — 1)

For the term by term differentiation we have the followinguk

24.1.1 Theorem
If fis continuous o, 7], f(—7) = f(x), f' IS piecewise continuous dar, 7], and if

o0
30 Zl an, cos(nx) + by, sin(nw)]

(in fact in this case we can replace by =) is the Fourier series of, then the Fourier
series off’ is given by

(o]

~ Z —nay sin(nx) + nby, cos(nx)] .
n=1
Moreover, if the functiory’ has appropriate left and right derivatives at a pointthen
we have

Flat) +5a=) 3~

5 [—nay, sin(nz) 4+ nby, cos(nx)] .

n=1
If £/ is continuous at a point then
fl(z) = Z [—nay, sin(nz) 4+ nby, cos(nx)] .
n=1

Proof: Sincef’ is piecewise continuous and this is sufficient conditiontha existence
of Fourier series of’. So we can write Fourier series of as

f'(x) ~ 3 + Z ay cos(nz) + by sin(nz)] (24.3)
n=1
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Integration and Differentiation of Fourier Series

where ﬁ ﬁ

ap, = - f'(x) cos(nx)dz, b, = - f'(z) sin(nz) dz
Now we simplify coefficients:, andb, and write them in terms of,, andb,,. Using the
conditionf(—m) = f(n), we can easily show that

Now the Fourier series of (24.3) reduces to

o0

f'(z) ~ Z [nby, cos(nz) — nay, sin(n)]

n=1

/ I
Convergence of this series {o(‘w) ; fa) or f/(x) is a direct consequence of conver-
gence theorem of Fourier series. n

24.2 Integration

In general, for an infinite series uniform convergence isimegl to integrate the series
term by term. In the case of Fourier series we do not even lbeasstume the convergence
of the Fourier series to be integrated. However, integnagom by term of a Fourier series
does not, in general, lead to a Fourier series. The maintsssath be summarize as:

24.2.1 Theorem

Let f be piecewise continuous function and have the followingi€oseries
a | o .
fl@)~ 5+ > [an cos(nx) + by, sin(na)] (24.4)

n=1

Then no matter whether this series converges or not we haeabthx € [, 7],

jT f(t)dt = w + i [% sin(nz) — %(cos(n:c) — cos mr)} (24.5)

and the series on the right hand side converges uniformligedunction on the left.

Proof: We define N
g(@)= | f)dt—Fa
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Integration and Differentiation of Fourier Series

Sincef is piecewise continuous function, it is easy to prove thiatcontinuous. Also
a,
J(@)=flo) -3 (24.6)
at each point of continuity of. This implies thaty is piecewise continuous and further

we see that

and

g(m) = 3 Ft)dt — %W — g — %W _ g

Hence, the Fourier series of the functipeonverges uniformly tg on [—=, 7]. Thus we
have

g(x) = % + Z [y, cos(na) + By, sin(nx)]

n=1
Using Theorem 24.1.1 we have the following result for therteseries ol as

oo

g (x) ~ Z [—nay, sin(nzx) + nB, cos(nz)]

n=1

Fourier series of and the relation (24.6) gives

d(z) = f(z) — % ~ [an, cos(nx) + by, sin(nz)]

n=1
Now comparing the last two equations we get
nPp=a, —na,=b, n=12 ...
Substituting these values in the Fourier serieg we obtain

z a o - an . bn
g(z) = g Flt)dt — 7% = 70 + ;1 {; sin(nz) — — cos(nx)]

We can rewrite this to get
fydt = Do+ 2243 {a—” sin(nz) — 22 cos(nx)} (24.7)
r 2 2 —lLn n
To obtainay we setz = « in the above equation
= 2b,
ap = agm + Z — cos(nz)

n=1

Substitutingn in the equation (24.7) we obtain the required result (24.5). n
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Integration and Differentiation of Fourier Series

Remark 1: Note that the series on the right hand side of (24.5) is notwiEo series
due to presence aof

Remark 2: The above Theorem on integration can be established in a geareral
sense as:
If f be piecewise continuous function-#x < z < 7 and if

o0
% + Z an, cos(nx) + by, sin(n)]

n=1

is its Fourier series then no matter whether this series eay®s or not, it is true that

/aw f(t)dt = % /:’ ap dx + z::l /aw lay, cos(nz) + by, sin(nzx)] dz

where—n < a < z < 7 and the series on the right hand side of converges uniformty i
to the function on the left for any fixed valueaof

Suggested Readings

Davis, H.F. (1963). Fourier Series and Orthogonal Funstiddover Publications, Inc.
New York.

Debnath, L. and Bhatta, D. (2007). Integral Transforms anelirTApplications. Second
Edition. Chapman and Hall/CRC (Taylor and Francis GrougwNork.

Folland, G.B. (1992). Fourier Analysis and Its Applicasorindian Edition. American
Mathematical Society. Providence, Rhode Islands.

Jeffrey, A. (2002). Advanced Engineering Mathematics ek Academic Press. New
Delhi.

Pinkus, A. and Zafrany, S. (1997). Fourier Series and lalefransforms. Cambridge
University Press. United Kingdom.

Peter, V. O’Neil (2008). Advanced Engineering Mathemat{€sngage Learning (Indian
edition)

Kreyszig, E. (1993). Advanced Engineering Mathematicsve8th Edition, John Willey
& Sons, Inc., New York.
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Module 3: Fourier Series and Fourier Transform

L esson 25

Bessal’s Inequality and Parseval’s | dentity

In this lesson some properties of the Fourier coefficienido@igiven. We will mainly de-

rive two important inequalities related to Fourier seriagarticular, Bessel's inequality
and Parseval’s identity. One of the applications of Patsedentity for summing certain
infinite series will be discussed.

25.1 Theorem (Bessdl’s I nequality)

If f be a piecewise continuous function[ir, 7], then
45 @) <L [ Pow
2 k=1 T

whereay, a1, ... andby, bs, . .. are Fourier coefficients of.

Proof: Clearly, we have

n

2
/ [f(x) \ e lag, cos(kx) + by sin(k;x)]] de >0

. 2 —
Expanding the integrands we get

n

2
Z lag cos(kx) + by, sin(kx)]] dz — ag f(x)dx
k=1 -

™ 2 ™
f(x)dx + %, +/

2"
—2/_7;f(:6)

Z [ay, cos(kx) + by sin(kx)]
Using the orthogonality of the trigonometric system andrddin of Fourier coefficients
we get

n

dz + ap /7T [Z [ag cos(kx) + by sin(kx)]] dz >0

T Lk=1

k=1

™ 2 n n
f2(z) dz + %W—Fﬂ‘z (ai +bi) —CL(2)7T—27TZ (ai +bi) +0>0
- k=1 k=1
This can be further simplified
T 2 n
2 (x)de — %ﬂ'—ﬂ'z (a% +bi) >0
- k=1
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Bessel's Inequality and Parseval’s Identity

This implies
G @) <t [ P
2 P )
Passing the limit. — oo, we get the required Bessel's inequality. n

Indeed the above Bessel's inequality turns into an equabtyed Parseval’'s identity.
However, for the sake of simplicity of proof we state the daling theorem for more
restrictive function but the result holds under less reste conditions (only piecewise
continuity) same as in Theorem 25.1.

25.2 Theorem (Parseval’s | dentity)

If fis a continuous function ifi-7, 7] and one sided derivatives exit then we have the
equality

T 1 (7
A (g ) =~ | fyda (25.1)

n=1

whereay, a1, ... andby, bs, . .. are Fourier coefficients of.

Proof: From the Dirichlet’s convergence theorem fo¢ (—=, 7) we have

flz) = % + Z lay, cos(nx) + by, sin(nz)]

n=1

Integrating byf(z) and integrating term by term fromr to = we obtain

ag

fAx)de = 5 f(z)dx + Z (an f(z) cos(nz) dz + by, f(z)sin(nz) dx)
-7 -7 n—1 -7 -7

Using the definition of Fourier coefficients we get

' f(z)dx = 7r_a(2) +7ri (a2 +62)
- - 2 n n
N n=1

Dividing by = we obtain the required identity. n

Remark: As stated earlier Parseval’s identity can be proved for pigise continuous
functions. Further, for a piecewise continuous function-en, L] we can get Parseval’s
identity just by replacing by L in (25.1).
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Bessel's Inequality and Parseval’s Identity

25.3 Example Problems

25.3.1 Problem 1

Consider the Fourier cosine series fifr) = « :

o0
4 nmwx
r~1+ nzl W[Cos(mr) — 1] cos BN

a) Write Parseval’s identity corresponding to the aboverenseries

b) Determine from a) the sum of the series

11 1
atytm

11 ? + ...

Solution: a) We first find the Fourier coefficient and the period of thertayseries just
by comparing the given series with the standard Fourieeseri

4
© w2p2

period =2L =4 = L =2

ap =2, ap [cos(nm) —1],n=1,2..., b, =0

Writing Parseval’s identity as

o

I 2 a(QJ 2 2
Z/Lf(x)dx:—-i- (an +b;)

3
—_

This implies

Then we obtain

L 1.1 e

14 3% 54 T 96
b) Let

1 1 1

S_F+ﬂ+¥+m
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Bessel's Inequality and Parseval’s Identity

This series can be rewritten as

- 1 1 1 1 1 1
S = F—i_ﬁ—i_a_'_.“ —+ ﬂ—i_ﬂ_'_@_'_"'
t 1

:%—F?S’

4

Then we have the required sumas- %.

25.3.2 Problem 2

Find the Fourier series of?, -7 < = < 7 and use it along with Parseval’s theorem to

show that )

o

> =3
_ 14 og

= (2n—1) 96

Solution: Sincef(z) = x? is an even function, sk, = 0. The Fourier coefficients, will
be given as

= %/OW f(z) cos(nz) dx = 2 /071'1’2 cos(nx) dz

™
This can be further simplified for # 0 to

2 2 [T 4
n = — [0 2 5/0 xsin(nx) dx} = ﬁ(—l)”

The coefficient, can be evaluated separately as

2 272
a():—/ﬂ'.TQdCL’:i
0 3

™

The the Fourier series ¢fz) = 22 will be given as

2 o0 n
2 T (1)
r* = §+4 E Tcos(nx)

n=1

Now by parseval’s theorem we have

1 2 0(2) S 2
n—
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Bessel's Inequality and Parseval’s Identity

1T 2mt
Using= [ z*dz = % we get
m

—T

This implies

Now using the idea of splitting of the series from the Exangie3.1 (b), we have

> 1 =1 Il -1 11
D i w162t T 16 2t
n=1 n=1 n= n=1

o
o 1. : .
Substituting the value oi —3in the above equation we get the required sum.
k=1

25.3.3 Problem 3

Given the Fourier series

N 2 Y= VIO
cos (5) ==+ = ; a7 =1 ()

deduce the value of

o0

1
2 Groip

n=1

Solution: By Parseval’'s theorem for

=2 = I 1) = contar2)
we have
i I %/_ZCOSQ(JJ/Q)dle
Then,
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Suggested Readings
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Module 3: Fourier Series and Fourier Transform

L esson 26

Complex Fourier Series

It is often convenient to work with complex form of Fourierigs. In deed, the complex
form of Fourier series has applications in the field of sigeralcessing which is of great
interest to many electrical engineers.

Given the Fourier series of a functighir) as

1 o0
[~ 500+ Z [an cos(nx) + by sin(nx)], —-rwT<z<m (26.1)
n=1
with
1 ™
an = — f(x)cos(nz)dz, n=0,1,2...
and o
= - f(z)sin(nx)dz, n=1,2...
We know from Euler’s formula
einm L% e—inm ] ein:v — e—inm
cos(nx) = . sin(nx) = o

Substituting these values afs(nz) andsin(nz) into the equation (26.1) we obtain

1 o einm + e—inm ein:c . e—inm

1 — [1 mz | 1 .
= 500 + nz_:l {5(% — 1by )™ + 5(% + z’bn)e_mm}

Let us define new coefficients as

¢ = %mn b)), k= %(an +iby) (26.2)

Note thatey = ag/2 becausé, = 0. Then the Fourier series becomes

f~co+ Z [cne™ + kne™ "] (26.3)
n=1
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Complex Fourier Series

where the coefficients are given as

1 . 1" N Lo }
Cp = §<an - ’Lbn) = % . («T) [COS(TZ.T) - ZSln(nx)] dz = % » f(x>€ nT 4.
k 1( _'_'b) ! 7rJC()[COS(R)—i—'s'( )]d 1 " ()im:d
T2 T on =5 T)e T
n 9 ap, 10n or . T v 7 81n(nx €T o »

From the above calculation we get= c_,. Substituting the value df, into the Fourier
series (26.3) we have

f ~ Z cnemx (264)
where
Cp = %/ f(x)e ™™ dz, n=0,41,+2,... (26.5)

The series on the right side of equation (26.4) is called dexiprm of the Fourier series.

For a function of periodL defined in[—L, L], the complex form of the Fourier series can
analogously be derived to have

0 L
INTL 1 —inne
f~ E Ay cn:ﬁ/_Lf(x)e gl G [T R A

n—=—oo

26.1 Example Problems

26.1.1 Problem 1

Find the complex Fourier series of

flx)=€e"If —r<z<mand f(z+27) = f(z)

Solution: We calculate the coefficients as

1 (7 ; 1 (7 :
cn eLeTINT Qp — / 6(1—m)m dz

o o 2 J_.
_ ie(l—m)m & _ i 1 [ewe—inﬂ- . e—weinﬂ'}
2r 11— |- 271 —1n
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Complex Fourier Series

Substitutinge*"™ = cosnt £ isinnt = (—1)" we get

1 1+1n 1 1+

cp = (—1)"sinh7m = —

7 (1 —in)(1+in)
Then, the Fourier is given as

Sinh 7 1+
[~ > (1)

T (14 n2)

n=—oo

26.1.2 Problem 2

Determine the complex Fourier series representation of

7 (14 n?)

flx)=zif —l<ax<land f(z+2l) = f(x)

(—=1)"sinh 7

Solution: The complex Fourier series representation of a functian is given as

o0 .
wmnmnx
f ~ g cpe 1

n—=——oo

where ]

1 ! —inmwx 1
Cp = —/ flx)e7 T de== [ =ze
g,

o ),
Forn # 0, integrating by parts we get

Cn

Finally, it simplifies to
(—1)"il

Cn = . on=41,42, ...

nim
Now ¢y can be calculated as
1 l
Co o _lx i

Therefore, the Fourier series is given as

J~ = Z e !
n=—00

n#0
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Further application of integration by parts simplifies to

Cp = l _ie—inw i .l_Qeimr . L LU
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Complex Fourier Series

26.1.3 Problem 3

Show that Parseval’s identity for the complex form of Fourier series takes the form

o0

o [ Ut ae= Y fep

n=—oo

Solution: For the real form of Fourier series the Parseval’s idensityiven as

o0

2 T
DS @) =1 [ @) (26.6)
n=1 -
We know that
. 1 .
co = %, cn = =(an — iby), Cep = §(an + iby,)
We can deduce that
enl? = (@2 +8), leoal? = (a2 +82) (26.7)

Diving the equation (26.6) by and then splitting the second term as

a(z) | 3 9 2 1 = 2 2 1 y 2
Gl @) > @4 1R) = = [ (@) e
n=1 n=1 o

Using the relations (26.7) we obtain

™

o¢] o¢] 1
G+ leal® + Y lenl = 5= [ {F@)) de
n=1 n=1

—T

This can be rewritten as

> el =g [ U@

n—=—oo

26.1.4 Problem 4

Given the Fourier series

. sinhm & n L+in ;.
e~ Z (—1) me .

n=-—oo
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deduce the value of

> 1
_Z n?+1
n=-—oo

Solution: From the given series we clearly have

nef—e T 1+in

en = (=1) 2t (1+n?)’

n=0,%+1,%2, ...

These coefficients can be simplified

ea? = (e™ — 6_7’)2 (1+n?) _ (e™ — e_”)2 1
" 472 (14 n2)2 472 (1+n?)

A simple calculation gives

1 T 2 ]_ T 2
— de = — Ty = ——
2 ), {f(@)}" de 2 J_, . A

Thus, by Parseval’s identity we have

6271' . 6—271' (671' —e T

P&
Amr a 472 _Z (1+n?)
n=—00

Therefore, we obtain

o0

Z : 1 ﬂ(e“—i-e_“)

1+ n?) (em —e7T) oL T

n=-—oo

Suggested Readings

Debnath, L. and Bhatta, D. (2007). Integral Transforms anelifTApplications. Second
Edition. Chapman and Hall/CRC (Taylor and Francis GrougwNork.

Folland, G.B. (1992). Fourier Analysis and Its Applicagorindian Edition. American
Mathematical Society. Providence, Rhode Islands.

Pinkus, A. and Zafrany, S. (1997). Fourier Series and lalefransforms. Cambridge
University Press. United Kingdom.

Peter, V. O'Neil (2008). Advanced Engineering Mathemat{€sengage Learning (Indian
edition)

234 WhatsApp: +9157900900676 www.AgriMoon.Com



Module 3: Fourier Series and Fourier Transform

L esson 27

Fourier Integral

If f(x) is defined on a finite interval-/, /] and is piecewise continuous then we can con-
struct a Fourier series corresponding to the funciicand this series will represent the
function on this interval if the function satisfies some @ddial conditions discussed be-
fore. Furthermore, iff is periodic then we may be able to represent the functiondy it
Fourier series on the entire real line. Now suppose the immd$ not periodic and is de-
fined on the entire real line. Then we do not have any podsildirepresent the function
by the Fourier series. However, we may still be able to regmethe function in terms
of sine and cosines using an integral, called Fourier ialegrstead of a summation. In
this lesson we discuss a representation of a non-periodatian by lettingl — ~ in the
Fourier series of a function defined 6+, ].

27.1 Fourier Series Representation of a Function

Consider any functiori(z) defined orf—, /] that can be represented by a Fourier series as

£ Z (an cos 2L 1 b, sin #) (27.1)

For amore general case we can replace left hand side of thre aljaation by the average
value (f(z+) + f(z—))/2. We now see what will happen if we lét—+ cc. It should be
mentioned that asapproaches tec the functionf(z) becomes non-periodic defined on
the real axis. Substituting, andb,, in the equation (27.1) we get

2l/ f(u du+lz</ f(u Coswducosnﬂjt/ f(u sinnﬂdusin#>

Using the identitytos z cos y + sin x siny = cos(z — ), we get
1 /! 1o [! nmw
- Z/_lf(u)du+7;/_lf(u)cosT(u—x)du (27.2)

If we assume tha/ |f(u)| du converges, the first term on the right hand side approaches

l o0
tooasl—>oosince‘%/ f(u)du| < %/ | f(u)] .
-1

235 WhatsApp: +91 7900900676 www.AgriMoon.Com



Fourier Integral

0 Ao 200 3o

Figure 27.1: Sum of area of trapezoid as area under curve ilntiting case

Letting! — oo in equation (27.2), we get

—hle/ flu Cos—u—a: du—hmlz / f(u Cos—u—x)du

l—o00

For simplifications, we define

Aoz:? and F(a / f(u) cosa(u —x)du

With these definitions and notinjo — 0 as! — oo, we have

fe = Alirgo Z AaF (nAa)
n=1

Refereing Figure 27.1, we can write this limit of the sum ie tbrm of improper integral

as
Flz) = /OOO Fla)da = %/OOO /_Z F(u) cosa(u — z) du da

This is calledFourier Integral Representatioof f on the real line. Equivalently, this can
be rewritten as

fla) = %/OOO K/_Z Fu) Cosaudu) cos oz + (/_Z Fu) sinaudu) sinax} da

It is often convenient to write
f(z) = / [A() cos ax + B(a) sin az] dav
0
where the Fourier Integral Coefficients are

Ala / f(u)cosaudu and B(a / f(u) sin au du
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Remark It should be mentioned that above derivation is not rigorpusof of con-
vergence of the Fourier Integral to the function. This ig fjesgive some idea of transition
form Fourier series to Fourier Integral. Nevertheless wensoarize the convergence re-
sult, without proof, in the next theorem. In addition to atinclitions required for the
convergence of Fourier series we need one more conditiangha absolute integrability
of f. Further, note that Fourier integral representation ffr) is entirely analogous to a
Fourier series representation of a function on finite in@r¢",” , - - -, is replaced with

Jo© oo du).

27.1.1 Theorem

Assume thaf is piecewise smooth on every finite interval on thaxis (or piecewise
continuous and one sided derivatives exist) and leé absolutely integrable over entire
real axis. Then for each on the entire axis we have

%/000 /_Z f(u)cosalu — ) du = flat) ; fz—)

As in the convergence of Fourier seriesfiis continuous and all other conditions are
satisfied then the Fourier integral converges

27.2 Example Problems

27.2.1 Problem 1

Leta be a real constant and the functigns defined as

0, z<0;
flz)=¢ z, 0<z2<aq;
0, z>a.

1) Find the Fourier integral representation of. ii) Determine the convergence of the
*1—cosa

integral atz = . iii) Find the value of the integray —r da.
0

Solution: i) The integral representation ¢fis

flz) ~ /OOO [A() cos ax + B(a) sin az] da (27.3)
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A(a)zl/ f(u)cosaudu:l/ ucosaudu:l Kusinau)
0

s ™ «

a % sin au
— du
0 0 [0

1 [asinaa  (cosaa —1) 1 [cosaa+ aasinaa — 1
™ 2 R 2

(0% (0] (6]

Ba) :% /_OO f(u) sinau du = l/Oausilqozudu: 1 [(

s s

—U COS au
(0%

a / @ cos au }
+ du
0 0 6]

a a? s a?

1 |—acosaa sinaa 1 [sin aa — aa cos aa
T

ReplacingA(«) andB(a) in equation (27.3), we have

1 [ cosaa + casinaa — 1 sinva — cacosaa \ .
flx) ~= cos ax + sinax| da
0

e QQ a2

1 /OO cosafa — ) + aasina(a — x) — cos ax da
_7T 0 042

i) The function is not defined at= «. The value of the Fourier integral at= « is given
as

- P 2
P ¥ - 2 2 2

i) Substitutinge = 1 in the above integral we get

1 [*1—cosa 1 1 = cosa 7T
— 72doz:————> 72doz:—
T Jo « 2 0 o 2

l/ool—cosaa f(a+)+f(a—):0+a:a
0

27.2.2 Problem 2

Determine the Fourier integral representing

ﬂ@:{1,0<x<2

0, z<0andz > 2.

*° sin «v

da.

Further, find the value of the integr?v{
0 o
Solution: The Fourier integral representation jois

flz) ~ /OOO [A() cos ax + B(a) sin ar] da (27.4)
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where

L L[ Isinau|?  1sin?2
Ala) :_/ f(U)COSCYUdUZ—/ cosaudu:—smau)oz_sm @
T —o0 T 0 T o T a

1 1—cosau‘2 1 (1 — cos2a)

o) 2
B(a) :%/_ f(u)sinozudu:—/o sinauduy = =

s ™ (0] 0 s (6]

Then, substituting calculated valuesAtr) and B(«) in equation (27.4), we obtain

1 [ [sin2 1- 2
f(x) N—/ {sm 2 cos o + (1 = cos2a) sinozx} da
0

s (0% (0]

do

1 /OO sin(2 — ) + sinax
T Jo

To find the value of the given integral we substitute- 1 in the above Fourier integral
and use convergence theorem to get

2/00"sinada:ﬂl):1

(0%

™ (%

This gives the value of the desired integral as

®sin o T
da = —
0 (8] 2

Suggested Readings

Davis, H.F. (1963). Fourier Series and Orthogonal Funstiddover Publications, Inc.
New York.

Debnath, L. and Bhatta, D. (2007). Integral Transforms ahneliiTApplications. Second
Edition. Chapman and Hall/CRC (Taylor and Francis GrougwNork.

Folland, G.B. (1992). Fourier Analysis and Its Applicagorindian Edition. American
Mathematical Society. Providence, Rhode Islands.

Pinkus, A. and Zafrany, S. (1997). Fourier Series and lalefransforms. Cambridge
University Press. United Kingdom.

Peter, V. O’Neil (2008). Advanced Engineering Mathemat{€sngage Learning (Indian
edition)

Kreyszig, E. (1993). Advanced Engineering Mathematicsve8th Edition, John Willey
& Sons, Inc., New York.
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Module 3: Fourier Series and Fourier Transform

L esson 28

Fourier Integrals (Cont.)

In this lesson we shall first present complex form of Foumeegral. We then introduce
Fourier sine and cosine integral. The convergence of timsgrals with its application to
evaluate integrals will be discussed. In this lesson wiNée useful to introduce Fourier
transforms.

28.1 The Exponential Fourier Integral

It is often convenient to introduce complex form of Fourigtegral. In fact, using com-
plex form of Fourier integral we shall introduce Fouriemséorm, sometimes referred
as Fourier exponential transform, in the next lesson. Wi with the following Fourier
integral

f(@) = %/OOO /_Z F(u) cosau — z) du da (28.1)

Note that the integral

/_Z f(u)cosa(u —x)du

is an even function aof and therefore the integral (28.1) can be written as

o) = - /_Z /_Z F(u) cosa(u — ) du da (28.2)

Also, note that the integral

/_Z F(u) sina(u — z) du

Is an odd function ofr and therefore we have the following result

- /_Z /_Z f(u) sina(u — ) dudo = 0 (28.3)

Multiplying the equation (28.3) byand adding into the equation (28.2) we obtain

flz) = % /_OO /_00 f(u)[cosa(u—z) +isina(u — x)] duda (28.4)
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This may be rewritten as

) = % /_ /_ F()e®@2) dy da (28.5)

If we subtract the equation (28.3) after multiplyingddyom the equation (28.2) we obtain

f(z) = % /_OO /_00 Flu)e =) dy da (28.6)

Either (28.5) or (28.6) are exponential form of the Foungegral.

28.1.1 Example

Compute the complex Fourier integral representatiorf@f) = eI,
Solution: The complex integral representationfois given as

1

@) = % /_ Z /_ Z f(u)ei=) dudor = o /_ Ze—iaw /_ Z Fw)e™ duda  (28.7)

We first compute the inner integral

elatioa)u

00 i 0 ) 00 y
/ f(u)ezau du — / e plou du i / e~ U plau du | |
—00 —00 0

a+ 1o

This can be further simplified

o ; 1 1 2a
—Zaud — —
/_Oof(u)e " (a+ia+a—ia) a? + o?

Then the complex Fourier integral representatiorf o

a

f(z)=— /00 #e_iw do (28.8)

T J)_o a% + a?

28.2 Fourier Sineand CosineIntegrals

Consider the Fourier integral representation of a functias

f(x) ~ /000 [A() cos ax + B(a) sin az] dav
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where the Fourier Integral Coefficients are
Ala) = %/ f(u)cosaudu and B(a)= %/ f(u) sin au du

If the functionf is an even function, the integral df «) has an even integrand. Therefore
we can simplify the integral to

Ala) = %/0 f(u) cos au du

Since the integrand of the integral i«) is odd and therefor&(a) = 0. Thus for even
function f we have

Fx) ~ /O h A(a) cos ax da
Similarly, for an odd functiory we have
Aa)=0 and B(a)= %/OOO F(u) sinau du
and

fla) ~ /0 " B(a)sinaz da

Remark: Similar to half range Fourier series, we can represent a fiorcdefined for
all real > 0 by Fourier sine or Fourier cosine integral by extending thadtion as an
odd function or as an even function over the entire real arispectively.

We summarize the above results in the following theorem:

28.2.1 Theorem

Assume that is piecewise smooth function on every finite interval on t@tjyez-axis
and letf be absolutely integrable overto co. Thenf may be represented by either:
a) Fourier cosine integral

flz) ~ / A(a)cosar, da 0 <z < oo,
0
where

Ala) = 2 /OO f(u) cos au du
T Jo
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b) Fourier sine integral
flx) ~ /OOO B(a)sinarda 0<z< oo
where
Bla) = %/OOO F(u) sinaudu

Moreover, the above Fourier cosine and sine integrals caye® [f(z+) + f(z—)]/2.

28.3 Example Problems

28.3.1 Problem 1

For the function
0, -0 <z < -—m,
-1, —7Tm<x<0,
14 O<o <m,
0, 7w<z<oo.

determine the Fourier integral. To what value does the irgkgonverge atr = —7?
Solution: Since the given function is an odd function we can directly i) = 0 and
evaluateB(a) as

B(a)z%/o f(u)sinau(‘ju:g/0 sinaudu:i(l—cosaﬂ)

™ T

Therefore, the Fourier integral representation is

2 [1-—
fx) ~ —/ 2T COSAT i v dav
T 0 @)

The function is not defined at = —= and therefore the Fourier integralat= —= will
converge to the average vallgt = —1.

28.3.2 Problem 2

Find a Fourier sine and cosine integral representation of

1, O<zx<m,

f=9
0, m<x<o0.
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Hence evaluate

oo e o0 :

SIN 7T COS T 1 — cosma) sin o

/ e " de and / ( ) dov
0 Q 0 Q

Solution: Fourier sine representation is given as

oo
f(x)N/ B(«) sin ar Ao
0
where N
2 9 [T 9 (1
B(a) = —/ f(u)sinaudu = —/ sin cu du = 2(1—cosmey
TJ0 m™Jo ™ o
Therefore
2 [ (1-—
f(z) ~ _/ ﬂsmazda
T 0 o
Using convergence theorem, we have
2 [*°(1 0, T >,
_/ {1 —cosqa) SN 1/2, ©=r;
s 0 %

1, O<z <.

To get the desired integral we substitute: 7 in the above integral

o 5 = 1 N
—/ =) sintada == = / Ll o3 7a) sin o o = —
T Jo o g 0 o 4

For the Fourier cosine representation we evaluate

2 2 sin T

A(Oé):%/() f(u)cosozudu:—/0 cosauduy = =

™ ™ «

Thus, the Fourier cosine integral representation is given a

f(x) ~ 2/00 sin o cos o da
™ Jo (6%
Applying convergence theorem we have
0, T > T,

2 [°° sinTacos ax

—/ —————da =< 1/2, z=m;
0

s «
1, O0<zx<m.

To get the required integral we now substitute = into the above integral

2 [ sinTacos T 1 *° sin o cos T T
- —— o= = ——Oa=—
T Jo @ 2 0 @ 4
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Suggested Readings
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L esson 29

Fourier Sineand Cosine Transform

In this lesson we introduce Fourier cosine and sine transforEvaluation and proper-
ties of Fourier cosine and sine transform will be discusSétk parseval’s identities for
Fourier cosine and sine transform will be given.

29.1 Fourier Cosineand Sine Transform

Consider the Fourier cosine integral representation ohatfan f as

flz) = %/OOO /Ooof(u)cosauducosozxda = \/%/OOO (\/g/:of(u)cosaudu> cos ax Ao

In this integration representation, we set

f(a) = \/g /O " Fu) cosaudu (29.1)

f(z) = \/g/ooo fe(@) cos ax da (29.2)

The functionf,(«) as given by (29.1) is known as tieurier cosine transform of f(z)
iIn 0 < < co. We shall denote Fourier cosine transform Ryf). The functionf(z)
as given by (29.2) is callethverse Fourier cosine transform of f.(«). It is denoted by

F(fo).

Similarly we defind~ourier sine andinverse Fourier sine transform by

Fu(f) = fa) = @ / " f(u)sinauds and £ (f) = f(2) = @ / " () sin oz da

and then

29.2 Properties

We mention here some important properties of Fourier caamuesine transform that will
be used in the application to solving differential equadion
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1. Linearity: Let f andg are piecewise continuous and absolutely integrable fansti
Then for constants andy we have

Fe(af +bg) = aFe(f) +bFe(g) and  Fy(af +bg) = aFs(f) + bFe(g)

Note that these properties are obvious and can be provedgiumg linearity of the inte-
grals.

2. Transform of Derivatives:. Let f(x) be continuous and absolutely integrable on
r—axis. Letf'(z) be piecewise continuous and on each finite intervaltosc] and
f(z) — 0asz — oo. Then,

FAf' ()} = aFs{f(2)} = \/gf(o) and Fi{f'(z)} = —aFe{f(x)}

Proof: By the definition of Fourier cosine transform we have

P f(2)} = @ | 1@ eosasds

Integrating by parts we get

FAf'(z)} = \/g [(f(x) CoS aut) ’ZO + a/ f(x)sinazx dx]
0
Using the definition of Fourier sine integral we obtain

F{f'(2)} = —\/gf(o) +aF{f(z)}.

Similarly the other result for Fourier sine transform carob&ained.

Remark: Theabove results can easily be extended to the second order derivatives to
have

F{f"(2)} = —a?Fe{ f(2)} — \/gf'(o) and Fo{f"(x)} = \/gaf(o) — a’F{f ()}

Note that here we have assumed continuity of f and f’ and piecewise continuity of f”.
Further, we also assumed that f and f’ both goesto 0 as x approachesto oc.

3. Parseval’s Identities. For Fourier sine and cosine transform we have the following
identities
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) /Ooofc(a)gc(a) da:/ooof(x)g(x) o ) /OOO [fc(a)rdazfooo (@)

i) [ f@ia)da= [ g do W [ [h@] da= [

Proof: We prove the first identity and rest can be proved similarlg. téke the right hand
side of the identity and use the definition of the inverserm®$iansform to get

/OOO f(z)g(z)de = \/%/000 f(z) /OOO ge(@) cos(ax) da dz

Changing the order of integration we obtain
oo 2 oo o0 o0 .
[ rwatwrde =2 ["iio) [~ s costan)dedn = [ to)in(e do
0 T Jo 0 0

29.3 Example Problems

29.3.1 Problem 1

Find the Fourier sine transform of e=#, 2 > 0. Hence show that

m

Xz sirmz me~
/ ﬁdx: Wi
0 1+.T 2

Solution: Using the definition of Fourier sine transform

T 2 [ —T
Fo{e®} =1/ — e ¥ sin oz dr
T Jo

Let us denote the integral on the right hand side &yd evaluate it by integrating by parts
as

o0

[ee] [ee] o
I = / e Tsinaxrdr = —e *sin cw:’ + a/ e *cosaxrdr = a/ e % cos ax dx
0 0 0

0
Again integrating by parts
I =« [—e_x COSO&[L";O — a/ e ” sinaxdx} =a[l — ol
0

This implies
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Finally substituting the value af to the expression of Fourier sine transform above we

get
rer= 7 ()

Taking inverse Fourier transform

. A ) 2 [ « .
et =1/= fs(a)sinaxrda = = 5 sin az do
T Jo ™) l+a

Changingr to m anda to 2 we obtain

29.3.2 Problem 2

Find the Fourier cosine transform of e=%*, z > 0.

Solution: By the definition of Fourier cosine transform we have

Fle ™} = \/g /0 " F(u) cos(au) du = \/g /0 ” e cos(au) du

Let us denote the integral on the right hand side laynd differentiate it with respect to
L dl d [ o0
—u? _ —u?
o= dn ; e " cos(au) du = /0 e~ sin(ou)u du

Integrating by parts we get

ar 1| _p . 2 «
o= 3 [e sin(au) — a/o e cos(au) du} = —51
This implies

[=ce /4

Using1(0) = 7, we evaluate the constant *. Then we have

Therefore the desired Fourier cosine transform is given as

—a?/4

Fle™) = 2VT ara_ L
T 2 V2

WhatsApp: +9147900900676 www.AgriMoon.Com



Fourier Sne and Cosine Transform

29.3.3 Problem 3

Using Parseval’s identities, prove that

|)/ T ii)/midt—z
+t2 b2+t2) ~ 2ab(a +b) o (B+1)7 4

Solution: i) For the first part leff (z) = e~ andg(z) = e¢~*. It can easily be shown that

. 2
FAf} = fc \/7/ cosaxdx:\/;ﬁ
b
F{g} = fc \/7/ cosaxdx—\/gm

Using Parseval’s identity we get

b [e e}
_ _ —(a+b)z
/ fc a)ge(a) da = / f(x)g(z)dz = / a2+a2 2 do = /0 e dz

This can be further simplified as

2;&5 00 do IAN ¢~ (a+b)z
7 Jo (@2+ad)(®2+a2) = = a+b

(0.9]

0

Thus we get

/OO do - T
o (@24 a?)(b2+a2)  ab(a+b)
i) For the second part we use Fourier sine transforar dfas

F{e™} = fola) = \/gﬁ-

Using Parseval’s identity we obtain

2 [ o 24 1
;/0 7(1+a2)2da—/ooo(e )dx—§

Hence we have the desired results
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Module 3: Fourier Series and Fourier Transform

L esson 30

FOURIER TRANSFORM

In this lesson we describe Fourier transform. We shall conReurier series with the
Fourier transform through Fourier integral. Several ias¢ing properties of the Fourier

Transform such as linearity, shifting, scaling etc. willdiscussed.

30.1 Fourier Transform

Consider the Fourier integral defined in earlier lessons as

fla) = %/Ooo [/_Z F(u) cos a(u — x)du} do

Since the inner integral is an even functiomoive have

(@) = % /_Z [/_Z T x)du} da

Further note that
0= [ [ stsinatu—a)ud
_271' il /A w) Sin ax\u I )au ac

as the integral
/ f(u)sina(u — x)du da

(30.1)

(30.2)

Is an odd function of.. Multiplying the equation (30.2) by the imaginary un@nd adding

to the equation (30.1), we obtain

f(z) = %/_ /_ Fw)e ™) dy, do

(30.3)

This is the complex Fourier integral representatiorf oh the real line. Now we split the

exponential integrands and the pre-facatoir) as
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Fourier Transform

The term in the parentheses is what we will Boairier transformof f. Thus the Fourier
transform off, denoted byf(«), is defined as

~

1 > U
flo) = —= / e

Now the equation (30.4) can be written as

1 % 3 —ioux
f(z) = Nt /_OO fla)e " da (30.5)

The functionf(z) in equation (30.5) is called the inverse Fourier transfofrfi(a). We
shall user for Fourier transformation ang—! for inverse Fourier transformation in this
lesson.

Remark: It should be noted that there are a number of alternative ®iffor the

Fourier transform. Different forms deals with a differenegactor and power of ex-
ponential. For example we can also define Fourier and invémeier transform in the
following manner.

f(z) = \/%/ fl@)e™*da where f(a \/%/ f(u)e "%y,

or

/ fla)ed**da where f(a / f(u)e “¥du

or

f(x 27r/ fla)e™*da where f(a / fu)e " dy

We shall remain with our original form because it is easy tmeenber because of the
same pre-factor in front of both forward and inverse tramsfs.

30.2 Properties

We now list a number of properties of the Fourier transforat #re useful in their ma-
nipulation.
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Fourier Transform

1. Linearity: Let f andg are piecewise continuous and absolutely integrable fansti
Then for constants andy we have

F(af +bg) = aF(f)+bF(g)

Proof: Similar to the Fourier sine and cosine transform this prgpisrobvious and can
be proved just using linearity of the Fourier integral.

2. Change of Scale Property: If f(«) is the Fourier transform of (z) then

Proof: By the definition of Fourier transform we get

Flfar)] = - / " flaz)c o da

Substitutingez = ¢t so thatudz = dt , we have
mg dt 1 s/«
3. Shifting Property: If f(«) is the Fourier transform of(z) then

Flf(z — a)] = &**F[f(x)]

Proof: By definition, we have

F[f(:):—a)]:\/%/_ flz —a)e*®dx
_ L . ia(t+a) 74 _ ica g
= | f0e 0 = oo fa)

3. Duality Property: If f(«) is the Fourier transform of(z) then

Proof: By definition of the inverse Fourier transform, we have

1 <. —iax
@) = <= / fle)e
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Fourier Transform

Renamingr to « anda to z, we have

Replacingx to —a, we obtain
fea) = = [ Fpeerds = Flf)

Now we evaluate Fourier transform of some simple functions.

30.3 Example Problems

30.3.1 Problem 1

Find the Fourier transform of the following function

1, |z| <a, (30.6)
0, |z|]>a.

X[—a7a] <$) = {

Solution: By the definition of Fourier transform, we have

1 [ .
F X[ aq@)] = E/—oo X[_q,q(x)e" " dx

Using the given value of given function we get

1 “ o - 1 1 ioa —iaa
F [X[_Lw](x)] = E/_ae dx = Ea(e —e '

H(EE)H )

30.3.2 Problem 2

Find the Fourier transform of—a*”,

Solution: Using the definition of the Fourier Transform

F(e_axg) _ - e~ g0
V2T J o
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Fourier Transform

Further simplifications leads to

o¢] .
Fle] = _12 a5~ g,
V2T J—00
L R L -
= e 4da e = ——¢ 4a
V2w —0 Y Va

If a =1/2thenF [e—%ﬂ _ =% . This shows” [f(z)] = f(a) such function is said to be

self-reciprocal under the Fourier transformation.

30.3.3 Problem 3

Find the inverse Fourier transform gflo) = e~ 12, wherey € (0, ).

Solution: By the definition of inverse Fourier transform
1|7 e~ lax 4 —|a|y —iox
F [ f(a \/% / fla i / e~ gy
- ay —'Laxd ‘|‘ - / —ay zaxd
V2T /_ ‘ “

Combining the two exponentials in the integrands

-1z (y—iz)a —(y+iz)a
F [f(a \/%/ do +—/ do
Now we can integrate the above two integrals to get
. 1 (y—iz)a 1 e~ (ytiz)o
[f( )] — + —
Vor |y—im)| " Ver |yt |,

Noting lima_, —o e~ = 0 andlim,—_.« e~ @+ = 0, we obtain
11 11

F [f(oz)] - V2ry —ix * V2ry +ix

This can be further simplified to give

1T 1 y+iz+y—
P = e v
Hence we get
2
0=\
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Module 3: Fourier Series and Fourier Transform

L esson 31

Fourier Transform (Cont.)

In this lesson we continues further on Fourier transformreHee discuss some more
properties of the Fourier transform and evolution of Fautiansform of some special
functions. Some applications of Parseval’s identity andvotution property will be
demonstrated.

31.1 Fourier Transforms of Derivatives

31.1.1 Theorem

If f(x) is continuously differential angd(z) — 0 as|z| — oo, then

F[f'(x)] = (~1a)F[f(2)] = (—ia) f(a).

Proof: By the definition of Fourier transform we have
FY @] = o= [, fweeds

Integrating by parts we obtain
FIF@) = —={ @)™, - [ fweGajas .

Sincef(z) — 0 as|z| — oo, We get

This proves the result. n

Note that the above result can be generalizedf(#) is continuouslyn-times differen-
tiable andf*(z) — 0 as|z| — oo for k = 1,2, ...,n — 1, then the Fourier transform ath
derivative is

FIf"(@)] = (—ia)" f(a).
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Fourier Transform (Cont.)

31.2 Convolution for Fourier Transforms

31.2.1 Theorem

The Fourier transform of the convolution ¢fz) andg(z) is /27 times the product of the
Fourier transforms off (x) andg(z), i.e.,

F[f % g] = V27 F(f)F(g)-

Proof: By definition, we have

ﬂfwn:;%;[:([:fwmm—ywm)amm:

Changing the order of integration we obtain

Flf+g) = ¢%/‘/f y)eieedz dy

By substitutingr — y = ¢t = dx = dt we get

e*Wtdt d
Fieg=oe [ [ s ;
Splitting the integrals we get

Firegl=var (o= [ swemrar) (= [ gwetar)

Finally we have the following result
F[f  g] = V2r F[f]F[g] = V27 f(a)§(e)

This proves the result. n

The above result is sometimes written by taking the inveesestorm on both the sides as

(f*g)(x / Fla)g(a)e ™ da
[ st nan= [~ fesatarta
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Fourier Transform (Cont.)

31.3 Perseval’sldentity for Fourier Transforms

31.3.1 Theorem

If /(o) andg(«) are the Fourier transforms of thg(z) andg(x) respectively, then

0 [ Fa@iaa= [ j@i@as @) [ if@Paa= [P

Proof: (i) Use of the inversion formula for Fourier transform gives

[ (g [ )

Changing the order of integration we have

| @i =—= [~ [ f@i@e deda

Using the definition of Fourier transform we get

| s = [~ @i da

(i) Taking f(z) = g(x) we get,

| i@i@da= [ s@iw)

This implies /_ L ()|2d9:—/_ (o) da

31.4 Example Problems

31.4.1 Problem 1

Find the Fourier transform of (x) defined by

Fa) = 1, when|z| < a
0, when|z| > a
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and hence evaluate
2

(z)/ sin «ea cos o da, (”)/ sin aa do and (m)/ sin xdx.
0

a 0 x2

0 «

Solution: (i) Let f(a) be the Fourier transform g¢f(z). Then, by the definition of Fourier

transform
f( ) 1 /OO ioeazf( )d 1 ¢ ioemd
o) =—— e r)dr = — e T
V2T J oo V2T ) g
1 1 oa —iaa
:E E (6 — € ) dl’
This gives
X 2 sinax
fla) = T a

From the definition of inverse Fourier transform we also kriloat

fuvzvgi[wfmw%wda
This implies that

Vv2r, when|z| < a
0, when|z| > a

t/f@ﬁ“mzﬂﬂ@z{
Substitutingf(«) in the above equation we get

% 2 sinaa e Vv2mr, whenjz| <a
— (cosaxr —isinaxr)da =
—o0 V2T Q@ 0, when|z| > a

We now split the left hand side into real and imaginary partget

% sin aq cos xa . [ sinaasin ax 7, when|z| <a
————————da—1 ———da=
—00 a —00 a 0, When‘l’| >a

Equating real part on both sides we get the desired result as

/OO sinaacosaxd 7, when|z| < a
—_— o =
0, when|z| > a

o «

(i) If we setx = 0 anda = 1 in the above results, we get

o
S :
/ 2D o = 7, Sincelx| < a

oo O
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Fourier Transform (Cont.)

Since the integrand is an even function, we get the the dbsmilts

X sina T
0 @) 2

(i) We now apply Parseval’s identity for Fourier transform

[ i@praa= [ is@ras

—0o0 —0o0

Substituting the functiori(z) and its Fourier transform we get
00 i 2 a
/ A sin ;ada:/ da = 2a
Ce0 2T @ —a

® sin? ax
7 da = 7a

This implies

. Lo

Since the integrand is an even function we have the desiseit ias

> sin2 aa T
5 da = —a
0 « 2

31.4.2 Problem 2

Evaluate the Fourier transform of the rectangular pulsediion

H(t):{ 1, i)t < 1/2;

0, otherwise.

Apply the convolution theorem to evaluate the Fourier tfanms of the triangular pulse
function

A(t):{ 1—|t], if |t] <1;

0, otherwise.

Solution: It is well known result that = IT « II. It can easily be sheen by observing

t+1/2 ; .
Ry, i 1<t <0;

(IT* 1) (¢t) = /_OO (y)II(t — y)dy = fl_/f/Ql ldy, if0<t<1;
0 otherwise.
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Clearly, we have

- 1+¢, if =1 <t<0;
(I« ID)(t) = / Myt —y)dy =4 1—¢t, ifo<t<1; =A()
- 0 otherwise.

Usinga = 1/2 in the previous example we have

FIT) = \/% sin(;)z/Q)

Now using convolution result we get

4 sinz(a/2).

FIA()] = FI(IL* D) (t)] = V2r F(I1)F(II) = N

Suggested Readings
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Module 3: Fourier Series and Fourier Transform

L esson 32

Fourier Transform (Cont.)

In this lesson we provide some miscellaneous examples afdfdtansforms. One of the
major applications of Fourier transforms for solving partifferential equations will not
be discussed in this module. However, we shall highlighteesother applications like
evaluating special integrals and the idea of solving omyilferential equations.

32.1 Example Problems

32.1.1 Problem 1

Find the Fourier transform of

T— 2%, whenjz| <1
flz) =
0, when|z| > 1

and hence evaluate

0S g da.

X _gcosz+sinz
5 c
0 xXr

Solution: Using the definition of Fourier transform we get

#(a) = Ff() m/ ¢ f(z
L[y

Integrating by parts we obtain

. B 1 eiaz ) 1 1 6iax
floy === - [ C—cma

Again, the application of integration by parts gives

fo - o= [l = [ ]
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Further simplifications leads to

Yo% 5

£ 2 1 xe —ia € !
fio) =z [ (v - L)

1 D) ) ) 6ia e—ioz
——— [ew‘%—e_m—.—ﬂt . ]
2T« Q0 1o}

Using Euler’s equality we obtain

A 1 4 sin o
f(a):——%g cosa — —
Y +sinal
=———[—acosa+sina
Vorad

We know from the Fourier inversion formula that
fo) = %27 / ey da
This implies

e—ZOéx da

()

B i/oo —q oS a + sin «
C dm_od a3
Equating real parts, on both sides we get

m .

—Q COS & + SIn « s

/ 7 cosaxda = = f(x)
A « 2

Substituting the value of the function we obtain

/OO —acosa + sina { Z(1—2%), when|z| < 1
cosarda =

—o0 o’ 0, when|z| > 1

Substitutionz = 1/2 gives

/OO —q cosa + sin o ad T ) 1
cos —da = — - =
s 2 2 4]’

—0o0
This implies
/OO —@ oS & + sin o o 3
2 cos —da = —
0 Oé3 2 8
Hence we get the desired result as
/OO —Q Ccos o + sin o @ 3r
COS —dox = —
0 o3 2 16

265 WhatsApp: +957900900676 www.AgriMoon.Com



266

Fourier Transform (Cont.)

32.1.2 Problem 2

Find the Fourier transformation of the functiofit) = e=*H (t), where

0, whent < 0
H(t) =
1, whent > 0

Solution: Using the definition of Fourier transform

PIF0) == / " fyeetai
:E/o e et ¢

Solving integral leads to

1 el-atio)t oo
Fl®l= V2 (—a +ia)lo ‘
Since we know that
tlggo e~ telat — tlg(r)lo e ™ (cosat +isinat) =0
We get the required transform as

1 1
V2 (—a+ia) 21 (a—iOz)'
32.1.3 Problem 3

Find the Fourier transform of Dirac-Delta functiof(t — a).
Solution: Recall that the Dirac-Delta function can be thought as

0, whent <a, a>0
6(t—a):li_r>r(1)6e(t—a): 1 whena<t<a+e
0, whent > a + ¢

Applying the definition of Fourier transform we get

F[5(t—a)] = / a)elt dt
[6( or
ate iat
\/%/ lgr(l)Ee dt
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Fourier Transform (Cont.)

On integrating we obtain

1 1 1ot gde
FI6(t — a)] =lim ——-°

e—=0 /27 € 1«

i 1L (o o)

e—=0 /2 €10

a

1e%d
Lo et -] 1
=——¢€" lim = e

V2or 0 dae V2or
With this results we deduce that (1) = v/276(t).

32.1.4 Problem 4

Find the Fourier transform of

F)=e M —oo<t<oo, a>0.

Solution: Using the definition of Fourier transform we have

r 0 00
/ 6ateiat dt + / e—ateiat dt}
LJ —o0 0

[ platia)t ‘0 p(—atia)t ’oo]

F [6—a|t|] —

- U
a+ 1 l—o0 —a + 1 10

1 1
ey
| a —a +w
1 1 1 2a
C V2ra?+a?’

9l-50- 8- ¥l
3 3 =) 3

— + .
la+1  a—x

32.1.5 Problem 5

1
21(a —ia)?

Solution: Writing the given function as a product of two functions as

Find the inverse Fourier transform gfi«) =

Fl [f(a)] — F!

1 1
V2r(a —ia) V2m(a — ia)}
Application of convolution theorem gives

1 1

_ _ - oy - % -1 1 _ 1 6—at *e—at
)= —=F m(@_m)} P mm—m)] () e ()
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Evaluating the convolution

—at
oA —a(t—x) _ .T T = —r
7 m/ H@)e ™At~ 2)d m/ H@)H(t —z)dz

Note thatH (z)H (t — ) = 0 whenz < 0 or whent — z < 0, i.e.,

1, fo<xz<t;
0, otherwise

H(x)H(t—x):{

Hence we have

Vor o 0, ift<0
Thus we get
f = H)
L Ve

32.1.6 Problem 6

Using Fourier transform, find the solution of the differeh&quation

y/—2y:H(t)e_2t, = BOh R

Solution: Taking Fourier transform on both sides we get

F M —2F[y] = \/127 <_zim)

Aplying the property of Fourier transform of derivatives get

1 1
—ial — 20 = —
B S e (—2 + m)
Simple algebraic calculation gives the value of transfatvariable as

A 11
Y T andta?

Taking inverse Fourier transform we get the desired sailui®; = —ie‘w'.
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Module 3: Fourier Series and Fourier Transform

L esson 33

Finite Fourier Transform

The Fourier transform, cosine transform and sine transtamenall motivated by the re-
spective integral representations of a function. Applyimg same line of reasoning, but
using Fourier cosine and sine series instead of integradspbtain the so called finite
transforms. It has applications in solving partial difigial equations in finite domain.

32.1 Finite Fourier Transformations

Let f(x) be defined in0, L) and satisfies Dirichlet's conditions in that finite domaine W
begin with the cosine Fourier series

o
Q nmnx
f(z) = 30 + Za”COST’
n=1
where the Fourier coefficients are given by
2 L
gt = Z/o f(z) cosniLxdx, N=ul e

The sine Fourier series is given as

where .
2
bn:z/o f(x)sinn—?dx, n=1,2,..

We now define thénite Fourier cosindransform as

Rlf)=fom) = | fle)cos "} ar

The functionf(z) is calledinverse finite Fourier cosingansform and is given by

F [fc(”)} = f(z) = lf:c(o) + % Z .(n) cos n_zx dz
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Finite Fourier Transform

Thefinite Fourier sinetransform is

/ f(x sin@dx

The inverse finite Fourier sine transform is given by

hlw

> nmT
E n)sin — dx

Remark: The factor% may be associated with either the transformation or the in-

verse of the transformation or the factﬂ)/% may be associated with both the transform
and the inverse.

32.2 Finite Fourier Transform (Complex form)

Similar to the finite Fourier sine and cosine transform we also define finite Fourier
transform from complex form of Fourier series as

L 7 A
y / HETE o= f(n)
—L

The inverse finite Fourier transform is defined as

- ingz
:_L Z

32.3 Derivativesof Finite Fourier Sine and Cosine Transforms

32.3.1 Theorem

Let f(x) and f'(x) be continuous and”(x) be piecewise continuous on the inter\tal],
then

W) 7 |f @) == (%) Jeln)
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Finite Fourier Transform

(i) Fy [1"(@)] = = () fuln) + () [£0) + (1)1 £(L)]

(i) F.[f (@)] = (%) futm) + (=1)"F(L) = £(0)

V) F.[1"(@)] = = ()" folm) + (=17 (L) = £'(0)

Proof: (i) Using the definition of Fourier sine transform
/ f sm T A

nmwrnm

I L
(x)} - [f(m) sinT)O | f )cosTde]

Integrating by parts, we get

/

F,|f

This implies

E|f @] == (5F) fw)

(i) By the definition of finite Fourier transform, we get

L
:/ +f (a:)cos@dx
0 L

nmwr nm

Fc[f’(x)} [ cos 7 —/f sin 1 da

Integrating by parts gives

Thus we get

(#)] = (~"F(L) = FO) + (5F) feln)

Repeated applications of these above two will give (ii) ang (

32.4 Example Problems

32.4.1 Problem 1

Find the finite Fourier sine and cosine transformfof) = 22, if 0 < x < 4.
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Finite Fourier Transform

Solution: Using the definition of Fourier sine transform
nmwx 4 9 nwr .
/ f(z sin—dx—/ x sianx ifn=1,23..
0

Integration by parts leads to

64 cosnm 8 4 nTx
= — + — T cos —dx
nmw nt Jo

Evaluating the integral we get

Fy[f(x)] =

—1)ntl cos(nmw 4 1)+l
64(—1) 32 {_ ( )/4}0264( 1) 28 oy

nm n?m? nm/4 nm n3m3

We have used the fact that

1 if n even
cos(nm) = (=1)" =
-1 if nodd

Now, by the definition of Fourier cosine transform, we get
% nmx F nmx o
2. ()=t b il i) cosde:/ 2 sianx S ==228. ¢
0 0

Proceeding as before we get

P [f(2)] = lx2 sin(n7z) /4]2 - /04 , Sin(nme) /4

nm /4 nm /4
4
128(—1)"
:—i xsinwdx:%
nt Jo nem
If n=0,theF,|f /f d:r—/ 2dx:63—4.

32.4.2 Problem 2

Find the finite Fourier sine and cosine transform of the fiorct

f(t) =1t for —1<t<1,
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Finite Fourier Transform

Solution: Forn > 1, we note thatt| cos(nwt) is even and hence by the finite Fourier
cosine transform we have

1
fuln) = /_ Ft)cos(nt)
=2 /1tcos(n7rt) dt
0

t ! L1
=2 {— sin(mrt)} - 2/ — sin(nmnt) dt
0

nmw =0 n
b 2((=)" -1

¢ ] _
5 [cos(mr ) o 53

1
2

n=m

Forn = 0, we find )
fm = [ttt =1
=1

Now, we notice that| sin(n7t) is odd and, therefore, finite Fourier sine transform is cal-
culated as

1
fs(n) = /_1 f(t)sin(nwt) dt =0

32.4.3 Problem 3

Find the finite Fourier sine transform of the function

f(x):{x’ if0 <z <w/2;

T—ux, fr/2<z<m.

Solution: By the definition of finite Fourier transform, we have

R ™ ' B /2 ' ™ '
fs(n) = /0 f(z)sin(nz)dx = /0 f(z)sin(nx)dx + /7T/2 f(z) sin(nz)dx

Using the given values of(x) we get

R /2 . 0 '
fs(n) = /0 xsin(nz)dr + /7T/2(7T — x) sin(nx)dx

Integrating by parts leads to

Ain) = {x (_cosnnx> B (_Sir:l;mj)];rﬂ . {(W_x) <_cosnn1‘> B (_siz;m)}:/z
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Finite Fourier Transform

Finally, we get the finite Fourier sine transform as

; 2 . nm
fs(n) = —ysin—-.
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Module 4: Partial Differential Equations

Lesson 34

Partial Differential Equations

34.1 Introduction of Partial Differential Equations

Many physical processes in real world are modelled by partial differential
equations. Any equation that involves one or more terms with partial derivatives
of the dependent variable is called a partial differential equation (p.d.e). For a
function z depending on two independent variables x and v, i.e., z(x,y), a partial

differential equation may be written as:

2 2
28—§+3g+8—§+5@:sin(x+ y).
OX oX oy oy

In general, a p.d.e may be written as:

0z 07 9’z 0°z 0’1
f(X1y121_1_1 21 3! )
OX 0y Ox~ oy” oxy

..... }=0 (34.1)

The domain of the function z(x,y) is a subset of R?. It is to be noted that if the

dependent function z is depending on n independent variables, say

Z=17(X, Xy, Xs,...,X,), then the domain of z will be a sub set of R".

Evidently, for each point (x,y) in Q Subset of R?, there exists a value for z(x,y),

and this set of points {(x, y, )} generates a surface in R®. z=z(x,y), is the
solution of a p.d.e. In the same manner, one has to visualize higher dimensional

surfaces as solutions of p.d.es involving 3 or more independent variables.
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34.2 Basic Concepts

Order of the p.d.e: The highest order Partial derivative in the equation decides

3
the order of the p.d.e. For example, (?) +%:0 Is a first order p.d.e, while
X
2
%+@ =0 is asecond order p.d.e.
X

A set Q in the n-dimensional Enclidean space R" is called a domain if it is an

open and connected set. A region is a set consisting of a domain plus some or

all of its boundary points. For example, the interior of a circle x*+ y* <a® with

radius a is called the domain while the circle with its boundary x* +y* <a®is

called the region.

In general, the partial differential equation is assumed to take values from the
interior of the region. The boundary and initial conditions are specified on its

boundary.

By a solution of the partial differential equation (1) we mean a continuously
differential function z=z (x,y) with respect to the independent variables x and y

at all points of the domain and it satisfies the differential equation.

. 3 e 0’1 0°z
Observe that (i) z(x,y)=(x+y)’ satisfies the p.d.e W_a_yzz
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. . oz , 0%z 0z )
The partial derivatives are —=3(x+Y)", —=6(x+Yy), —=3(x+Yy)" and
OX OX oy

0°1 . : . .
— =6(x+y). Also observe (ii) z(x,y) =sin(x—Y) is a solution of the same

2

p.d.e, as: g:Cos:(x— y), a—E:—sin(x— y) and
OX OX

oz 0°1 : isfies th .
— =—-Ccos(X—Y) W =—sin(x —y) satisfies the same equation.

This illustrates that a partial differential equation can have more than one

solution i.e., uniqueness of solution is not seen.

Classification of First Order Partial Differential Equations (p.d.es)

The general representation of a first order partial differential equation as given
in equation (34.1) represents a non-linear p.d.e as the function f is a general
function of the dependent variable and all its partial derivatives of various

orders.

When we restrict to the first order partial derivatives of z(x,y) in equation (1),
we get a first order p.d.e. The most general form of a non- linear 1* order p.d.e

may be writtenas  f (x, Y, z,@,@) =0 (34.2)
OX oy

Classification of the first order p.d.e

The first order p.d.e given by (1) is said to be a linear equation if it is linear z,

@and @. It is of the form

OX
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A(X, y)%+ B(X, y)% +C(x,¥)z=S(X,Y) (34.3)

where the coefficients A, B, C and S are continuous functions of x & y in Q.

S(x,y) is called the non-homogeneous function. If S(x,y)=0. V(X,y) € Q, then

the equation is called a homogeneous p.d.e.

0z 0z oz oz
Examples are: Xx—+ y—=Xyz + Xy, —+—=1.
OX oX oYy
. .. O\ e .0z 0z
Equation (34.2) is said to be a semi-linear p.d.e if it is linear in 8—and 5 and
X

the coefficient of 2—Zand Z are functions of x and y only. The semi linear
X

p.d.e may be written as

A Y Z 4 B, y) 2 =C(x,y,2) (34.9)
OX oy
_ 0z 0z 3 0z oz .
Examples are : X—+Yy—=Xyz°, X—-y—=sinz.
OX oy OX oy
. . - . .0z 0z .
Equation (2) is called a quasi-linear p.d.e if it is linear in 8—and 5 and it is
X
written in the form
Ay ) Z 4 B(x,y, 20 Z =C(x,.2) (345)
OX oy
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An example is (x2—22)§+xyg: yz° + X°

OX oy
Equation (34.2) represents a general first order non-linear equation, a simple

oz 0z _,

OX oy

example for it may be written as

We use these notations for the first order partial derivatives of z =z(x,y) as:

p:@ q—@
ox' ooy

34.3 Formation of Partial Differential Equations

Given a one parameter family of plane curves, we can find an ordinary
differential equation for which the given one parameter family is a solution.

This is done by eliminating the arbitrary constant in the family of curves. In the

same way, given an arbitrary surface in R%or in higher dimensional spaces,
elimination of the arbitrary function leads to the partial differential equation for
which the given surface is a solution. The following examples give more insight

into formation of partial differential equations associated with the given surface.

Example 1: Eliminate the arbitrary function F from the below given surfaces:
(i) z=x+y+F(xy)

(i)F(x-z,y—-2)=0.

Solution:

(i) we eliminate the arbitrary function by finding the partial derivatives p and g.
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_0z_, dF(xy) o(xy) _,, dF (),

OX d(xy) ox d(xy)

q=Z 1. dF(xy) o(xy) _,, dF(xy) o
oy d(xy) oy d(xy)

dF (xy)
d(xy)
required p.d.e. Further, note that it is a linear p.d.e

Eliminating

from the above, we obtain xp—yq=x-y which is the

(i) Given F(u,v)=0 whereu=x-z,v=y-z. Using chain rule of

differentiation, we get

oF ou oF ov_ oF
-~ =_ (1- —(—p)=0
"X vy g P+ (p)

. OF ou  OF ov _oF
Similarl e —@-q)=0
y =y "oy au (=) + u( g)

Eliminating Z—F and Z—F from the above two equation we get
u v

-pg+(@-q)1-p)=0= p+qg=1 which is the required linear p.d.e.

Thus eliminating an arbitrary function resulted in a linear partial differential
equation.

Example 2: Eliminate the arbitrary parameters from the following functions.

(i) 2z=(ax+y)*+b (ii) z=ax+by
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Solution:

(i) Note that in the surface 2z =(ax+y)*+b , the arbitrary constant a is non-

linearly involved. Differentiating partially we obtain,

2p =2(ax+ y)a= px=a’x’ +axy
2q=2(ax+Yy)l or q=(ax+y)=qy=y’ +axy
Also 2z=0°+b=b=2z-¢°

q°=2z-b=(ax+y)* = px+qy
. px+qy =q? is the required non-linear p.d.e

(i)z=ax+by ; the arbitrary constants a & b are linearly involved in the

function. Differentiating partially we obtain p=a and qg=b. So the required

p.d.e is xp+yg=z which is a linear p.d.e.

The following are some Standard Partial Differential Equations which occur

In physics:
1. g+@:0 (Transport equation)
OX oY
2 2
2. 8L+6L=1 (Eikonal equation)
ox oy
o°u o .
3. ——-——=0 Wave equation
o’ ox? ( a )
2
: 8_u_8_l: =0 (Heat or Diffusion equation)
ot ox
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o°u ou

vy + a—yz =0 (Laplace equation)

ou® 0% o4

. - . = f (X, Monge-Ampere equation
Xy o oy (X,y) ( g p q )

In the above, equations 34.1, 34.3, 34.4, 34.5 are linear and homogeneous
equations while equations 34.2, 34.6 are non-homogeneous equations. In

equation 6, if f(x,y)=0V(x,y)eQ, the equation is a non-linear and

homogeneous equation.

34.4 Checking Linearity of the given Partial Differential Equation

The Linear equation (34.3) can be written in the operator form as:
Lz=S§ (34.6)
where L is the linear operator defined as:

L:A£+B£+C
OX oy

The homogeneous equation corresponding to (34.6) is Lz =0.

o : 0’z 0°1
Let us check the linearity of equation PV + W =0. (34.7)

Definition: An operator L is said to be linear if and only if, for two functions

z,(x,y) and z,(x,y)with arbitrary constants cand c,eR, the following

property holds. :
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L(c,z, +¢,z,)=cLz, +c,Lz,.

The operator L is non-linear if the above property is not satisfied.

2 2
In equation (34.7), the operatoris L= 8_2 + 6—2
oX~ oy
Now consider
0° o’
Llc,z (X, y) +¢,z,(x y)] = W(Clzl +C,2,) + W(Clzl +C,2,)

0%z, 0%z, 0’z, 0%y
=652 T +| ¢, —2+¢,
X

0°z, #°z, 0%z, 0%z,
=G| =i a7 |tG +—2

=clz +c,lz,

0’z, 0%z,
+—2=
ox>  ox®

Ois a linear equation.

0z 0z
+7—=

Let us test the equation 47— =
ox oy

0 (34.8)

for linearity. Consider g(clz1 +C,2,)+(Cz, + czzz)i(clz1 +C,Z,)
X

=C %-I-Cz%-F(ClZl—l-CZZZ) c1%+02%
OX oy

' ox oy

0z, 0z, 0z, 0z,
#| ¢, —+C,—= |+| C,z,—+C,Z,—=
OX OX oy oy

9
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Hence equation (34.8) is a non-linear equation.

Keywords: Order, linear equation, semi-linear, quasi-linear
Exercise 1

Eliminate the arbitrary function / constants from the following surfaces to form

an appropriate partial differential equation.

(i) z=(x+a)(y+b) (ii) z2=8(x+ay +b)®

(iii) z=F[(x*+ yz);] (iv) z=xy+ F(x* + y%)
(v) z:F(ﬁj
z
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Module 4: Partial Differential Equations

Lesson 35

Linear First Order Equation

35.1 Classification of Integrals (Solutions of p.d.es)

A surface z=z(x,y) which is continuously differentiable with respect to both the
variables x and y in a domain QcR’that satisfies the given p.d.e

f(x,¥,z,p,q)=0 iscalled an integral surface of it.

Let z=F(x,y,a,b) be a 2-parameter family of surfaces, with a, bas arbitrary —

parameters. Now p :2—Z=iand g2 _F
X

ox oy oy
Using p and g, we can eliminate a andb from z=F(x,y,a,b) and form a first

07 0z
order p.d.e f(x,y,z,—,—)=0.
p (x,y = ay)

Also the surface z=F(x,y,a,b) isa solution of the p.d.e f(x,y,z,p,q)=0.

The solution of the partial differential equation is called an integral surface of it.
It is classified as (i) complete integral (ii) general integral and (iii) singular

integral.

(i) Complete Integral: A two parameter family of surfacesz = F(x,y,a,b) that

satisfies f (x,y,z,p,q)=0 is called a complete integral if in the domain of

oF O°F O°F
definition o the rank of the matrix A=| & & YA Lo,
eriition Q, the rank o e matrix = IS .
oF 0°F O*F

ob  oxob  oydb
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Let us see some examples:
Example 1: Consider the surface

Solution:
(x-a)’+(y—b)* +z? =1and the p.d.e 22(L+ p*+q*) =1.

F(x, y,z,a,b):(x—a)z+(y—b)2+zz—1

2 2
oa oxoa oyoa
2 2
Toay-ty, So=2, Tlog
ob oxob oyob
2(a-x) -2 0

The matrix A=[ j IS with a non-vanishing 2x2 minor and hence

2(b-x) 0 -2

its rank is 2. We check whether the given surface is a solution of the given

p.d.e. We find p=X;Z"’l and q=y—_zb and using p and g in z°(1+p°+q°) =1,

2 2
we see zz[l{x;zaj {y_—zbj }:1 or (x-a)’+(y-b)'+2° =1 is the given

surface that is satisfying the p.d.e.
-. This surface is a complete integral of the given p.d.e.

Exercises

1. Show that z = ax+§+b Is a complete integral of pg=1.

2. Show that the 2-parameter family of surfaces z=ax+by+a’+b? is a complete

integral of the p.d.e z— px—-gx-p*-qg*=0.

287 WhatsApp: +91 7900900676 www.AgriMoon.Com



Linear First Order Equation

(i) General Integral: The general integral is also a solution of the partial
differential equation that involves an arbitrary function. In the two parameter
family of solutions z=F(x,y,a,b), take a=¢(b), we get a one parameter
family of solutions of f(x,y,z,p,q)=0. We obtain z=F(X,y,¢(b),b) which is
a subfamily of the given two parameter family of complete integral of
f(x,y,z,p,q)=0. Find the envelope of this one parameter sub-family by
eliminating b between z=F(x,Y,0(b),b) and

OF (,Y,0(0),b) sy F (XY, 0(0)b) _
oa ob

to find b=Db(x,y) and substituting for b in the one parameter sub family, we

If exists. This way we will be able

obtain z=F(x,y,e(b(x,Yy)),b(x,y)). Ifthe function ¢ which defines this sub-

family is arbitrary, then such a solution is called a general integral of

f(x,¥,z,p,q)=0. Different choices of ¢ give different particular integrals of

the p.d.e. Let us illustrate this with examples.

Example 2: Find the general solution of the equation % +z=¢",
X
Solution:

Integrating the homogeneous equation Z—Z+ z =0 with respect of x, holding y
X

as a constant, we obtain  z(x,y)=e "«f(y) where f is an arbitrary function

which is a continuously differentiable function of y.
By inspection, we note that xe™ satisfies the given equation. This is a particular

solution. Thus the given general solution of this p.d.e is written as

z(x,y)=e"f(y)+xe™.
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35.2 General Solution of the Linear Equation

Let us now derive the form of the general solution of the linear first order

homogeneous equation.

A(X,Y)z, +B(x y)z, +C(x,y)z, =0 (35.1)

Where A,B,C are continuously differentiable functions in some domain in R?.

Chose the transformation& =£(X,y), n=n(x,y), (X, y) € Q, with Jacobian
o0& o0&

OX
J = % =0 on Q.
¥y
ox oy
Clearly, a_a 65 o , and a_a 85 oz on (35.2)
OX agax anax oy a§8y 8778y

Using these in the linear equation (35.1), we obtain

Aa—§+8% z+ A(377+B(377 oz +Cz=0 (35.3)
X oy )oE X oy Jon
on , o017
Chose 7 such that A—+B—|=0 (35.4)
OX oy

This is a meaningful choice because of the following argument.

Assume that A(x,y) = 0 and consider the o.d.e
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X A(X,Y)

v _Bky) (35.5)

Write its general solution as 7n(x,y)=k , k is an arbitrary constant and

(2—77 =0. Then for, n(x,y)=k (35.6)
y

we have dn(x,y)=dk =0 or a—77dx+a—77dy:0
OX oy

In view of this, equation (35.4) is satisfied.
The one parameter family of curves given by (35.6) that are obtained from
equation (35.5) are called characteristic curves of the differential equation

(35.1).

Now chose & =£(x,Y)=x, such that

0
=n, 20 V(xy)eQ
M 1y

J=J=

Now the transformation& = x, n=7(x,y) which is an invertible transformation
(having one to one correspondence between (&,77) and (x,y) transforms the

equation (35.3) to the following simple form

A(é,n)s—g+C(§,f7)Z -0 (35.7)
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This equation is called canonical form for the linear partial differential equation

(35.1). This can be solved as an o.d.e.
Under the same transformation, the non-homogeneous linear equation

A(X,Y)z, +B(x,¥)z, +C(X,y)z, =D(X,Y) (35.8)
gets transformed to

A&,m)z. +C(&,m)z=D(&,m) (35.9)

We describe the Lagrange method for finding the general integral of the given

quasi-linear p.d.e in the next lesson.

Example 3: Find the general solution of the linear p.d.e
XZ—yz,+y’z=y% (XYy)#0

Solution:

Given A(x,y)=x,B(x,y) =-y,C(x,y) = y*,D(x,y) = y*

Now equation (35.5) gives %:—1 which gives its general solution as
X X

xy=k where Kk is an arbitrary constant. Now set & =x, n=Xxy as the co-

ordinate transformation; This gives J =x#0.

NOWE_dz d§+dz dn

_ dz_dzd§+dzdn:
dx d&dx dndx

=z.14+z .y,and —= Y
et e A T e dy dpdy
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A(X’y):X:§1 B(X’y):_y:_g’ C(Xiy):g_ii D(X!y):g_z'

The canonical form of the given equation is:

2
.2, N/

& &

This can be solved as an p.d.e, by fixing nas a constant in z(&,77). Thus we

obtain

(&) =ef§3d§{fm) + g—ief’éﬁ“dgl

=e* | f(n)+e *

772

= f(n)e? +1, where f(n) isan arbitrary function.

y2

Thus z(x,y) = f(xy)e? +1 is the general solution of the given p.d.e.

Example 4: Find the general solution of the Euler equation

Xz, +yz,=nz, (XYy)=0.

Solution:
Given A(x,y)=x;B(x,y)=Vy;C(x,y)=n,D(x,y)=0, equation (35.5) gives

ﬂzijldx=£dy, leading to  Inx=Ink+Iny or X_k as its
dx x X y y

characteristic curve. Now set &=x,n7 = X
y
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J =—12¢o. Also, note that A(x,y)=¢&,C(X,y)=n, and the canonical form
y

for the given p.deis &z, +nz=0,0r 1z, +gz =0. Its general solution is

2(E,n)=&E"F(n) or z(x,y)=x"f [gj where f is an arbitrary function.

Exercises 3: Find the general solutions of
(i) xz,+yz,=x"

(ii) az, +b z,+c z,=d where a,b,c,d are constants such that a* +b* = 0.

(iii) Singular integral: Find the envelope of the two parameter family of

solutions z=F(x,y,a,b), if exists. This is obtained by eliminating a and b

oF(x,y,a,b) 0 oF(x,y,a,b)
da ’ ob

called the singular integral of the given p.d.e.

=0. This is

from the equations z = F(x,y,a,b),

Example 5: Obtain the singular integral for z = px—qy— p*=q*>=0.

Solution:

The given equation has the two parameter family of curves z = ax +by + a* + b?

as its complete integral. Now

FXxY.ab)_o_, v, 2a=0
oa ’
OFxy.ab) gy, op-0
ob ’
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Eliminating a and b from the equationsz=ax+by+a*+b?,

x+2a =0,y +2b =0, we obtain the singular integral as 4z = —(x* + y?).

Keywords: Complete Integral, General Integral, Singular Integral,

Characteristic Curves
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Module 4: Partial Differential Equations

Lesson 36

Geometric Interpretation of a First Order Equation

36.1 Geometric Interpretation of a First Order Equation

Consider the general quasi linear partial differential equation

P(x,y,u)u, +Q(X, y,u)uy = R(X, y,u) (36.1)

A possible solution written in implicit form as

f(x,y,u)=u(x,y)—u=0 (36.2)

which is a surface in (x,y,u) space. Atany point (X,y,u) on this surface,

Vi =(u,,u,,-1) gives the normal to the surface. Equation (1) can be re-written

as:

(P,Q,R)+(u,,u,,-1)=0 (36.3)

This shows that the vector (P,Q,R) must be a tangent vector of the surface
given by (36.2) at (x,y,u) and this determines a direction filed called the

Characteristic Direction for the integral surface for of the given p.d.e. In brief;
f(x,y,u) = u(x,y) - u = 0 is a solution of (1) if and only if the direction vector

field (P,Q,R) lies in the tangent plane of this integral surface at each point

(X, y,u).
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A u,u,-1
\
u

X1
normal—

\
\
\
\
\
\
\
\

(P,Q,R)

<—tangent plane
o)

If T is a curve with the parametric rep x = x(t), y = y(t),u =u(t) . If this space
curve lies on the surface u =u(x,y), then at (x, y,u), the tangent to the curve I

will have the direction cosines as (P,Q,R) where (P,Q,R)+(u,,u,,—1)=0 is the
partial differential equation for which u=u(x, y) is the solution.

Definition: A curve in (x,y,u)—- space, whose tangent at every point coincides

with the characteristic direction field (P,Q,R) is called a characteristic curve.
If parametric representation of this characteristic curve is

Xx=X(t),y=y(),u=u() (36.4)

then the tangent vector to this curve is (dt ot dtj which must coincide with

dx dy du
(P.Q,R).

2
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Geometric Interpretation of a First Order Equation

The system of ordinary differential equations representing these characteristic

curve is given by

dx dy du
— =P(X, y,u);—==0Q(x, y,u);—=R(X, y,u 36.5
o (y)dtQ(y)dt (X,y,u) (36.5)

These are called the characteristic equations of the Quasi linear equation (36.1).

Its solution consist of a 2-p family of curves in (x,y,u) — space.

The characteristic equations in non-parametric form are written as:

g _dy _du (35.6)

36.2 Method of Characteristics to obtain the general integral: (Lagrange
Method)

The general solution of the quasi-linear partial differential equation (also known
as the Lagrange’s equation) P(X,y,u)u, +Q(X, y,u)u, =R(X, y,u) Iis written as
F(¢, w)=0 where F is an arbitrary function of ¢ and y and ¢(x,y,u)=C,
and w(x,y,u)=C, are two functionally independent solutions of the

characteristic system%:%:d%. This general solution can also be written

as: p=G(y).

Example 1: Find the general integral of the quasi linear p.d.e yzz, + xzz, =Xy .

Solution:

The characteristic system is: dx_dy _dz
yZ Xz Xy

3
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Geometric Interpretation of a First Order Equation
Taking 2 equations at a time and integrating, we get

(i) X-Yoe_yoc,
y X

(ii)ﬂzgz 22 -y?=C,
zZ Yy

The general solution is F(x*-y*z*-y*) =0, where F is and arbitrary
function, this general solution can also be written in the form

2 =y* +G(x* - y?),G is any arbitrary function.
Example 2: Find the general integral of z, +zz =0

Solution:

The characteristic system is d_lx = =—

Which admits solutions as: (i) z=C, and (ii) y-zx=C,.

So the general solution is writtenas  F(z,y—zx) =0, where F is an arbitrary

function, or is also written as z =G(y — zx), where G is arbitrary function.

Exercises 1: Find the General Integral of
1) z(xzX - yzy): y? —x?
2) yzz, + X272, =X +y

3) x(y-2)z, + y(z-x)z, = 2(x - y)

4
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Geometric Interpretation of a First Order Equation

36.3 Linear Equation to 3-Variables

Now, let us consider the extension of the linear equation in 3-variable for the

function u(x,y,z) as
A(X, Y, 2)u, + B(x,y,2)u, +C(x,y,2)u, =0.
For this equation, the characteristic system is given by

dx  dy  dz
A(x,y,z) B(xy,z) C(x,Y,2)

and this gives the family of characteristic curves as (say) g(x,y,z)=C, and
h(x,y,z)=C, which are two functionally independent solution of the above

system, then the general solution is written as u = F(g,h).

The functions g(X,Y,z),h(x,y,z) are called functionally independent if rank

9 99 94

0

x oy o Is 2.
h ah on

ox oy oz

Example 3: Find the general solution of the linear equation in 3 independent

variables

(y—2)u, + (2 - x)u, + (x— y)u, =O0.

Solution:

The characteristic curves are obtained from the characteristic system

5
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Geometric Interpretation of a First Order Equation

dx _ dy _ dz
(y-2) (z-x (z-y)

Note thatdx +dy +dz=(y—z+z—-x+x-Yy)=0,
and xdx + ydy + zdz=x(y-2)+ y(z—-x)+ z(x—y)=0.

Integrating, these equations give

g(x,y,z)=x+y+z2=C,

and h(x,y,z) =x*+y*+2°=C,.

Then the general solution is written as u=~F(g,h) ie.,

u(x,y,z)=F(x+Yy+zx*+y*+1z°) :where F is an arbitrary function.

Exercises 2: Find the general solution of the equations

1) x(y —2)u, + y(z—x)u, +z(x-Yy)u, =0

2) Xu, +yu +2zu,=U.
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Module 4: Partial Differential Equations

Lesson 37

Integral Surface Through a Given Curve - The Cauchy Problem

37.1 Integral Surface through a given Curve - The Cauchy Problem
For the quasi linear p.de. P(x,y,z)z,+Q(X,y,2)z, =R(x,y,z), with its
general integral F(¢, w)=0 where ¢(x,y,z)=C, and w(x,y,z)=C, are two

functionally independent solutions of the characteristic systemd—::ﬂzﬂ,

Q R
can we find a particular integral containing the given curve C whose parametric
equations are given by X=X%,(8),y=Y,(s)andz=2z,(s) wheresis the
parameter. This is similar to finding the arbitrary constants in the general

solution of an ordinary differential equation using the initial conditions.

Thus fixing the arbitrary function in the general solution of the given p.d.e by

making it to pass through the given initial data is called the Cauchy Problem.

Suppose z = z(x,Yy)is the integral surface passing through the initial data curve
C then we require that the = equations ¢@(x,(s),Y,(s),Z,(s))=C, and
v (%(8), ¥o(5),2,(s))=C, be satisfied. Now eliminating s from these two
equations we obtain F(C,,C,)=0 orC,=G(C,). This fixes the arbitrary

function F (or G) and produces the required surface.

Let us illustrate this by considering few examples:
Example 1: For the p.d.e z(x+y)z, +z(x-Yy)z, =x* + y*

Find the integral surface that satisfies the Cauchy data z=0o0n the curvey = 2x.
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Integral surface through a given Curve - The Cauchy Problem

Solution:

Step 1: Find the general solution:

The Characteristic system is:

dx  dy  dz
z(x+y) z(x-y) x*+y?

Note that —xdx + ydy + zdz=0 and ydx+ xdy —zdy =0.
: H 2 2 2 1 2
On integrating we get z° — x“ + y“ =C, and xy—Ez =C,

Thus the two characteristic ~curves are ¢=2z"-x"+y’=Cand

w =2xy—12°=C,.

The general solution is written as: F(z° —x* +y*,2xy—2°)=0

or z°=(x*-y?)+G(2xy—2°) , here G is any arbitrary function

Step 2: Fixing the arbitrary function:

We are given the Cauchy data as z=0ony=2x. Its parametric representation

IS, Xx=5,y=25,2=0 .

Using this in the integrals ¢ =C, and y =C,; 0-—s’ +4s*=C, ; 2.5.25s-0=C,
or 3s°=C,; 4s°=C,
:>§:&:>401:3C2
4 C

2

Thus the solution is written as:
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Integral surface through a given Curve - The Cauchy Problem

4(22 — X’ + yz):3(2xy— zz) or 72> =6xy + 4x° —4y?
Alternative to Step 2: We have z° =(x* - y*)+G(2xy - 2°)

Using the Cauchy data, we get 0=s®—4s” +G(2.5.2s) or 3s° =G(4s°)

Put 432:t:>32:l leads to 352:§t
4 4

3

LG =—t

(t) 2

This gives the integral surface as z* = (x* - y?) +%(2xy - 7%)

or 7z° =6xy +4(x* - y?).

Example 2: Find the integral surface of the equation

(2xy —1) p+ (z — 2x*)q = 2(x — yz) Passing through the Cauchy data
Xo (S) =1, Yo (S) =0, Zy (S) =S3.

Solution:

dy = dz

Step 1: The characteristic system is = =
2xy -1 z-2x° 2(x-yz)

Note that (i) zdx+dy+xdz=0 =u=xz+y=C,

(ii) xdx+ydy+dz=0 =v=x"+y*+z=C
2

- Integral surface is F(xz+y,x*+y*+2)=0

Step 2: using the data: x,(s) =1,y,(s) =0,z,(s) =s In the integrals; we obtain
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Integral surface through a given Curve - The Cauchy Problem

1.5+0=C, &1+0+s=C, leadsto C,=s;1+s=C, or1+C,=C,.

. The required integral surface is 1+xz+y=x*+y’*+z

or X*+y*-xz-y+z-1=0.

37.2 Existence and Uniqueness of solution for the Cauchy problem:

The following result ensures the existence and uniqueness of an integral surface

for the Cauchy problem.

Statement: Consider  the  first  order  quasi linear  p.d.e
P(x,y,2)2, +Q(X,Y,2)z, =R(x,y,2) in the domain Q where P,Q,R are
continuously differentiable functions in Q. Let x=x,(S),y=Y,(s) and

z=1,(s) , 0<s<lis the initial smooth curve in Q and

% B(Xo(s)’ yo(s)’ Zy (S)) _%A(XO(S)’ yo(s), Zg (S)) it v [ %

0<s<1. Then there exists one and only one solution z =z(x,y)defined in a
neighbourhood of this initial curve, which satisfies the equation (37.1) and the

initial condition z,(s) = z(X,(s), ¥,(s)),0<s<1.

Note: The condition given in (37.1) excludes the possibility that the initial

curve x=x,(s),y=Y,(s)could be a characteristic. Let us now illustrate an

example where the given p.d.e has a unique, no, infinitely many solutions

with the Cauchy data.
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Integral surface through a given Curve - The Cauchy Problem

Example 3: Consider the p.de yp—-xgq=0 whose general solution is

z=F (x2 + y2) where F is an arbitrary function.

Case 1: Consider the initial curve
X=X,(8)=S, Yy=Y,(8)=0,z=27,(s) =*
which is the parabola in (x,z) plane. The condition (37.1) becomes
1--s—-0-0=-s5#0
This ensures that the Cauchy Problem has unique solution.

Eliminating F: s’ =F(s’)= F(t)=t = z=x"+y" is the circular paraboloid

contains the initial curve (Parabola).

Thus z=x*+ y? is the required integral surface.

Case 2: Consider the initial curve x,(s)=coss, y,(s)=sins, z,(s) =sins.

This is the parametric representation for the ellipse x> +y*=1z=y.

The condition (37.1) becomes: (—sins)(—coss)—(sins)(coss)=0

This the condition fails, so either there is no solution or there are infinitely

many solutions. (i.e., either existence of the solution is lost or the uniqueness of

the solution is lost). The integral surface z:F(x2+y2) becomes
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Integral surface through a given Curve - The Cauchy Problem

y = F (1) which is inconsistency that a constant F(1)is equal to a variabley.

This implies there is no solution to the Cauchy Problem (Existence of solution

is lost). Note: The tangent vector (—sins,coss,coss) to the given curve is

nowhere parallel to the characteristic vector(sins,—coss,0).

Case 3: Consider the initial curve x,(s)=coss,Y,(s)=sins, z,(s) =1,which is
the circlex’ +y*=1,z=1.The condition (37.1) means

—sins-—coss—coss-sins=0. The integral surface is containing the curve

results in 1=F(1). This is possible for any function F such that F(1) =1 (i.e.,
F(w)=w" ). There are infinitely many representations of this function F, in
this case with each of F, z=F(x*+ y?)is an integral surface that contains the

curve. In this case, it is to be noted that the initial data curve is a characteristic

curve.

Example 4: Solve the p.de sz+zy=% with the initial condition

z(s,5)=—,0<s<1,

Slo

Solution: The initial curve satisfies the condition given in (37.1) fors=4. The

characteristic system can also be written as:

dx_Z dy

o dz_1
dt ' dt

1l —= with the initial conditions
dt 2

x(s,0) = s, y(s,0) = s, 2(s,0) :%.
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Integral surface through a given Curve - The Cauchy Problem

Solving the above system of ordinary differential equations using the initial

conditions, we get

1 1
z:—t+C1(s,O):—t+£, y=t+C,(s,0)=t+s and
2 2 4
2 2
%:Z:EHE orx:t—+t—s+C3(s,0) orx=t—+t—s+s.
dt 2 4 4 4 4 4

Now eliminating s and t from the above we obtain

2 J—
=Y and 1= 20 =)

4—y 4—y

Hence the integral surface having the given Cauchy data is:

2 2
E_Fl:l 4-)(;)/ _}_l M OrZ:Mforyzs_—#4_
4 2 4 4-y ) 2| 4-y 4(4-y)

Exercises:

1. Solve the Cauchy Problem for the p.d.e 2z, +yz, =z containing the initial
data curvex = X,(s) =,y = Y, (s) =s*,2=7,(s) =s, 1<s<2.

2. Find the solution of p—zq+z=0 for all yand x>0, for the initial data

X =0,Y,=5,Z,=-28,—0<S<00,

3. Show that the integral surface for the p.d.e p+qg=2z® with the initial

f(x-y)
1= ¥f (x-)

condition z(x,0)= f(x) is z(x,y)=

WhatsApp: +91 7900900676 www.AgriMoon.Com



Integral surface through a given Curve - The Cauchy Problem

References

Amaranath, T. (2003). An Elementary Course in Partial Differential Equations.

Narosa Publishing House, New Delhi

lan, Sneddon. (1957). Elements of Partial Differential Equations. McGraw-Hill,

Singapore

Suggested Reading

Stavroulakis, I.P. Stephen a tersian, (2003). Partial Differential Equations.
Allied Publishers Pvt. Limited, New Delhi.

J. David Logan. (2004). Partial Differential Equations. Springer (India) Private
Ltd. New Delhi

309 WhatsApp: +91 7900900676 www.AgriMoon.Com



Module 4: Partial Differential Equations

Lesson 38

Non-Linear First order p.d.e — Compatible system

38.1 Non-linear first order p.d.e — compatible system

Two first order partial differential equations

f(x,y,z,p,q)=0 (38.1)

and

9(x,y,2,p,q) =0 (38.2)
are said to be compatible if they have common solutions. In fact these two
equations admit a one parameter family of common solutions under some

conditions.

Definition: The equation (38.1) and (38.2) are compatible on a domain Q if

i _od(f.9)

(1) J= ) z00nQ (38.3)
and

(if) P=¢(x,¥,.2).q9=y(XY,2) (38.4)

obtained by solving (1) and (2) render the equation

dz = gdx +wdy (38.5)
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Non-Linear First Order P.D.E — Compatible System

integrable. Below we state a necessary and sufficient condition for the
integrability of the equation (38.5).

Result: A necessary and sufficient condition for the integrability of the equation
(38.5) is:

o(f,g) ,o(f,9) o(f.g) o(f.9)_,
o(x,p) oz p) a(y.q)  o(z0)

We now consider some examples to check compatibility condition for the given

equations.

Example 1: Find the domain in which the equationf =xp-yg—x=0 and

g=x’p+q-xz=0 are compatible.

Solution:

Condition in equation (38.3) means

X X

_y 1

fo 9
fo 9,

,_0(1.9)
o(p.0)

‘ =X@Q+xy)=0

So the domain Q should not contain points (x,y)such that x=00r 1+xy=0. In

such a domain Q, these two equations admit common solutions.

Example 2: Find the one parameter family of common solutions to the p.d.es

f=p?+g’-1=0and g=(p?+q°)x—pz=0.
Solution:
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Non-Linear First Order P.D.E — Compatible System

Step 1: Let us find the domain in which these equations admit common

solutions:
2 2 .
Jz‘ P q:2qz, J#20=2z#0In Q
2px—2 20X

Step 2: Solve for pand gqfrom f =0and g=0.

NVAES'G

This gives p :§:¢(x, y,z) and g°=1-p*=q= =y (X,Y,2) (say)

2 2

: ility of dz = gdx +yd = x4 YT
Step 3: Integrability of dz =¢dX+ydy |aagsto 92 de+ -

dy

Or zdz = xdx ++/z% — x?dy, this admits the solution z* = x* +(y +c)>.

which is the 1-parameter family of common integrals to f =0and g =0.

Example 3: Show that the equations xp-ygq=0and z(xp+ yp)=2xyare

compatible and solve them.

Solution:
Step 1: J # 0= x = 0(we always assume that both pand gare non zero).

Step 2: Solving f =0and g =0 for finding pand q:

we obtain p= % =¢(x,y,z) andq= ; =y (X,Y,2)
Step 3: Integrability of dz = gdx+¢@dy = zdz = ydx + xdy
= z°=2xy+c, is the 1-parameter family of common solutions to

f=0andg =0.

Exercise:

312 WhatsApp: +91 7900900676 www.AgriMoon.Com



Non-Linear First Order P.D.E — Compatible System

2
1. Show that T =XP—Yad-Xx=0 g3q 9 =X"p+0a-X2=04r6 compatible. Show also

that Z2=X(Y+1 s a solution of T =Cbut not of 9=9, Hence conclude that “not
all solutions of f =Care solutions of 9 =0~

2. Show that Z=% is a solution of f=p°+q°-1=0and not of

g=(p*+9°)x-pz=0 thoughf=0and g=oare compatible. Also find the 1-

parameter family of common solutions.

Keywords: Common Solutions, Integrability , Non-Linear First Order P.D.E -
Compatible System
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Module 4: Partial Differential Equations

Lesson 39

Non — linear p.d.e of 1% order complete integral — Charpit’s method

39.1 Non — linear p.d.e of 1% order complete integral — Charpit’s method.

Given a first order p.d.e

f(x,y,2,p,q)=0 (39.1)

its complete integral can be obtained by considering a one parameter family

p.d.e.

9(x.y,z,p,q,a)=0 (39.2)

which is compatible with f =0 for each value of a. We know if f =0 and g=0

are compatible, they admit common solutions.

Choose equation (38.2) such that (a) equations (38.1) and (38.2) on solving for

P and J give

p=¢(x,y,z,a) and q=w(X,Y,Z,d) (39.3)

and (b) the equation

dz = ¢dx + wdy (39.4)
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Is integrable. When such a p.d.e g(x,y,z,p,q,a)=0 is found, the solution of

equation (39.4), which can be written as:
F(x,y,z,a,b)=0 (39.5)

containing two arbitrary constants a and bwill form the complete integral of
(39.1).

Now we see the Construction of suchg(x,y,z, p,q,a)=0.

As f =0 and g=0are compatible, we have
o9 . o9 9 o9 og
[f.9]= fp&+ fqa—er(pfp +qfq)5 —(f, + pfz)%—( f, +qu)£_0_ (39.6)

Note that equation (38.6) is obtained by expanding equation

(1,g)- 200 ol At atg)
30,p) o) a(y.) a0

Equation (39.6) is a quasi linear first order p.d.e for gwith x,y,z,p and q as the

independent variables, and the corresponding characteristic system is

dx dy  dz _ dp . dq
f, f, pf,+af,  f+pf, f +qf,

(39.7)

Now we consider any solution of this system which involves p or qgor both,

which contains an arbitrary constant. This choice gives us a g(x,y,z, p,g,a)=0.
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Example 1: Find a complete integral of f = xpq+yq®-1=0

Solution:

Equation (39.7) becomes

dx _ dy dz __dp _ dg

xq 2yq+xp 2xpq+2yq®  pq  q°

:\/ .

Now we write g(X,y,z,p,q,.a)=p-ag=0. Sincef=0 and g=0 are

a 1
compatible, we find p=¢(x,y,z,a)= g and q=yw(x,y,z,a)=
ax+y ax+y
a 1 ) _ adx + dy
such that dz= dx+ dy Is integrable, i.e. dz =
Jax+y Jax+y ax+y

= (z+b)=2ax+y or (z+b)" =4(ax+y) isthe complete integral which may

- - Fa Fax Fa -
be written as F(x,y,z,a,b)=0. we also note that the matrix [ FVJ Is of
b bx

by

rank two (verify!).
Example 2: Solve f =q+xp— p°.

Solution: Equation (36.7) gives the characteristic system as

x—2p: 1 :—2p2+xp+q_—p_ 0

dx dy dz _dp _dgq
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Chose g(X,y,z,p,q,a)=0as p=ae” or g=p—ae’ =0,

Solving f =0, =0 for q, we get q=-axe”’ +a’e™?’,

Then dz = pdx +qdy becomes dz=ae Ydx+ (aze‘2y - axe‘y)dy

. : v 1, :
On integrating we get z=axe™ —Eaze ? +b as the complete integral of f =0

where a and b are arbitrary constants.

Exercises:

1. Find a complete integral of f =2 — pgxy =0 by Charpit’s method.

2. Find a complete integral of the non-linear p.d.e
f=(p*+qg*)y-qz=0.

3. Use Charpit’s method to solve the non-linear 1* order p.d.e
PP e d= s

4. Solvel6p®z® +99°z* +42°—4=0.

5. Solve p = (z+qy)°.

6. Find the complete integral of 2(y +zq) =q(xp + yq).

Keywords: Characteristic System, Complete Integral
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Module 4: Partial Differential Equations

Lesson 40
Special Types of First Order Non-Linear p.d.e

40.1 Special Types of First Order Non-Linear p.d.e

We now consider 4 special types of first order non-linear p.d.es for which the
complete integral can be obtained easily. The underlying principle in the first

three types is that of the Charpit’s method.

Consider the general p.d.eis f(x,y,z,p,q)=0.

Type I: The equation is free fromx,y,z, i.e., f(p,q)=0
Here f,=0,f,=0,f, =0.

The auxiliary system equation (38.7) simplifies to

dx dy dz dp dg

ff, pf+df, 0 0

On solving, we get either p=a (or q=a). Without loss of generality, take

g = p—a=0Using this, find q from f =0, denote itby q=Q(a).

Then dz=adx+Q(a)dy, on integration we get z=ax+Q(a)y =b as the complete

integral of f(p,q)=0.
Example 1
Find a complete integral of f = p(1-q)+q=0.

Solution: We have dx = dy = dz =d—p=d—q.
l1-g -p+1 p+g-2pqg O 0

From the last equation, we have q=a, constant.

Now using thisin f =p(l-q)+q=0 we get
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pl-a)+a=0 = p:i.
a-1

. dz :ildx+ ady = z :ilx+ ay =b 1s the complete integral.
a a

Type II: The equation is free fromx,y, i.e., f(z,p,g)=0.

From the characteristic system of equations we consider ap_

get p=aq. Using this we find gas q=0Q(a,z).

[Note: similarly, one can write q=ap and p=0Q(a,z)]

Now dz = pdx +qdy = Q(a, z)(adx + dy) , On integrating we get

j 92 _ax+ y+b as the complete integral.
Q(a,2)

Example 2
2= i,

Solution: Choose p=aq= q*=z-a%q’

Jz
q= 1
(1+a%)
dz = aﬁldx+ L -~z dy
(1+a2)E (l+a2)E
or J-%dzzjadwrd)l/ _ 1 _(ax+y)+b,
z

(1+ a’) (1+ a’)
or on simplifying we get

4(1+a’)z=(ax+y+b)> asthe complete integral.

p
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Type I11: Consider a special form for f(x,y,z, p,q)=0 in aseparable type such

as g(x, p) =h(y.q).
In this case, the auxiliary equations are

dx _dy = dz dp dg

g, -h, pg,-ah, -g, h,

Solving the first and fourth together, we get

g,dx+g,dp=0 or dg(x, p) =0= g(x, p) =a,a constant.

Slnce g(X, p) = h(qu) = h(yvq) =a,
solving for pand q, we get p=A(a,x) and gq=B(a,y)
and the complete integral becomes z = [ A(a, x)dx+[ B(a, y)dy +b.

Example 3:
Solve p-x*=q+y°.

Solution: The auxiliary equations are Dm0 P P81
1 -1 p+q 2x 2y

The first and the fourth equations give 2xdx—-dp=0=p-x*=a= p=a+x’
also g+y*=a=q=a-y’. hence

z =j(a+ xz)dx+I(a— y*)dy+b, Or z= ax+)§+ay—y?3+b is the complete solution.

Type IV: The p.d.e is in the special form given by z = px+qy+h(p,q)

which is known as the Clairaut equation. Its complete integral is written as

z =ax+by +h(a,b), which clearly satisfies the given p.d.e and also the rank of the

. (x+h, 1 0).
matrix IS two.
y+h, 0 1

3
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Example 4

The complete integral of z = px+qy +log pg is the surface given by

z=ax+by+logab.

Exercises

Find the complete integral of the p.d.es
1. p*+9°=09.

2. pq+p+q=0.

3. z=px+qy+p’q”.

4. p(l-q*)=q(l-2).

5 1+p°=0qz.

6. q+ px = p°.

7. \Jp—=+Jqa +3x=0.
8. xyp+ay+pq=yz.
9. z(p*+9°)+ px+qy =0.

Keywords: Charpit’s method, Clairaut equation.
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Module 4: Partial Differential Equations

Lesson 41

Classification of Semi-linear 2™ order Partial Differential Equations

41.1 Classification of 2" order Partial Differential Equations: Parabolic —
Hyperbolic — Elliptic Equations

A2" order semi linear partial differential equation can be put in the form
Lu+g(x,y,u,u,u,)=0 (41.1)

. 0? 0 0? .
where the linear operator L =R(X,Yy)—+S(X,y)——+T(X,y)— Is such that
p (x.y) ¥ (X, y) Y (X, y) &

the coefficient functions R, S and T are continuous function of x, yand

R2+S2+T2#0.

We change the independent variables (x,y)to (&,n)as &=£&(x,y)and n=n(x,y),
to enforce the one — to — one correspondence of this transformation, we assume

gxny _ﬂxéy io

The coefficients and the partial derivatives in the given equation are written in
terms of the transformed variables. The first and second order partial derivatives

become:

u, =u., +u,n,; U, =Ug, +U7n,
Uy = uéigyé:x + uinnyétx tUsoy + ufn‘fynx U 17T+ Uy Ty

2 2
uxx = ugggx + ugnnxéx + uzfgxx + ugngxnx + Uym77x + U,;77xx
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Classification of Semi-linear 2nd order Partial Differential Equations
— 2 2
Uy, = uée‘gy + uénnygy + usfé:yy + ue‘ngyny T Uy U,
. _ 2 2
S Ru, +Su,, +Tu, =u..(RE"+SEE +TE)

+u§77 (2 R77X§X + S(nygx + gynx) + 2T gyny)
2 2
+u,, (Rn,” +3Sn,m, +T&,)+ F(&,m,uU,,u,,U).

Equation (41.1) becomes

A(égx’égy)ugg + ZB(éxfyiﬂx’Uy)Ugn + A(ﬂxiﬂy)um = G(f,n,u,ug,un) (41.2)

where A(u,v) = Ru® + Suv + Tv? (41.3)
1
B(u,Vv;;u,,v,) = Ruu, + ES(Ule +U,v,) +Tvyv, (41.4)

Now, the problem is to determine £&#n so that the equation (41.2) takes the

simplest possible (Canonical) form.

When the sign of the determinant S°—4RT of the quadratic form (41.3) is

everywhere positive, negative or zero it is easy to make the classification.

Case A: When S* —4RT >0 everywhere in the domain.
The new independent variable &&7 can pe so chosen that the coefficients of

u..andu, in (41.2) vanish.

The roots 4, & 4, of the equation Ra® +Sa +T =0 are real and distinct.

The coefficient of u,. &u, in (41.2) will vanish if we close £ &7 such that
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0L 0y _

x oyl ox oy
A suitable choice will beg = £ (x,y) 7= f,(x,y)where

f,(x,y)=c¢, f,(x,y)=c, are the solution of the ordinary differential equations

dy dy )
——+ A (X,¥)=0; =+ A4, (X,y)=0respectively.
i 4 (%) ™ ,(%,Y) p y
It can be verified that

A(é:x'é:y)A(nx’ny) - Bz(é:x’é:y;nx’ny) J (4RT - Sz)(é:xny _§y77x)2 /4(415)

Now when the A’s are zero;

B* =(S* —4RT)(&m, —&,1,)°

Since S®—4RT >0= B? >0, hence equation (41.2) reduces to
o°u

a&on

=¢(&,1,U,,U,,u) (41.6)

The curves £(X,y) = constant, n(x,y)= constant are called the characteristic

curves of equation (41.1).

Equation (41.6) is called the canonical form of equation

Example 1

Reduce the equation u,, —x’u,, =0 to a canonical form.
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Solution

comparing with the standard form, we note that R=1,S =0,T = x*
Then S*—RT =4x*>0.

So Ra? +Sa+T =0becomes a® — x> =0 = a = +X.

= A4 =X A, =X

Now &+ x=0= y+£x2=c1
dx 2

dy 1,
——x=0 ——X"=C
dx A ?

Taking &= y+£x2;77: y—lx2
2 2
u,=u.g, +Uum, =u.X+u, (—X)=u.x—u,x

— —2 _ 2 2 _ —
u,=u.+U, U, =XU, 2xu§n+xum7+ug u, uyy—u&+2u§,7+u,7,7

1
. 2 — - - = -
- Uy —X°u,, =0becomesu,, = ™ (U, -u,) = (U, —u,).

1
4(&-n)
Case B: If S2—4RT =0

Roots of the equation Ra® + Sa+T =0are real and equal. We define £as in case
A and take » to be any function of x,y which is independent of &. In this case we

have A(¢,,&,) =0 as before and hence from equation (41.5), B=0.

But A(r,,n,) =0 & &n are independent functions.
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o°u

Hence the canonical form in this case is p =¢(&,m,u,u,,u.) (41.7)
n

7=

Example 2

u, +2u, +u = 0canonical form.

Solution

comparing with the standard form, we note that
R=1S=2T=1and S°—4RT =0 .

Ra?+Sa+T =a*+2a+1=(a+1) =0=>a=-1-1.

.'.d—y—1:0:>x—y:c1, take =x-y

dx

Then chose n=x+Y.

2
a{:o
on

= E=nf (&) + f,(&)where f, & f,are arbitrary functions.

Using these £ &7 : we have the canonical form as

Hence the solution of the given equation is:

z=(x+y)f(x=y)+ f,(x=-y).

Case C: S*—4RT <0.

In this case, the roots of the equation Ra’+Sa+T =0 are complexconjugates.

o°u

Proceeding as in case A; the canonical form Py = ¢(§,77,u,ux,uy).
n
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Classification of Semi-linear 2nd order Partial Differential Equations

But £&#n are complex conjugates.To get the real canonical form, we use the

. 1 1. o’u  1( du o«
transformationa =—=(&+n), f=—i1(n-¢&) = =— + .
. o . ou o
So the canonical form in this case is e +a_ﬂ2: ¢(a, B,u,u,,uy).
(04

Example 3

Reduce the equation u,, +x*u,, =0 to canonical form.

Solution
Clearly, R=1,S=0,T =x*and S*-4RT <0 .
a’ +x*=0=a=+iX_ hence =iX;4, =—iX,

) 1 ) 1 1
§:|y+§x2;772:—|y+§x2,a:§x2;ﬁ:y

s ¢ ¢ .
= U, +U,, =-——U,is the canonical form
2a

No we classify second order equation of the type (41.1) by their canonical form as:

A) Hyperbolic if $*—4RT >0 B) Parabolic if S —4RT =0,
C) Elliptic if S?—4RT <0

. . . . 2 .
Clearly the one dimensional wave equation given by Uy =C U, is an example for

the Hyperbolic equation,
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the one dimensional heat conduction equation given by U, =au,,
Is an example

u +uW:O

XX

for the parabolic equation and the Laplace equation Is an example for

the elliptic equation.

Example 4

Uy, +2XU,, +(2—y*)u, =0
Discuss the nature of the equation

Solution

Clearly S*—RT =(x*+Yy*-2)

Hence the given equation isHyperbO"C at all points (X, y) such that X? + y2 > 2’

Parabolic if x* +y* =2 and Elliptic if X* +y* <2

Exercises

1. Reduce the equation to its canonical form and classify

it:u, +4u, +4u, +2u, —u, =0
2. Classify the partial differential equation:

u, +(5+2x*)u, + L+ x*)(4+x*)u, =0

Keywords: Elliptic ,Hyperbolic, Parabolic,
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Module 4: Partial Differential Equations

Lessons 42

Solution of Homogeneous and Non-Homogeneous Linear Partial

Differential Equations

42.1 Introduction
Consider the homogeneous linear equations with constant coefficients k;'s as
(D" +KkD"™D'+...+k,D")z = f(x,y) orF(D,D")z = f(X,Y) where

F(D,D)=) > C,D'D", C,are constants & D :%; D’ :8% |

Let us find the Complementary function for this equation.

Result 1: If u is the complementary function and z, a particular integral of a

linear differential equation, then u + z, is a general solution of the equation.
We have F(D,D")u=0
and F(D,D")z, = f(X,y)

~F(D,D)(u+1z)=f(xy).

Result 2: If u,u,..,u, are solutions of the homogeneous linear partial

n

differential equation F(D,D’)z=0, then cu,+cCuU,+.....C.u, is also a

n=n

solution; C,’s are arbitrary constants.
Let F(D,D’) be a Linear partial differential operator.

This operator is said to be reducible if it can be written as the product of linear

function of the form (D +ar’+b) with a,b are constants. For example:
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(D*-D"?)=(D+D')(D-D).

It is said to be irreducible if it cannot be so written. For example (Dr - D’) IS

irreducible.

42.2 Reducible Equations

Result 3: If the operator F(D,D’) is reducible, the order in which the linear

factors occur is unimportant. Any reducible operator can be written in the form.

We have (o,D+ 4,0’ +1,)(,D+ £,D'+1,)
= arasDZ + (aSﬂr + arﬂs)DD, + ﬂrﬂsD,z + (rsar + rras)D + (rsﬂr + rrﬁs)D’ + rrrs
=(a,D+pBD +r)(a,D+ D +r,)

Similarly this is true for any product of finite number of factors.

Result 4: If (¢,D+ 5.D'+y,) is a factor of F(D,D’) and ¢, (&) is an arbitrary

function of the simple variable &, then if o, #0 .

u, = exp(_ng¢r (ﬂrx_ary)

r

is a solution of the equation F(D,D")z=0 .

Proof: Du, = —ﬁur + B, exp(LXJW(ﬂrX —Oer)
o a,

r

DU, =-a, exp(ﬂjﬂﬂrx—ary)
al’
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so that (o,D+ ,D'+y,)u, =0

n

Now F(D,D’) = {H(aSD + D"+ ys)}(arD +B.D"+ 7, )y,

s=1

(42.1)

(42.2)

The prime after the product denotes that the factor corresponding to s=r

is omitted. Combining (42.1) & (42.2) we get F(D,D’)u, =0.

Result 5: If (B,D'+y,) is a factor of F(D,D’) and ¢, (&) is an arbitrary

function of the simple variable &, then if g #0; u, =exp[

solution of the equation F(D,D")z=0.

Proof: Similar lines to that of result 5.

- j¢r(ﬁrx) is a

If F(D,D’) is decomposed into linear factors such that (¢,D+ 5,D'+7, )is a

multiple factor; (say n=2) then the solution of F(D,D")z =0 is obtained as

given below:
(¢,D+ 8D +7,) z=0
Let Z=(a,D+B.D'+y,)z.

Then (,D+8,D'+7,)°Z=0.

Then by result (4), it has solution

Vd :exp[—yijqﬁ, (Bx—a,y) if a, #0
a

r

To find Z ; we have to solve

I X

0z oy o
- 7 = “ —
(al’ 6X+ﬂr 8X+7/I’ZJ ¢r (ﬂrx ary)

WhatsApp: +91 7900900676

www.AgriMoon.Com



335

Solution of Homogeneous and Non-Homogeneous Linear Partial Differential Equations

Solution: %:%: — az
a _r-
T rz+e "4 (BXx-a,y)
With solution:
%:ﬂ:ﬂrx_aryzcl
al’ ﬂl’
and %: az

X
rz+e “¢.C

=7 =i{¢,(c1)x+cz}e5‘r

o,

X

LL= X¢r (ﬂrx_ary)-i_(pr (ﬂrx_ary)e 07,

Is the solution. ¢, & ¢, are arbitrary.

Result 6: (This is generalization of result 5) If (¢, D+ A,D'+7,) (o, #0) isa
factor of F(D,D) and if the functions ¢, .4 ,...4 are arbitrary, then

exp(_ﬂjz X4 (B.x—a,y) is asolution of F(D,D')=0.
ar

s=1
Result 7: If (B.D'+y,)" s a factor of F(D,D’) and if the functions

s=1

$.+@,..-.¢, ~ are arbitrary, then exp(—%yjzxs‘lqiﬁrs(ﬂ,X) is a solution of

r

F(D,D")z=0.
Complementary function of F(D,D")z = f(x,y) when F(D,D’) is reducible.
We have F(D,D) =) (¢, D+ B.D'+y,)" and if none of ;s is zero, then the

s=1

corresponding complementary function is:
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u :iexp(—mjixs‘l(zﬁrs(,BrX—ary) where ¢ (s=12,..,n;r=12,..,n) are
r=1 24 s=1

r

arbitrary.

0’z 0°1 0°1
>+ K, + =
OX OXoy

which is written in the operator form as (D2 +k,DD + kZD’Z)z =0.

Consider the second order equation

Let its roots be denoted by % =m,m,.

Case 1: These roots are real and distinct :
Say (D-mD’)(D-m,D')z=0

, dx dy dz
(D—mZD)z:O:>T:_m2 =g A tmX=c.2=¢,

hence z =¢(y+m,x), where ¢ is an arbitrary function.
Similarly (D-mD")z=0= z = f (y+mx), where f is an arbitrary function.

Hence the complete solution is z = f (y + mx)+¢(y+m,x).

Case 2: Let these roots be repeated, say m, =m,, then
(D-mD') z=0;let (D-mD’)z=u, then
(D-mD')u=0=u=¢(y+mXx)

, dx dy dz
D-mD')z=¢(y+mX)=—= =
( D) ( ) 1 -m  #(y+mx)

ory+mx=c;;dz =g¢(u)dx
orz=xg(y+mx)+c,

orz=xg(y+mx)+ f(y+m,x) is the complementary function.
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Example 1
2D?+5DD'+2D"* =0

2m2+5m+2:0:>m1:_2,m2:_%

z=f(y-2x)+ f{y—%xj.

Example 2
r+bs+qt=0
m’+bm+q=0=>m=-3,-3

z=f,(y—3x)+xf,(y—3x).

Example 3
(D*-D?)z=0. m*-1=0=>m=1+1

z=¢(X+Yy)+d,(x-Y).

Example 4

Find the complementary function of (D“ + D"‘)z -2D’D"”*z=0.

Solution

(D+D')(D-D')z=0
a,=a,=1,7,=0

So the solutionis: B, =4,=1,y,=0

Z=Xg(X=Y)+&,(X=y)+ X (X+Y) +¢,(X+y) where ¢ arbitrary function.
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42.3 Particular Integral

Result 8: We have F(D,D")e™™ =F(a,b)e™™

F(D,D’) is made up of term of the type C.D'D"*;F(D,D")=> > C, D'D"
and Dreax+by — a.reax+by and Drseax+by — bseax+by’

SO CrsDr Drs :Crsarbseax+by

and F(D,D")e*™ =F(a,b)e®"".

Result9: F(D,D’) {ea“bygzﬁ(x, y)} =e™™F(D+a,D +b)g(x,y)

Solution: D'e*p =Y 'C, (D%e™)(D"#g) =e*Y("C,a"D"* Jp(x,y)

p=0 p=0
=e*(D+a) ¢.
Similarly, D"*e”¢=e>(D'+a) ¢.

Hence F (D, D")e*"™¢ =e™™ f (D + a,D’ + a)@(X, y) .

f(D,D")z=F(x, z=———F(X,
(D,D’) (x,y)= £(D.D) (x,y)
Case 1: —— g™ :#ea“by, provided f(a,b)=0.
f(D,D') f (a,b)
Case 2:

f(D?,DD’,D"?)sin(mx + ny) = f (~m?,—mn,—n?)sin(mx + ny) cos(mx + ny)

1
f (—mz,—mn,—nz)

7= sin(mx + ny) or cos(mx + ny).
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Case 3: F(x,y)=x"y", m,nconstants.P.l.=[ (D, D')]_lxmy”.

Case 4:F(x,y)is any function of xandy, resolvef#, into partial

(D,D)
fractions, treating f(D,D")as a function of Dalone and operate each partial

function of F(X,y), remembering that

mF(x, y):jF(x,c—mx)dx

wherec is replaced by y + mxafter integration.

Example 5
Find the solution of (D? - D"*)z=x-y

The complementary function is: ¢ (X+ y) +¢,(X—-Y).

The particular integral is obtained as:
Letz,=(D+D’)z

Then (D-D')z,=x-y

821 821 1 2 ; )

L —l=x-y=z="Ax-y) + f(x+y), f isarbitrary.
> oy y=1z u( y) + f(x+y) y
Exercises

Find the solution of the linear p.d.e with constant coefficients:

1.D* +4DD’ —5D"%z =sin(2x + 3y)
2.(D2 - DD')z = COSXCOS2Y
3.D°®-2D?D’ = 2™ + 3x%y

4.4D? — 4DD' + D'? =16log(x + 2y).
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42.4 The complementary function of irreducible equations

F(D,D)z=f(xY)

Irreducible factors are treated as follows:

Case 1: The particular integral z =ﬁ f(x,y) is obtained by Expanding

the operator F by the binomial theorem and then interpret the operator

D, D" as integration.

Example 6
Find a Particular Integral of the equation (D*—-D")z =2y - X°.

Solution

=g 2= 2| Flev-x)
or z:(l—%—g—Z—g—; ........ j(zy_XZ)
=(-y*+xy) - Dl,z (-2) = ..

==y +Xy+y =xy.

Case 2: If f(x,y) is made of term of the form exp(ax + by)

then P.1 is: ———e@™ if F(a,b)#0.
F(a,b

(D*-D")z=e®™" F(a,b)=3%0

SO 1 e(a><+by) — le(aXery) .

(D’ - D) 3

If F(a,b)=0 then z=we®""
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andF(D+a,D'+b)w=c.

F(D,D')z = ce®™,

Example 7
Find the particular solution of (D* — D")z =e®*™),

Clearly F(1,1)=0.
F(D+1D'+1)=(D+1) —(D'+1)=D*+2D - D'

or(D2+2D—D’)W:1

1
2
- —X
L -1251,[1_%@}1: 2
_D'[l_"'J -y

D!

1 (ax+hy) X+y
- P.l.are —xe & -y’ .

2

f(x,y) involving trigonometric functions Re. or Img. Write it as exp(i....)

use the above method.

Otherwise: method of Undetermined Coefficients.
Ex: (D®—D’)z = Acos(Ix + my), A,I,m are constants.
LetaP.l. z=c,cos(Ix+my)+c,sin(Ix+my).

Find D%z , D'z .

Equating the coefficients of sine & cosine terms.

1%, =0
We get me =16 A}2>2= {msin(lx+my)+lzcos(lx+my)}

2 . 2 4
—1%c, + mc, = |

m_
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Exercises: Denote: 0’z =r 0z =S 0z =t Fj i
. Y ’axay ’8y2 . Find the solution of

1. r+s—-2t=e"".
2. r—s+2q-z=xy’.
3. r+s-2t—-p-29=0.

2 2
4. Solve a_z + a_z =e “Ccosy.
ox~ oy

Keywords: Complementary function, Irreducible, Particular integral.
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Module 4: Partial Differential Equations

Lesson43

Non-Homogeneous Linear Equation

43.1 Complementary Function and Particular Solution

Consider the non-homogeneous linear equation

f(D,D)z=F(XY) where f (D.D)=] [ D, -mD; -C,;

r=1
for some fixed r, the solution may be written as

dx dy dz X
—=—2 =" y+mx=a, z=he™
1 -m cz

Examplel: (D2 +2DD'+ D"*-2D - 2D')z =sin(x+2y)

(D+D')(D+D'-2)z=sin(x+2y)
Solution corresponding to the factor (D + D" —2)is:

z=e"¢(y-x)
and the complementary function is: ¢ (y —x)+e”¢(y—x).

The Particular Integral is

1
(D2 +2DD'+D?-2D —2D’)

sin(x+2y)
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1 :
=— 2
2(D+ D’)+9sm(x+ y)

—2(D+D')-9
4(D2+2DD’+ D’z)—8l

sin(x+2y)

:%[Zcos(x+2y)—33in(x+ 2y)]

Exercises: Solve the following non-homogeneous equations
1. (D*+DD'+D'-1)z=¢"

2. (D+D'-1)(D+2D'-3)z=4+3x+6y
3.(D'+DD'+D')z=x*+y"

4. (2DD’+ D" —3D')z =3c0s(3x - 2y)

Keywords:Non-Homogeneous,

References

lan Sneddon, (1957). Elements of Partial Differential Equations. McGraw-Hill,

Singapore

Amaranath.T, (2003). An Elementary Course in Partial Differential

Equations.Narosa Publishing House, New Delhi

Suggested Reading

I.P. Stavroulakis, Stephen a tersian, (2003). Partial Differential Equations.
Allied Publishers Pvt. Limited, New Delhi

J. David Logan, (2004). Partial Differential Equations.  Springer(India)
Private Ltd. New Delhi

344 WhatsApp: +91 7900900676 www.AgriMoon.Com



Module 4: Partial Differential Equations

Lesson 44
Method of Separation of Variables

44.1 Introduction

This is the oldest systematic procedure for the solving a class of partial
differential equations. The underlying principle in this method is to transform
the given partial differential equation to a set of ordinary differential equations.
The solution of the p.d.e. is then written as either the product
z(x,¥) = X(x)-Y(y)=0 Or as a sum z(x,y)= X(x)+Y(y) where X(x)and Y(y)are

functions of x and y respectively.

44.2 Method of Separation of Variables

Many practical problems in p.d.e. can be solved by the method of separation of
variables. Usually, the first order p.d.e. can be solved by this method without
the need for Fourier Series which is described in the latter lessons. Let us

illustrate the separation of variables technique by few examples.

Example 1

Solve the first order p.d.e. z, +2z, =0 subject to the condition z(x=0,y)=4e™’.

Solution
We look for a separable solution for z(x,y) in the form z(x,y)=X(x)-Y(y)#0.
Substituting this in the given p.d.e we obtain

X'(x)-Y (y)+2X(x)-Y'(y) =0,

This can be separated into 2 o.d.es, one in x and the other in y as:

X0 __Y'y)
2X0) Y()
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Note that the left hand side of the equality is a function of x alone and it is
equated to a function of y alone which is on the right hand side. This is possible
only when both are equal to the same constant (say) k which is called an
arbitrary separation constant. Thus we have

X _ _Y'(y)
2X(x) Y(y)

This gives two o0.d.es. as:  X'(x)-2kX (x)=0, Y'(y)—kY(y)=0

having solutions X (x)=Ae® and Y(y)=Be™ where A and B are arbitrary

constants. Hence the general solution is z(x,y) = X(x)-Y (y) =Ce*®™,C = AB.

Eliminating the arbitrary constant C using the given condition z(0,y)=4e™

we get C=4 and k =2. Hence the particular solution is z(x, y) = 4",
Let us now demonstrate this method for a non-linear p.d.e.

Example 2

Solve y?p*+x°g° = (xyz)2 subject to the condition u(x,0) = 3exp(XTZJ.

Solution
Note thatp=2z, and q=z, write z(x,y)=X(x)-Y(y) in the given equation. This

will produce separate the two variables as

LX)l . 1fyml
F{X(x)} - yz{v(w} “ )

:l{x'(x)}# and l{ﬂ}= -2,
X [ X(X) y LY(y)

Solving these two 0.d.es X'(x)—AxX (x)=0and Y'(y)-v1-A%yY(y)=0, we find

AL

A2
X (x) = Ae? and Y (y)=Be?

2
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Method of Separation of Variables

Hence the general solutionis z(x,y)= Cexp(% x? +%\/1—/12j,c =AB.

2

The boundary condition u(x,0)=3exp(%j implies C=4 and ﬂ:%.
- The particular solution is z(x, y) =4exp[%x2 +§ sz.

Let us now solve a second order equation using this method.

Example 3
2
Solve 22 2%, ¥ g
OX ox 0oX
Solution

Write  Z(x,y) = X(X)-Y(y).

oz , 622_ " . g_ Y!
&:X (x)-Y(y), y_X (x)-Y(y) and 8y—X(X) Y'(y).

Using these in the given equation, we get X"-2X'-AX =0and Y'+ Y =0

where A is the arbitrary separation constant. Solving these o.d.es., we obtain

X(x)=C, exp[(1+ \/M)XJ+C2 exp[(l—\/LL_/l)xJ and Y (y) =C,exp[-Ay].
Hence the required solution is
Z(x,y)= {04 exp [(l+ M)X} +C, exp[(l—\/lJr_/l) x}}exp[—/ly]

where C,(=C,C,)andC,(=C,C,)are the arbitrary constants.

Exercise: Solve the following using the method of separation of variables.

ou ou .
1. —=4—,given that u(0,y)=8e%.
x Yy g u(o,y)

3
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Method of Separation of Variables

2. 4%, _g subjected to z=3e” —e™ when x=0.
oX oy

2
3. Find a solution of the equation %—2—2—22 =0 subject to the conditions:
X X

z2(x=0,y)=0 And %(X:O, y)=1+e.
X

Keywords: Method of Separation of Variables, Separation of variables.
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Module 4: Partial Differential Equations

Lesson 45
One Dimensional Heat Equation
45.1 Introduction

The one dimensional heat equation is a parabolic partial differential equation.
We wish to estimate the heat transfer in a very thin long (finite or infinite) string
at some location on the string at any given time. Let x be the coordinate along
the thin rod and let t represent the time. Then the 1-dimensional heat

conduction equation is given by

oz ,0°z

o _elL 45.1

ot ¢ ox? ( )

where z(t,x) representing the heat conducting in the material and c? =SL IS the
Yo

diffusivity constant with k being the thermal conductivity, p being the density
and s Dbeing the specific heat. The problem is well posed if this differential
equation is supplemented with an initial condition and two boundary conditions.
Let us attempt to solve this equation with suitable initial and boundary
conditions using some standard mathematical technigues such as the method of
separation of variables and integral transform techniques. By a solution of heat
equation, we mean a physically realistic solution that obeys the *‘natural’

physical process.

45.2 Solution of the Heat Equation — Method of separation of variables
Assume that a solution of (45.1) can be written in the form

z(t,x) = X (X)-T(t).

2
Finding % and % and substituting in (45.1), we get the set of ordinary

differential equation as
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One Dimensional Heat Equation
X"(x)=AX(x)=0 (45.2)
and T'(t)-Ac°T(t) =0 (45.3)

with A as the arbitrary separation constant which takes positive or negative or
zero. Solving equation (44.2) and (44.3) for these three cases of 12 we get the

following three cases for the solution z(t, x).

Case 1: Take 1>0,say A= p°.

In this case, X (x)=ce™+c,e ™ and T(t)=c,e”""

i.e.,z(t,x)=(ce™ +c,e ™ )e” (45.4)
with ¢, =c.c,and c, =c,c, are arbitrary constants.

Case 2: Take 1 <0, say A =—p?

In this case, X (x)=c,cos px+c,sin px, and T(t) =c,e ™"

and z(t, x) =(c, cos px +¢,,sin px)e " (45.5)
where ¢, =c.c,;c, = C,Cc, are arbitrary constants.

Case 3: Take 1=0.

In this case z(t,x) =(c,Xx+C;) (45.6)
as X(x)=(c,x+c,), T(t)=c, where c, =c,c,;c=c,C, are arbitrary constants.

Now, among these three possible solutions, we have to choose the one that is
physically realistic. In general, the solution of heat conduction problem is
exponentially decaying with time ‘'t'. This property is clearly seen only

when1<0.

2
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Thus the suitable solution of the heat equation is z(t, x) = (c, cos px+c, sin px)e™""

The values of c¢,c, and pare found based on the initial and boundary

conditions associated with the equation. Let us see this solution procedure in

some special situations.
Example 44.1

2
solve the heat conduction problem % :% 0<x<Lt>0

XZ

with the initial condition z(t=0,x)=sinnzx and the boundary conditions

z2(t,x=0)=0 and z(t,x=1)=0 for t>0.

Solution: The physically realistic solution of the given equation is
z(x,t) =(c, cos px+c, sin px)e‘pzt

Determining the constants c,, c,and p:

Using the boundary condition atx=0, we have ce ™" =0

This implies ¢, =0 as e ™ =0; ¥t >0.

- Z(x,t) =c,sin px-e "

The other boundary condition at x=1 gives c,-sinp-e*'=0

Now, if we take c,=0 , then z(x,t)=0which should be ruled out as we are

seeking a non-trivial solution for the given problem.

So c,#0, hence sinp=0=p=nz,n=0,1,2,....

s z(t,x) =a sinnzx-e ™"

3
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One Dimensional Heat Equation

At this stage, note that with each n, n=0,1,2,... ,we get z(x,t)=a,sin0zx-e ",
a,sinlzx-e ™, a,sin2zx-e " etc. as the solutions.

Using the principle of superposition (valid only for linear p.d.es.), we can write
the general solution as the infinite sum of these solutions as

z(x,t) =) a,sinnzx- e P,
n=0

Now using the initial condition z(0,x) =sinnzx ,

we see z(t,x)=>_a,sinnzx=sinnzx
n=0

Comparing the coefficients on both sides, we get a, =1 vn.

Hence the solution of the heat equation satisfying the given initial and boundary

conditions is written as z(t,x) = _sin nrx-e P,

n=0
Example 44.2

Let us replace the boundary condition z(t,x=1)=0 by z(t,x=1)=20t iIn the

example (44.1) and look for the solution.
The solution z(t, x) =c,sin px-e"**, when evaluated at x=1, we have
2(t,1) =c,sin p-e " = 20t

This will neither give any information about p nor about c,. Thus the separation

of variables would then be futile. This example clearly indicates the restricted

use of the method of separation of variables.

Let us now consider an example with derivative boundary conditions.

4
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Example 44.3

2
Solve the equation %:%, 0<x<L, subject to the boundary conditions

0z

0z
—(t,x=0)=0, —
6x( ) OX

= (t,x=L) =0 and the initial condition z(t =0,x) =h(x).

Solution: Using the separation of variables method the general solution of the

heat conduction equation can be written as z(t, x) = (Acos px + Bsin px)e-pzt
The boundary condition %(t, 0)=0=B=0

Hence z(t,x) = Acos px-e .

The other condition %:(t,L):O =sinpL=0 (*~A20) = p=n7”; n=0,12,...
X

—n’z?

: nTxX o
Thus we can write z, (t,x)=a, cos%-e .

t

202

© © nzX 72':
and z(t,x)=Zzn(t,x)=Zancos%-e 7\
n=0 n=0

Using the initial condition, we get
ian cosm =h(x)
n=0 L

The unknown coefficients a_ are computed using the half range Fourier Cosine

Series expansion, which gives

1t 2% Nz X
a, :fjh(x)dx and a, :Ij'h(x)cosde.
0 0

5
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Thus for a given function h(x), we find a,’s and the final solution is written as

—n?z?

> nzx —7t
z(t,x):Zancos%-e 8
n=0

Example 44.4

Two ends A and Bof a thin rod of length 10 cm have the temperature at 30° C
and 80° C until steady state is reached. The temperatures of the ends are
changed to 40° C and 60° C respectively. Find the temperature distribution in

the rod at time t.

Solution: In the steady state condition, z is a function of xi.e., z(t,x) = z(x)

oz 0%z 0°1 .. .
and e~ becomes on. The steady state solution is z (x) =ax+b ... (i)
X X

The initial temperature at the ends A and B before the steady state is reached

are z(x=0)=30°C ... (ii)

and z(x=10)=80°C ... (iii).

These conditions imply z(0,x) =30+5x ... (iv)
The boundary conditions are

2(t,0)=40°C ... (V)

and z(t,10) =60°C vt ... (Vi)

I.e., the boundary values are non-zero, we split up the temperature function

z(t, x) into the sum of z (x) and z(t,x) i.e., z(t,x) =z, (X) + z,(t, X) ...... (vii)

where z (x) iIs the steady state solution (involving x only) satisfying the

boundary conditions (v) and (vi);

6
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and z(t,x) IS z(t,x)-z,(x), which is the transient part of the solution which

decays with the increase in time.

Since z(0)=40and z(10)=60 , the steady solution z (x)=ax+b

becomes z,(x) =2x+40

2
The transient solution z(t,x) is obtained by solving @=27 subject to the

2

initial condition z(x=0)=30+5x and the boundary conditions z(t,0)=40°C

and z(t,10)=60°C

szt x) = 40+2x +n§1: a Ccos px +b, sin px)e‘pzt .

Now z(t,0)=40=40+ ) a, cos px-e Pt =a =0vn.
Hence z(t,x) :(40+2x)+§bnsin px-e P,

The other boundary condition is z(t,10) =60

:>60:4O+20+ansin10p-e‘pzt

n=1

Since b, #0, sinl0p=0= p::—g

nzt

- Z(t,X) = (40+2x) + Zb sm— e 10

Now the unknown b are obtained by making use of the initial condition

2(0,x) =30 +5x.

=30+5x = 40+2x+2b sin nligx

n=1

7
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or Zb smm_3x 10

Considering the half-range Fourier sine series expansion for(3x-10), we

determine
10
b, = 2 j(3x 10)S|nmd =0 osnr+ 2 cosnr -2 :—E[ZCOSWT+1]
104 10 Nz nz nxz Nz
Hence the desired solution is
2(t,x) = (40+2x)—§2[2008 nﬂJrl]sin WX e [:gjz
T = n 10 '
Exercises:
o7 o a z
1. Solve the heat conduction problem — - pv , O<x<lI;
X X

Subject to the boundary and initial conditions
0z 0z / b
&(t,O)—O, &(t,l)—o, z(0,x) = x.

2. The temperatures at one end of a bar 10cm long with insulated sides is
kept at 0°C and that the other end is kept at 100 °C until steady state
condition attained. The two end are then suddenly insulated so that the
temperature gradient is zero at each end thereafter. Find the temperature
distribution in the bar.

3. Solve g=o¢2 o

: ~ subject to the conditions:
OX ox’

(i) zisdecayingast—owoin 0<x<lI;

(ii) %(w):oz%(t,l).

8
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Module 4: Partial Differential Equations

Lesson 46
One Dimensional Wave Equation
46.1 Introduction

In general wave motion occurs in vibrating strings, vibrating membranes etc.
Waves travelling through a solid media, acoustic waves, water waves, shock
waves etc are normally observed in nature. The standard and the simplest
example is the vibration of a stretched flexible string which is modelled as the
one dimensional wave equation. It is an example for the hyperbolic equation.

2 2
Mathematically, it is represented as %zcz% where z(t,x) denoting the
X

deflection of the string at any position and at any point of time. The constant
c= \/% denotes the wave speed with P denoting the tension in the string and m
Is the mass per unit length of the string.

The solution of the wave equation should describe the wave motion and this
involves periodic sine and cosine terms. A particular solution of this equation
can be obtained by specifying two initial conditions and two boundary
conditions. Let us now see the solution of this one dimensional wave equation
using the separation of variables technique using various types of boundary
conditions. Note that we pose either initial displacement or initial velocity or
both for the initial conditions to make the mathematical formulation as a well

posed problem.

46.2 The Method of Separation of Variables to the 1-D Wave Equation: A
finite string of length L that is fixed at both ends and is released from rest with
an initial displacement at some position. The mathematical representation of

this problem given by
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One Dimensional Wave Equation

0’z ,0%z
Ear'a (46.1)
satisfying the boundary conditions (i) z(t,x=0)=0;and (ii)) z(t,x=L)=0

and the initial conditions (iii) u(t=0,x)= f(x) (Initial displacement),
(iv) Z_l:(t =0,x)=0 (string is released from rest, the initial velocity is zero).

We now write the solution z(t,x) = X (x)-T (t) (46.2)

In the equation (1) it becomes

X(0)-T"(0) =2X"(0-T@R) or —~—=2X"_

== (46.3)

where Ais the arbitrary separation parameter. This will result in two ordinary

differential equationsas T"-Ac’T =0 (46.4)
and X"-AX =0 (46.5)
We consider the three cases for 1>0, 1<0,41=0.

Case 1. Take 2>0 say A= p’, and solving equations (46.4) and (46.5)

We get the solution as z(t,x) = (ce™ +c,e ™) (c,e™ +c,e ™) (46.6)
Case 2: When 2<0 say 4=-p” the solution becomes

z(t, x) = (c5 cOs px + ¢, Sin px)(c, coscpt + ¢, sincpt) (46.7)
Case 3: When 2=0; we get z(t,x) =(cyx+cy)(Cc,t+Cp,) (46.8)

Among these three possible solutions for the wave equation, the physically
realistic solutions that represents the periodic functions of x and t is when 1 <0

I.e., z(t,x)=(c,cos px+c,sin px)(c,coscpt+c,sincpt).
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One Dimensional Wave Equation

The arbitrary constants c,,c,,c,,c,and p are determined as shown below:
The first boundary condition z(t,0)=0 = c,(c,coscpt+c,sincpt)=0
For this to be true for all t >0, weshould have ¢, =0 .

Hence z(t, x) =c, sin px(c, coscpt +c, sincpt)
One of the initial condition %(o, x) =0 implies

c, sin px(—¢,-cpcoscpt+c, -cpsincpt) =0.

We have two possibilities, one is ¢, =0= z(t,x)=0. This is ruled out in order to

have a non-trivial solution. The other possibility is ¢, =0(note c=0;p=0)

- 2(t,x) =c,c sincptcoscpt . At this stage we use the other boundary condition

which is given as z(t,L) =0 = c,c,sin pLcoscpt =0 V't.

Asc, #0;c,#0, we have sinpL=0 = p:nTﬂ N RGP

Thus z(t, x) = AsinnLLXcoscpt where A=c,c,. This constant is determined using the
other initial condition as: z(0,x) = f(x) = ASin”LLX: f(x) where c,c,=A.

Choose f(x):35in”—LX:> A=3,n=1, hence the solution is z(t,x)zssin”TXcos”Tt.

Example 2

A tight string, 2m long with ¢ = 30m/s is initially at rest but is given an initial
velocity 300sin4zx from its equilibrium position. Determine the displacement at

the position x :%m of the string.
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Solution:

2 2
Given %zgoo% Subject toz(t,0)=0=z(t,2), and z(0,x)=0 and

%(o, x) =300sin4zx.  The solution may be written as

z(t,x) = (Acos30pt + Bsin30pt)-Dsin px.

Now, z(t,0)=0=c=0

- z(t,x) = (Acos30pt + Bsin30pt) - Dsin px
Also zero initial displacement= A=0

Hence z(t,x) =B-Dsin px-sin30pt .

As Q(O,x):3OOsin47zx:30p-B-D-sin px = p=4r and B-D= 300 :i
ot 30-47 27

szt x) = isin 1207t -sin4zx.
2

We now determine the maximum displacement at x:% occurs when

2.5

sin120zt =1 and then z, =—=
T

Note that the condition z(t,2)=0 is not used in determining the arbitrary
constants but it is satisfied automatically.
Example 3

A string of length L which is fixed at both ends is initially in equilibrium

position. It is set in vibrating mode by given each point a velocity

%{3sinﬁ—:(—sin 3LLX} . Find the displacement at any point of the string.
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Solution:

2 2
The equation of the vibrating sting is 2?: cz%.

The boundary conditions are z(t,0)=0,z(t,L)=0. Also given the initial
TX 37X

conditions are z(0,x)=0 and %(o,x)—Z[SSmT—smT] As seen in the

earlier examples, here also the solution of the vibrating string after applying the

boundary conditions reduces to

. NzX cnrt . cnrt
z(t,x):czsmT cscosT+c4smT :

Now the initial condition z(0,x)=0 = czc3sinnLLX: 0Vvx =c,c,=0=c,=0 (for
non-trivial solution).

- 2(t,x) =bh, smnil_xsm&ft where b, =c,c, .

As the wave equation is linear, by the principle of superimposition, we can

write the general solution as z(t,x)= > b, sanLXsm&L”t

Applying the other initial condition we have

—(O X)=—> {BSlnT—smsﬂx} i bsm LX'

n=1

Comparing the coefficients of sinnLLX on both sides we see

3Lv -Lv,
Rl e Tl L RL T

Hence the solution of the given problems is
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2(t) = 1;\c/jz

. xX . cxt . 3xzx . 3cxt
9sin—sin —sin sin .
L L L L

46.3 The D’Alembert Solution of the Wave Equation:

: . 0%z ,01
Consider the wave equation Fal v (46.9)
and introduce the new independent variables &= x—at;; = x+at (46.10)

These are the two characteristics of the hyperbolic equation. The equatin (46.9)
0’1
o&on

Is transformed to its canonical form as

0 (46.11)

2 2 2 2
This is because Q:erg;@:—angaz, 0 ﬁ _0 22+2 o2 +822
oXx o0& oOn ot ot oOn ou” o0& okon on

0°z _ g 0’z og? 0°z a2 0°z

and —; > —
ot o0& okn  on

Substituting these in equation (4.9) results in equation (46.11). Now integrating

(46.11) with respect to & gives aa—z:h(n), where h(r) is a arbitrary function
n

of . Integrating again w.r.t », we get z(n,§)=jh(;7)dn+g(§) which can be
also be written as z(n, &)= f(n7)+9(&) with g(&)is an arbitrary function of &

alone and the integral is a function of 7 alone and is written as f () .

Thus the solution is written as z(t,x) = f (x+at) + g(x —at) (46.12)

This is the called the D” Alembert’s solution of the wave equation.

0z

Case 1: Let the initial conditions be z(0,x) =¢(x) and E(O’ x)=0.

Now differentiating (4) with respect to “t” and putting t=0,
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One Dimensional Wave Equation

We obtain  cf (x+ct)|_ —cg'(x—ct)|_ =0, = f'(x)=g'(x) = f(x)=g(x)+k, where

kis a constant. Also, z(x,0)=¢(x)= f(X)+g(x) =29(X)+k =¢(x),

= g(x) :%[qﬁ(x)—k]. Hence f(x)=g(x)+k =%[¢(x)—k], or f (x) =%[¢(x)+k].
Hence the general solution (46.12) takes the form

z(t,x):%[(¢(x)+ct)+(¢(x)—ct)]. (46.13)
Case 2: Suppose now that z(0,x)=0 and %(0, X) = 0(X)
From equation (4), we have %(O, x) = af '(x) —ag'(x) = 9(X)

= f(x)-g(x) :éje(s)dw D

where s is a dummy variable of integration and D is an arbitrary constant.
Also, z(0,x)=0= f(x)+g(x)=0

— f(x)=-g(x) OF f(0)-g(0)=C=2f(0)=-2g(0).
: 1% 18

This = f(x):—je(s)ds+ f(0) and g(x)z——je(s)ds+g(0),
2a, 2a,

and finally, the solution of the wave equation becomes

x+at

z(t,x):% XTté'(s)ds—Xft@(s)ds} =2—1a .|' 6(s)ds .

0 0 x—at

Thus from these two cases, it is evident that a particular solution is obtained for

a given g(x)and a(x) respectively.
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Example 4:

In case, 1 take #(x)=k(sinx—sin2x) and obtain a particular solution of the wave

equation.

Solution:

We have z(x,t) :%[f(x+ct)+ f(x—ct)]

:%[k{Sin(X-i-Ct)—Sin 2(x+ct)}+k {sin(x—ct)—sin 2(x-ct)}]

= k(sin xcosct —sin 2x cos 2ct) .

Keywords: Separation of Variables, Separation of variables, separation of

variables, Wave Equation, D’ Alembert’s solution

Exercises:

1. Using D’Alembert Method, find the deflection of a vibrating string of unit

length having fixed ends with initial velocity zero and initial deflection:
(i) f)=a(x—x?) (i) f(x) :%(1+ cos 2kx)

2. An infinite string is given the initial velocity

0,x<-1
10(x+1),-1<x<0
10(1-x),0<x<1

0,1<x

If the string has zero initial displacement find the solution of the wave equation.
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0°1 0%z : -
3. Solve chza_ 0<x<L subject to the conditions
X

21

200,1) = 2(L,1) = 0; 2(0, x) =sin>2%- % (0, x) = 0.
L ox
2 2
4. Solve a—f=a—§ , 0<x<L , subject to
ot°  ox

2(0,t) =0; z(L,t) =0; z(x,0) = ux(L —x); %(X,O) =0.

5. The points of trisection of a sting are pulled aside through the same distance
on opposite sides of the position of equilibrium and the string is released from

rest. Derive an expression for the displacement of the string at subsequent time.

0’z 0’z

6.Solve — === 0<x<L;z(0,t)=z(L,t) =0;
o2 ox? 0t =2(E1)
x,ngs1 oz

z(x,0) = 3 2 ;E(X,O):O.
1-x,—<x<l1

2
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Module 4: Partial Differential Equations

Lesson 47

Laplace Equation in 2-Dimensions

47.1 Introduction

. : i L oz 0’1 9’z
Heat conduction in a two dimensional region is given by Pl WJFW
where z(t,x,y) denoting the temperature in the region. This is clearly a parabolic
equation. When we consider steady state conditions, z=z(x,y) 1.e, z IS

2 2
independent of time and the equation reduces to %Jr%:o which will be

elliptic in nature. Unlike the hyperbolic and parabolic equations where initial
conditions are also specified, in case of elliptic equation only boundary
conditions are specified, thus making these problems as pure boundary value
problems. Let @ be the interior of a simple closed differentiable boundary curve
I and f be a continuous function defined on the boundary . The problem of
finding the solution of the above Laplace equation in Q such that it coincides

with the function f on the boundary T is called the Dirichlet Problem.

Finding a function z(x,y) that satisfies the Laplace equation in @ and satisfies

g_z: f(s) on I where aﬂ representing the normal derivative along the outward
n n

normal direction to the surface z(x,y) that obeys j f(s)ds=0 is known as the
r

Neumann Problem. The third boundary value problem , known as the Robin

Problem is one in which the solution of the Laplace equation is obtained in Q

that satisfies the condition §—Z+ g(s)z(s)=0 on I where g(s)>0and g(s)=0. We
n

now describe the method of Separation of variables technique for the Laplace

equation.
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We have the Laplace equation given by %JF%:o (47.1)
Let z(x,y)=X(x) Y(y) (47.2)
Finding % and % and substituting these in (1) and separating them into

two ordinary differential equations, we get

X"-AX=0 and Y"+AY =0. where A is the arbitrary separation parameter.

Solving these equations, we get three possible solutions for 1= p* 1=-p® and

A1 =0. These forms are:

a) z(x,y) = (clepX +c2e"’x)(c3 cos py +c,sinpy); A>0
b) z(x, y) = (c; cos px+ ¢, sin px)(c7epy +cze*py) ; A<0
and C) z(x,y) =(CeX+Cy )(C, Y +C,, );4=0.

Of these, we take that solution which is consistent with the given boundary

conditions.
47.2 Dirichlet Problem in a Rectangular Region:
Example 1:

o2, o _

Solve the Laplace equation W+8y2 =0 in the region with the boundary

conditions as shown in the figure

y
0°C
0°c Q 1 50sin zy°C
0°C
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Laplace equation in 2-Dimensions

Solution:
XH_ Yﬂ_ 2
x vy P

Note: Here we considered A= p®to allow sinusoidal variation withy, to be

consistent with the boundary conditions.

Then the general solution is

z(x, y) = (Ae™ +Be ™ )(Ccos By + Dsin By).

The boundary conditions are expressed as

2(x=0,y)=0°C;z(x =2, y) =50sin 7y°C
z(x,y=0)=0°C;z(x,y=1)=0°C.

Now z(0,y)=0vy= A+B=0= A=-B.
Hence z(x,0)=0vx= D=0.
z(x,)=0vx=sinf=0=pf=r

- 2(x,y) = AC(e™ —e ™ )sinzy

The non-homogeneous boundary condition at x=2

= AC(e*" —e*")sin zy =50sin zy

= AC = 0 0.0934;(x,Y)

e

Thus the temperature at

2(x,y) =0.0934(e™ —e ™ )sin zy .

3

any

point(x, y)Iis
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Laplace equation in 2-Dimensions

47.3 Temperature Distribution is Studied in an Infinitely Long Plate.
Example 2:

An infinitely long plane uniform plate is bounded by two parallel edges and at
an end at right angles to them as shown in the adjacent figure. Find the

temperature distribution at any point of the plate in the steady state.

u°c
0°C 0°C

Solution:

The steady state temperature distribution in this infinitely long plate is obtained

by solving o 8y2_0.

The boundary conditions are z(x=0,y)=0°C, z(x=x,y)=0°CVvy>0,
2(x,y=0)=u,’C for 0<x<z, z(x,y—>o)—0 for 0<x<r.

Among the three possibilities for solution i.e., solution forms (a), (b), (c), we
chose a solution that is consistent with the given boundary conditions. He
solution given in equation (a) cannot satisfy the boundary condition z(0, y) = 0vy

The solution given in equation (c) cannot satisfy the condition

IN z(x,y >0) >0 IN 0<x<7x .

4
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Laplace equation in 2-Dimensions

Thus we have the solution as z(x, y) =(Acos px+ Bsin px)(Cepy + De’py) :
Now z(0,y)=A(Ce” +De ™)=0 = A=0

-.2(x,y) = Bsin px(Ce™ + De ™).

2(7,y)=0vy = Bsin pz(Ce™+De™)=0 = p=n, an integer (- B=0).

2. Z(x,y)=Bsin nx(Cepy + De‘py) :

AS z(x,y >0)>0=c=0 ..z(x,y)=BDsinnxe™.

and write the general form of the solution as

Taking BD =b,

z(x,y) =Y b sinnxe™ .

n=1

Using the non-homogeneous boundary condition u(x,0)=u, = ibn sin nx
n=1

The unknown coefficients are found using the half range Fourier sine series

expansion in (0,z) as

4u,
z o n=2m-1 . L
bn=£juosmnxdx=£uo[1—(—1)“]: oMY mis a positive integer.
¢ d 0,n=2m

Thus z(x,y) :ﬂ[ey sin x+%e3y sin 3x+..} .
T

Example 3

0’z 0’1 :
Solve FJFW:O subject to 2(0,y) =z(a,y) = z(x,b) =0 and
X

z(x,0)=z(a-x),0<x<a.

5
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Solution
Physically realistic solution here is
2(X, y) = (¢, cos px+c,sin px)(c,e™ +c,e ™).

2(0,y)=0=r¢, =0,
2(a,y)=0=sinpa=0= p=— % nisan integer
a
. nrx[ = S
soZ(X, y)=czsmT ce ® +ce @

Take c,c,=A, c,c,=B.

—nzy
nz -nz —Bexp
nry y a
z(x,p)=0=Ae? +Be @ =0 = A=
nry
exp| —=
a

—nzb

all B2 —nzy
S (X y) = smm Bfﬂb ed +Be.?
a eT
B n7Z'X|: nz(y-b) -nz(y b):|
=——SIN—— € a —-e @
ga

So the general solution is now written as

a nzh

= n -b -
z(x,y) = b, sin nszinh (Y ), where b, = 2B
n=1 e a

Now using the non-homogeneous condition

2(x,0) = x(a—Xx) :ansinhn—ﬂbsmm —ZB sin 77X (Say)
a

n=1

6
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the coefficient B, are found as B, :g.[x(a—x)sinmdx
a a

0

4a’ 8 om-1
=——(1-cosnz) =< n37%" , M is a positive integer.
nrz
0,n=2m
2(x,y) = B2’ Sinw sin X
y __3 —
n-135... n% sinh n”(z y) a

2 o0
or z(x,y) = 8a3

7 n-0(2n+1)°*sinh

] 2n+1) 7z (b -
S'“h(m);[( . _(2n+1) zx
@+hzb-y) " a
a

Keywords: Dirichlet Problem, Neumann Problem, Robin Problem

Exercises 1

o2, o

1. Solve _2+8y2_0 in O<x<m0<y<z ~ With 'the  ‘conditions

OX

2(0,y) = 2(r,y) = 2(x,7) = 0; z(x,0) = sin® x

2. A rectangular plate has sides a and b. taking the side of length a as OX
and that of length bas OYand other sides to bex=aandy=b, the sides

x=0,x=a,y=b are insulated and the edge y =0is kept at temperature u, cos%x :

Find the temperature z(x,y)in the steady state.
2 2
3. Solve 92+ 22 _gsubject to
ox® oy

7
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(i) z(0,y)=0;z(x,0=0); z(1, y) =0;z(x,1) =100sin zx.

(if) z(0,y) =0;2(x,0=0); z(1, y) =100sin zy;z(x,1) = 0.
oz B g s B
(iii) z(o, y):O,g(x,O)—O, ™ (L y)=0;2(x,1) =100.

(iv) z(0,y) =100; z(x,0) =100; z(1, y) = 200; z(x,1) =100.
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Module 4: Partial Differential Equations

Lesson 48

Application of Laplace and Fourier Transforms to Boundary Value

Problems in p.d.es

48.1 Introduction

One dimensional heat and wave equations in semi-infinite or infinite region can
be solved using the Laplace transform or Fourier transform techniques.
Application of these transforms on these one dimensional equations reduce the
p.d.e to an ordinary differential equation. The solution of this o.d.e. involves the
parameter that is associated with the transformation and on applying the inverse

transformation, this solution gives the solution of the given p.d.e.

48.2 Selection of Transform Technique

If for a problem, z(t,x=0) is given, then we make use infinite sine transform to
2

remove 2— form the differential equation. In case if %(t,x=0) (Flux

X2

2
condition) is given, then we employ infinite cosine transform to remove 2— If
X
in a problem z(t,0) and z(t, L) (Dirichlet boundary condition) are given, then we

2
use finite sine transform to remove% in the p.d.e similarly if Z—Z(t,O) and
X

XZ

2—Z(t,L)(Neumann boundary condition.) are given, then use finite cosine
X

2

0z . . .
transform to remove = Let us consider some examples to explain this
X

technique. Let us now see the transform of the partial derivatives.

Example 1:

find the Laplace transform L of (|) (||) (|||) (|v)
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Application of Laplace and Fourier transforms to boundary value problems in p.d.es

Solution:

0 L{@} e Pt

o] 7 ot

p
= lim e’“gdt

p—x

p
=lim {e‘“z(t, x)|p - sfe‘“z(t, x)dt}
p—o®© 0 5

=sL[z(t,x)]-z(0,x)

(i1) Show that I{Zi } s?L[z(t,x)]-s[z(0, x)]—%(o, x) is left as an exercise.

(III)L } Ie‘ x - zdx_—L[z(t X)]
. [e%z] d? : :
(iv)L (9X2:| — L[z(t,x)] is left as an exercise.
Example 2:

Find (i) [ } (i) IF[ }and (iii) F, BX } where F is the Fourier transform,

F, is the sine and F, is the cosine Fourier transform.

Solution:

. o’z | T 02

ISX

J' Ise—lsx

—ise™z| —s? J e ™z .dx

—0 —0

—isx g i
OX

=€

=-s"F[z(t,x)] provided z and 2—Ztend to zero as x — +w.
X
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Application of Laplace and Fourier transforms to boundary value problems in p.d.es

2
- F, {a—f} - s’F[ z(t,x)] provided both zand % 50 as x> +m.
OX OX

2 2
0

2 0 A2
(ii) By definition, 5| 22 | = [ 22 sin sxdx
%)

0

. 0z ¢ 0z
=Sin sx— —J'scos X—dx
oXly % OX

o0

e/ w
=sin SX&O —scosx-z|; —s°F,[ z(t,x) |

=s-z(t,x)|_ —s°F.[z(t,x)] provided z—>0,%—>0as X —> 0.

2 0 A2
(iii) By definition, F, [%} = _[Ecos sxdx

2
0
Integrating by parts, twice, we obtain
oz

= —s’F,[ z(t,x)] provided z—0as x— .

x=0

Note: these results indicate that (i) if z(t,x)is specified at x=0vt, then Fourier
sine transform is useful and (ii) if 2—Zat x=0vtis specified , then the Fourier
X

cosine is useful in semi-infinite region.

48.3 Heat Conduction — This Infinite Rod - Use of Fourier Transform
Method

Example 3:

2
Solve 2 _x 22

. = —o < Xx<oo;t>0; subject to z(x,0)= f(x),-o<x<oo andz(x,t)Is
X X

bounded asx — +owo

Solution:

let z(t,s)indicate F[z(t,x)]i.e, F[z(t,x)]=7(t,s)= t,x)e"dx

R
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Application of Laplace and Fourier transforms to boundary value problems in p.d.es

In the above we used the other form of Fourier transformation of a function.

2
Apply Fourier transform to the equation %: k%

we get %7(’[, s)+ks’Z(t,s)=0

Its solution is z(t,s)= A(s)e™™" where A an arbitrary function to be determined

from the initial condition. Applying transform to the initial condition,

F[z(0,x)] :% T 2(0, X)e™dx

or 7(0,s) = f(x)e™dx = F(s)(say)

Nrd)

= A(s) = F(9).

Thus the solution is  Z(t,s) = F(s)e™" '

Taking inverse Fourier transform toz(t,s), we get

F[z(t,s)]=z(t x) = F(s)e * e ™ds

L}
Nl

which is the solution of the given equation.
48.4 Heat Conduction Problem - Fourier Sine Transform

Example 4:

2
Solve g=a—fsubject to z(t,0)0=0for t>0,
ot oX

10<x<

: and z(t, x) is bounded.
0,x>1

z(0,x) :{
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Application of Laplace and Fourier transforms to boundary value problems in p.d.es

Solution:

2
Let z(t,s) denote F,[z(t,s)] , apply Fourier sine transform to @=%

t 0z . 0%z . 0 _ .
we ge !asm sxdx :lysm sxdx, Ez(t,s):—s Z(t,s)+sz(t,0)

1
From the initial condition we have F,[z(x,0)] =_fl~sin ox. ds — L~ COSS
S
0

1-coss

or z(s,0)=A=

= Z(s,t) = (1_ °° j e

Taking inverse Fourier sine transform, we get

ZTl—coss

F ' [z(x,0)]=z(x,t) == e*sinsx-ds is the solution.
Ty S

Note: The integral in general cannot be evaluated using simple integration rules
with real variables, these involve complex integration techniques, so these
integrals are left as they are.

48.5 Heat Conduction Equation - Fourier Cosine Transform Method:

Example 3:

Using cosine Fourier transform technique

2
%:k% 0<x<o,t>0 Subjectto z(0,x)=0forx>0 %(t,0)=—a (constant)
X

z(t, x) is bounded .
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Solution:
Let z(s,t)denote F,[z(t, x)]

2
Applying Fourier cosine transform to the equation% = k%
X

we getmzk[—s%—w} or Z.iks’z-ka
ot ot ot

ks?t
which has the solution z(t,s) = (ka T(Sz +cJekszt

where c is the arbitrary constant.

Taking transform to the initial condition, we get z(0,s) =0

:>7(0,s):§+c:02>(::;—f1

2

S Z(t,s) = si(l— e‘ksz‘) :

Taking inverse Fourier cosine transform , we get

z(t,X) = %Tfsiz(l—e‘ks2t )cos sx-ds
0

Keywords: Fourier Cosine Transform Method, Fourier Sine Transform,

Laplace transform, Fourier transform, boundary value problem

Exercises 1
2
1: Solve@=ka—f, 0<x<oo,t>0 Subjectto
ot OX
(i) z(t,0)=z,,t >0 (i1) z(0,x)=0;0<x <o and (iii) z(t,x)is bounded.

2
2. Solve % = % ; 0<x<oo;t>0 subjected to the boundary conditions
X

(i)%(t,O):oforbO (ii) z(t,x)is bounded for x>0,t >0
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Application of Laplace and Fourier transforms to boundary value problems in p.d.es

N e ,0<x<1
and the initial condition (iii) z(0, x)z{x X
0,x>1
oz ,0°1 . _ . .
3. Solve E:zy If z(t,00=0;z(0,x)=e™ and z(t,x)is bounded wherex>0and
t>0.
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Module 4: Partial Differential Equations

Lesson 49

Laplace And Fourier Transform Techniques To Wave Equation And

Laplace Equation

49.1 Introduction

In this lesson we see the utility o Fourier transform technique to the hyperbolic

(wave) and elliptic (Laplace) equations.

Example 1:
Solve the problem of vibrations of an infinite string governed by

2 2
%—cz % =0; —o<x<w,t >0 subjected to the initial conditions
X

2(0,%)= ()
SO00=000
(ii) - *
and boundary conditions at far field given by z(t,x),%(t,x) —0as x>+

Solution: Taking Fourier transform to the governing equation and the initial

conditions (i),(ii) we get

O°T(6,S) . poer N o oz ~
e +¢°s°Z(t,s)=0 Z(0,s)=F(s), at(O,s.)_G(s)

where F[z(t,x)]=Z(t,s)and F[f(x)]=F(s) and F[g(x)]zG(s)'

Equation (iii) = z(t,s) = Ae™ +Be™" .

From all these equations we get A= ;{F(s) G(S)} andB = Z{F(s)—G(S)}

ICS ICS
L 2(s) = [F(s) Géz)}

[F(S) G(S)} —ISCt .

2 ICS
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Now taking the inverse Fourier transform z(t,x) =F*[zZ(t,s)]= % j e ¥z (t,s)ds
T —0

to this solution, we get

R *lS X— C 1 ¢ *lS X+C *lS X—Cl ) 1 ¢ —is(x+c G(S)
UF (s)ds + VFE (s)ds + —— 1) 23 gs — g istere) 223°/ g
{ J; ®) \/272':[0 ®) N2z :[C C\/272’j[0 is

x—ct x+ct

=_[f (x—ct)+ f (x+ct) ]—— j g(é)d§+— J 9(£)ds

x+ct

=—[ (x—ct)+ f (x+ct) ]+— J g(&)ds .

x ct

This is the D’Alembert’s solution of the wave equation.

Exercise: 1.

A tightly stretched flexible string has its ends fixed atx=0andx=L. At
timet=0,the string is given a shape defined by f(x)=ux(1-x), where pis a
constant and then released. Find the displacement of any point x of the string at

any timet > 0.

Example 2

An infinitely long string having one end at x=0is initially at rest along the x-

axis. The end x=0 is given a transverse displacement f(x) when t>0. Find the

displacement of any point of the string at any time.

Solution: Let z(t,x) denote the displacement in the string at any point x at any

time t the wave equation is given by
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2 2
%:cz%, O<x<ojt>0  subject to the initial conditions  z(0,x)=0;
X

%(o,x)=o andz(t,0)= f(t) and z(t,x) is bounded.

Now taking the Laplace transform on both sides of the governing equation, we

2 2 2
get L[%}zﬂ[%} :>sﬁ—sz(0,x)—%(0,x)=c2%WhereL[z(t,x)]:Z(s,x)

. . . 07 %7 (sY.
Using the initial conditions, we get = s’z=¢’"— =—=|>| 12
ox? ox* ¢

and its solution is z(s,x) = Aec +Be ¢ where Aand B are arbitrary constants.
We have z(t,0) = f (t) L[z(t,0)]=2(s,0)= L[ f ()] = f(s) say at x=0

z(t,x)is bounded as t >« = A=0in equation.

SX

- 2(s,x)=Be ©

Now 7(s,0)B = f(s)

SX

-. The solution in terms of the transformed variables 's* is 7(s,x) = f(s)e ©

SX

On finding the inverse Laplace transform to f(s)e ¢, we obtain the required
solution as z(t, x) = f (t—%).
Note: Use the complex inverse formula for inversion as

z(t, X) = %TO f (s)e[t_gsds

a—io

385 WhatsApp: +91 7900900676 www.AgriMoon.Com



Laplace And Fourier Transform Techniques To Wave Equation And Laplace Equation

49.2 Solution of the Laplace Equation in the Upper Half Plane Dirichlet

Problem
Example 3:
2 2
Solve a—xf a—§=O—oo<x<oo;y>0 )

subject to the boundary conditions
2(0,X) = f(X); —0 <X <0 ..... (i)

z(x,y — o) is bounded ;- < x<w ..... {D)

both zand %aoasHioo o (iV)
X

Solution:

Let z(s,y)indicate the Fourier transform of z(x,y). Observe :zis defined for

o< x<oo SO the Fourier transform technique can be used. Finding the Fourier

72, 0 _

transform of —+—-=0,
ox~ oy

we get %—sﬁ(s,y):o e (V)

Its solution is given by z(s,y) = A(s)e” +B(s)e™ .... (Vi)
Given that z(x,y)is bounded asy — «

= Z(s,y)must also be asy — «

Now this means A(s)=0 for s>0 and
B(s)=0fors<0

- 2(s,y)=7(s,0)e
wherez(s,0)=F[z(x,0)]=F[ f (x)]=F(s)

= z2(s,y) = F(s)e ™ .... (vii)
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We noteF(e‘sy):\/z( Y Zj
7\ y?+X

Exercise 2

Taking inverse Fourier transform on both sides of equation (vii) and applying

the conclusion theorem, we getz(x,y)=f(x)\/z£ 2 (y g)ZJ
Ty +(X—

ol -2

Thus z(x,y)==+ y j%dg Is the solution of the Laplace equation in the

upper half plane.

Exercise: 1. Take f(x)=1 and obtainz(x, y).

2. Take f(x)=xand obtainz(x,y).

49.3 Solution of Laplace Equation in the Upper Half Plane Neumann
Problem

Example 4:

Solve the Laplace equation with derivative boundary condition given by
62 62
o 8y

az(x,0)

—=0,-0<x<o0;y>0 Subject to =g(X) —0< X<

with the condition that zis bounded as y -« and zandg—Z vanish as x — o
X

and j g(x)dx =0which is the necessary condition for the existence of solution.
Solution: Use the transformation v(x, y) _a(xy)

OX

Then z(x,y) ='|y‘v(x,17)d77
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2 2 2 2
ox* oy oyl ox? ay

v(x,0) =29 _ g9 (given)
2
Thus we have —- oy 8—2, —00 < X < O
ox* oy

subject to v(x,0)=g(x); —0o< X<
v is bounded as y — «, both v and ?vanish as x — +oo
X

Thus we have the Dirichlet problem in terms of the new dependent

functionv(x, y). Its solution is given by

Y7 9

v(x,y)= 7d¢g
7y H(E-x)
9
Z(x,y)=— —=——déd
= IU([Oy () 5] n

ZZLT g(¢)log [%}dg is the required solution.
A% —X) +a

References

lan Sneddon, (1957). Elements of Partial Differential Equations. McGraw-Hill,

Singapore

Amaranath. T, (2003). An Elementary Course in Partial Differential

Equations.Narosa Publishing House, New Delhi

Suggested Reading

I.P. Stavroulakis, Stephen a tersian, (2003). Partial Differential Equations.
Allied Publishers Pvt. Limited, New Delhi

388 WhatsApp: +91 7900900676 www.AgriMoon.Com



Laplace And Fourier Transform Techniques To Wave Equation And Laplace Equation

J. David Logan, (2004). Partial Differential Equations.  Springer(India)
Private Ltd. New Delhi

389 WhatsApp: +91 7900900676 www.AgriMoon.Com



*kkhkkkk @ *kkhkkkk

This Book Download f:rom e~course of ]CAR

Visit for Other Agriculture books, News, Recruitment,
Information, and Events at

WWW. AGRIMOON.COM

Give Feedback & Suggestion at info@agrimoon.com

Send a Massage for daily Update of Agriculture on WhatsApp

+91-7900 900 6/6

DISCLAIMER:

The information on this website does not warrant or assume any legal liability or
responsibility for the accuracy, completeness or usefulness of the courseware contents.

The contents are provided free for noncommercial purpose such as teaching, training,

research, extension and self learning.

Connect With ‘Us:

2000

000

GETITON ‘
| P Google Play

AgriMoon App
App that helps the students to gain the Knowledge
about Agriculture, Books, News, Jobs, Interviews of
Toppers & achieved peoples, Events (Seminar,
Workshop), Company & College Detail and Exam
notification.

GET ITON '
| P® Google Play |

AgriVarsha App
App that helps the students to All Agricultural
Competitive Exams IBPS-AFO, FCl, ICAR-JRF,
SRF, NET, NSC, State Agricultural exams are
available here.



http://www.agrimoon.com/
mailto:info@agrimoon.com
mailto:info@agrimoon.com
https://www.facebook.com/AgriMoon/
https://www.instagram.com/agrimoon_com/
https://www.linkedin.com/company/agrimoon-com
https://t.me/AgriMoonCom
https://www.twitter/AgriMoonCom
https://wa.link/kpmjo7
https://www.youtube.com/channel/UCQhqyW-cU7VUSfbPL-sdmDA
https://agrimoon.com/download/
https://agrimoon.com/download/

