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Module 1: Matrices and Linear Algebra

Lesson 1

Linear Equations and Matrices

1.1 Introduction

The problem of solving system of linear equations arises in almost all areas of
science and engineering. This is an important part of linear algebra and lies at the

heart of it.

A linear equation on n variables x; Xy, . . ., X, IS an equation of the form a;x; + a)x,

+...+aX, =b,

where a;, ay, . . ., a, and b are real or complex numbers, usually known in advance.
A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables. The following is an example of a

system of linear equations:

X1 = 2Xo + 4X3 =10
2, - 3X3 = -9 (1.1)

It is convenient to represent large systems of linear equations in terms of
rectangular arrays called matrices. An m x n matrix is a rectangular array of
elements with m number of rows and n number of columns. It is denoted by (aj)m «
n Wherei=1,23, ..., mandj=12,...,n,anda; are real or complex
numbers (or elements of a field) called entries of the matrix. Almost all the

concepts in linear algebra are expressed in terms of matrices.
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Linear Equations and Matrices

A system of m linear equations on n variables Xy, X», . . . , X, can be written as
apiXy +apXy + ...+ X, = by

AxnX1 + axpXo + ...+ axXy =Dy

am1X1+ am2X2 +. . + aman = bn (1.2)
The m x n matrix
d;; A, ... Ay,
a21 a22 o o a2n
Ay Q4 ... Ay,

associated with the system (1.2) is called the co-efficient matrix of the system. The

m x (n + 1) matrix

NS I
a,, a, ... a, Db,
aml a‘m2 ce amn bm

is called the augmented matrix of the system (1.2).

The augmented matrix of a system consists of the co-efficient matrix with an
additional column whose entries are the constants from the right sides of the
equations. If in (1.2) by =0 for all i = 1, 2, . . ., n then the system is called

homogeneous otherwise non-homogeneous. We perform some operations on
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Linear Equations and Matrices

matrices not only for solving system of linear equations but also for studying other

topics in linear algebra.

1.2. Matrix Operations

As matrix notation simplifies the calculations in solving systems of linear

equations, we shall discuss different kind of matrices and operations on them.

Recall that a matrix A of size m x n over a field F (here we take F as the real or
complex field) is denoted by A = (ajj)m«n, 1=1,2,3,...,mandj=1,2,...,n,
and a; are from F. If m = n then A is called a square matrix. In this case the entries
ai, . . ., any are called the main diagonal or principal diagonal and other entries
are called off-diagonal entries. If a; = O for all i and j, then A is called the null
matrix or the zero matrix, and is denoted by 0. An identity matrix, denoted by I, is
a square matrix whose all diagonal entries are equal to 1 and off diagonal entries

are equal to zero.

A square matrix A is called a diagonal matrix if all the off-diagonal entries are
zero. A square matrix A = (ajj)n < n IS called lower (respectively upper) triangular
matrix if a; = 0 whenever i > j (respectively 1 < j), that is, all entries above

(respectively below) the main diagonal are zero.

Two matrices of the same size A = (ajj)m « n and B = (bjj)m « n are said to be equal if

ajj = bij for all i, j
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Linear Equations and Matrices

1.2.1 Addition and Scalar Multiplication

If A = (aij)mxnisamatrix over F and o [ F then the scalar multiplication of A by

a is the matrix oA =(a ajj)m«n i.€. €ach entry of A is multiplied by o.

If A = (@jj)mxn and b = (bj))m « n are matrices of the same size over F then addition

of A and B denoted by, A + B, is the matrix C = (Cij)m«n, Where ¢;; = aj; + bj;.

Scalar multiplication and addition of matrices satisfy some properties as given

below.

For matrices A, B and C of the same size over Fand o, B [] F:
(1) A+ B =B + A (commutative)
(2) (A+B)+C=A+(B+C) (associative)
(3) A+ 0 =0+A =A, where 0 is the zero matrix of the same size as A.
(4) A+ (=A)=(-A)+A=0,where — A= (- 1Ai.e. if A= (ajmxnthen— A= (-
aij)m x n-
(5) (a+B) A=0A + BA.
(6) a (A +B)=0A + aB.

(7) o (BA) = o B A.

1.2.2 Matrix Multiplication

If A = (aj)m<n and B = (bjj) x p are matrices over F then multiplication or product

of A and B, denoted by AB, is the matrix C = (Cij)m « p, Where
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Linear Equations and Matrices

n
Cij = E dik bkj'
k=1

Matrix multiplication satisfies some properties as given below.

(1) Matrix multiplication need not be commutative, that is, one can find matrices A

and B such that AB is not equal to BA.
(2) For matrices A and B if AB = 0 then it may not imply either A=0or B=0.

(3) If for matrices A, B, C if AB = AC, it may not imply B = C, that is matrix

multiplication does not obey cancellation law.

(4) If A, B and C are matrices of sizesm x n, n x p, and p x ¢ respectively then
(AB) C=A(BC) (associative).

(5) If Ais a matrix of size m x nand both B and C are matrices of size n x p then
A (B + C) = AB + AC (left distributive).

(6) If A, B are matrices of size m x n each and C is a matrix of size n x p then
(A +B) C =AC + BC (right distributive).

(7) For any square matrix A, Al=1A=A, where | is the identity matrix of the same

size as A.

For matrix A = (@jj)m < n , the transpose of A, denoted by AT, is the matrix A" = (@ji)n
. m. In other words A" is obtained from A by writing the rows of A as the columns

of A" in order. Some properties of transpose operation are as given below.
(1) For any matrix A, (AN = A.

(2) For matrices A and B of the same size
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Linear Equations and Matrices

(A+B) =AT+B".
(3) For matrices A and B over F of sizes m x n and n x p respectively,

(AB)" =B'A".

1.2.3 Some Special Matrices

Here we shall discuss about some of the special type of matrices which will be

used in the subsequent lectures.

We consider a square matrix A = (&), «n- I A is a real matrix and satisfies A = AT
then A is called symmetric. In this case a; = a; for all i, j. If A satisfies A" = — A
then A is called skew-symmetric. In this case a; = — a; for all i, j, and therefore all

diagonal entries are equal to zero.

Here we take a complex square matrix A = (ajj)n x n. The conjugate of A is the
matrix A= (@jj) n x n, Where 13 is the complex conjugate of a;;. Matrix A is said to
be Hermitian if (JA)" = A. In this case a; = 3@; and in particular a; = a@; Thus for
Hermitian matrices diagonal entries are real numbers. Matrix A is said to be skew-
Hermitian if (1A)" = — A. By the similar argument ajj = -a; and so diagonal entries
are either 0O or pure imaginary for skew-Hermitian matrices. One sees that

symmetric and Hermitian matrices agree for real matrices. Similarly, skew-

symmetric and skew-Hermitian matrices also agree for real matrices.

A complex square matrix A = (a;), « » is called unitary if A(DA)T =(0A) A=,

where | is the identity matrix of the same size as A. In case of real matrices unitary
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Linear Equations and Matrices

matrices are called orthogonal, that is, a real matrix A is orthogonal if AAT = ATA
=1.

1.2.4 Elementary Row/Column Operations

For any matrix A, each of the following is called an elementary row (resp.

columns) operation on A:
(1) Interchange of two rows (resp. columns).

(2) Addition of scalar multiple of one row (resp. column) to another row (resp.

column).

(3) Multiplication of a row (resp. column) by a non-zero scalar.

1.3 Determinant of Matrices

Let A = (ajj)n xn b€ @ square matrix with a;; ! Ror []

We define determinant of A, denoted by det A or | A |, recursively as below. For
n=2,
all a12

Al =
| | a21 a22

= Qdgpdypp — dgpdyg.

Forn>3,
m

detA=|A|=Z(_1)I+Jaij M |

=1

Where i is a fixed integer with 1 <i < n, and m;; is the determinant of the matrix

obtained from A by deleting ith row and jth column.
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Linear Equations and Matrices

One may also find determinant of A by using following properties of determinant:
(1) For identity matrix | of any size, det | =1.
(2) det A = det AT

(3) If any two rows (or columns) are interchanged, then the value of the

determinant is multiplied by (- 1).

(4) If each element of a row is multiplied by a scalar a then the value of the

determinant is multiplied by o. Therefore |a A |=a"| A |.

(5) If a non-zero scalar multiple of the elements of some row (or column) is added
to the corresponding elements of some other row (or column), then the value of

the determinant remains unchanged.

(6) Determinant of diagonal or triangular matrices is the product of its diagonal

entries.

(7) If A and B are the matrices of the same order then det (AB) = det (A) det (B).

1.4 Conclusions

Matrices and operations on them will be used in almost all the subsequent lectures.

In the next lecture we shall solve systems of linear equations. A solution of a

system of linear equations on n variables X, X5, . . ., Xy is a list (sy, Sy, . . .,S,) Of
numbers such that each equation is a true statement when the values s;, S,, .. ., Sy
are substituted for xy, X,, . . ., X, respectively. The set of all possible solutions is

called the solution set of the given system. Two systems are called equivalent if
they have the same solution set. That is, every solution of the first system is a
solution of the second system and vice versa. Getting solution set of a system of
two linear equations in two variables is easy because it is just finding the

intersection of two lines. However, solving a large system is not so straight-
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forward. For this we represent a system in matrix notation and then we perform
some operations on the associated matrices. From the resultant matrices either we

draw conclusion that the system has no solution or find solutions of the system.

Keywords: Algebra of matrices, special matrices, elementary row operations,

determinant of matrices, linear systems.

Suggested Readings:

Linear Algebra, Kenneth Hoffman and Ray Kunze, PHI Learning pvt. Ltd., New
Delhi, 2009.

Linear Algebra, A. R. Rao and P. Bhimasankaram, Hindustan Book Agency, New
Delhi, 2000.

Linear Algebra and Its Applications, Fourth Edition, Gilbert Strang, Thomson
Books/Cole, 2006.

Matrix Methods: An Introduction, Second Edition, Richard Bronson, Academic
press, 1991.
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Module 1: Matrices and Linear Algebra

Lesson 2

Rank of a Matrix and Solution of a Linear System

2.1 Introduction

In this lecture we shall discuss about the rank of matrices, the consistency of
systems of linear equations, and finally present the Gauss elimination method
for solving the linear systems. For this we need an important form of matrices
called echelon form which is obtained by applying elementary row (or column)

operations.

2.2 Echelon Form of a Matrix

Echelon form of a matrix is useful in solving system of linear equations, finding

rank of a matrix and checking many more results in linear algebra.

An m x n matrix A is said to be in (row) echelon form if
(i) All the zero rows of A are at the bottom.

(if) For the non-zero rows of A, as the row number increases, the number of zero

entries at the beginning of the row also increases.

In the echelon form of a matrix some people consider one more condition that
the 1% non-zero entry in a non-zero row is equal to 1. However this condition is
not required for us and therefore not included in the definition of echelon form
of a matrix. One finds row echelon form of a matrix by applying elementary
row operations. By applying elementary column operations, one gets column

echelon form of the matrix.

Example 2.2.1: Find the row echelon form of
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Rank of a Matrix and Solution of a Linear System

[N NG
© w o

We keep 1% row as it. Then we make 1% entry of the second row zero by
applying elementary row operations. So replacing 2™ row R, by R, — R, one

gets

Then we make at least 1% two entries of the 3™ row of the above matrix zero.

For this we replace R; by R; — R; in the above matrix and get

w3 5
0 1 -2].
0 -2 4

Finally by replacing R; by R; + 2R, one gets the echelon form of A and is given
by

2.3 Rank of a Matrix

The rank of a matrix has several equivalent definitions. Here we take the rank
of a matrix A as the number of non-zero rows in the row echelon form of A. It
is also defined as the number of nonzero columns in the column echelon form of

the matrix. Whatever way the definition may be given the rank of a matrix will
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Rank of a Matrix and Solution of a Linear System

be the same, is a fixed number. Therefore the rank of a matrix A has the

following properties.
(1) Matrix A and its transpose have the same rank, that is, rank(A) = rank(A").
(2) If A'isa matrix of size m x n then rank (A) is at the most min{m, n}.

(3) If B is asub-matrix of A then rank (B) is less than or equal to rank(A).

Example 2. 3.1: Here we find rank of the matrix

2 2 3 4 -
-1 1 2 5 2
0 0 -1 -2 3]
1 -1 2 3 0

Here we find echelon form of the matrix A. First row will be kept as it is.

Replacing R, by R4+ R, and then R, by 2R,+ R; the matrix will be

AN/ PR A )T
0 0 7 14 3
A ioAtyc21P
0 0 4 8 2

Replacing R4 by R4+ 4Rz and then replacing R; by 7R; + R, the matrix will be

14 3
0 24|
0 14

o O O N
O O N w

Finally replacing R, by R4 — i R the resultant matrix will be in echelon form

as given below:
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Rank of a Matrix and Solution of a Linear System

2 2 3 4 1
0 0 7 14 3
0 0 0 0 24|
00 00 O

Now there are three non-zero rows in the echelon form of the given matrix A.

Therefore rank of A is equal to 3.

2.4 Solution of a Linear System

Recall that a system of m linear equations in n variables Xy, X, . . ., X, will be of
the form

apXi+ apXo+ ...+ AXy = by

A1Xy+ ApXot ...+ 8xXn = by

AmiXy + dmpXo+ ...+ AmpXp = bm

where a;;’s and b;’s are real or complex numbers.

By using matrix notation this system can be expressed as Ax = b, where A is the

m x N matrix
a‘ll alZ a‘ln
A —_ a‘21 a‘22 a‘2n ’

aml amz amn
b
X, bl
xisthenx 1 matrixx=1 : |, bisthemx 1 matrix | 2
X ’
b
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Rank of a Matrix and Solution of a Linear System

A system of linear equations has either (i) no solution or (ii) exactly one
solution or (iii) infinitely many solutions. The system is said to be consistent if
it has at least one solution, that is (ii) or (iii) of the above hold, and is

inconsistent if it has no solution.

The following theorem gives conditions for existence of solution of the system
AXx =Dh.

Theorem 2.4.1: Let Ax = b be a system of m linear equations on n variables.
Let the augmented matrix (1A of A be (A b). Then

(i) The system is consistent if rank A = rank [JA.
(if) The system has a unique solution if rank A =rank [JA =n.

(iii) The system has infinitely many solutions if rank A = rank [JA =k <n.

Remark 2.4.1: Recall that if b = 0 then the system Ax = 0 is called
homogeneous. In this case A = [JA and so from the above theorem a
homogeneous system is always consistent. In fact (Xq, X5, . .., %,) = (0,0, .. .,

0) is always a solution of Ax = 0.

2.5 Gauss Elimination Method for Solving a System

Gauss-Elimination method is a matrix method constantly used to solve large

systems of linear equations. The main steps in this method are as follow:
1. Consider the augmented matrix of the system.

2. Convert the augmented matrix in to row echelon form. Decide whether the

system is consistent or not. If yes then go to the next step, stop otherwise.
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Rank of a Matrix and Solution of a Linear System

3. Write the system of equations corresponding to the matrix in echelon form
obtained in step 2. Now this system is either solvable by back-substitution or
having some free variables (variables which do not occur at the beginning of
any equation of the system in this step) for which we assign arbitrary
real/complex value and then solve the system.

We explain the above method through some examples.

Example 2.5.1: Consider the system of linear equations
2X -2y +3z+4u=-1
—-X+y+2z+5u=3
-z-2u=3

X—-y+2z+3u=0

The augmented matrix of this system is

Notice that this is the same matrix A appears in Example 3.1. So its row echelon

form will be

2 -2 3 4 -1
O O 7 14 3
O O O 0 24
O 0O O O O

WhatsApp: +91 7900900676 www.AgriMoon.Com



20

Rank of a Matrix and Solution of a Linear System

Observe that the rank of the co-efficient matrix is 2 and that of the augmented
matrix is 3. Therefore according to Theorem 4.1(i) the given system is

inconsistent.

Example 2.5.2: Here we shall solve the system

2Xx+y—-2z2=10
3X+2y+2z=1
SX+4y+3z=4

2 1 —2 10

The augmented matrix is| 3 2 2 1
5 4 3 4

2 1 -2 10

Row echelon form of this matrixis| © 1 10 28|
0O 0 —-14 42

Notice that 1% three columns is the row echelon form of the co-efficient matrix
and its rank is equal to three which is same as the rank of the augmented matrix.
Therefore the system is consistent and since the number of variables is also

equal to three from Theorem 4.1(ii) the system has a unique solution.

The system corresponding to the echelon form of the augmented matrix is:

2Xx+y—-2z2=10
y+10z=-28
— 14z =42
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Rank of a Matrix and Solution of a Linear System

From the last equation we get z = — 3. Then by back substitution we gety = 2
and x = 1 from the 2" and 1% equations respectively. Hence (1,2,-3) is the

unique solution of the given system.

Example 2.5.3: Here we shall solve the system
X+2y—-32=6
2X—y+4z=2

4x + 3y —2z=14

1 2 -3 6
Augmented matrix of the system is 2 -1 4 2
4 3 -2 14
1 2 -3 6
and its row echelon formis |0 -5 10 -10|
DN (U 0

The rank of the co-efficient matrix and the rank of the augmented matrix are
same and is equal to 2 which is less than the number of variables. Therefore the
system has infinite number of solutions. From the row echelon form of the

augmented matrix the system will be
X+2y—-32=6

-5y +10z=-10

Here z is the free variable. So it can take any real value. Let z = a, a is a real

number. Then from the second equation of the above system y = 2 + 2a and
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Rank of a Matrix and Solution of a Linear System

then from the first equation X = 2 — a. Hence the set of all solutions of the
system is
{2-0,2+20,0): 00 R}

2.6 Conclusions

In this lecture we have observed that homogeneous systems are always
consistent. We shall see in an other lecture that the set of all solutions of a
homogeneous system has linearity property and therefore these systems are of
special interest. In a subsequent lecture we shall learn about the linearity

property of sets, which is the basic thing of the subject Linear Algebra.

Keywords: Echelon form of matrices, rank of a matrix, solution of linear

system, Gauss elimination method.

Suggested Readings:

Linear Algebra, Kenneth Hoffman and Ray Kunze, PHI Learning pvt. Ltd.,
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Module 1: Matrices and Linear Algebra

Lesson 3

Inverse of Matrices by Determinants and Gauss-Jordan Method

3.1 Introduction

In lecture 1 we have seen addition and multiplication of matrices. Here we shall
discuss about the reciprocal or inverse of matrices. Matrix inverse is one of the
basic concepts that is useful in several topics of linear algebra. Not every matrix
has an inverse. In this lecture we shall find conditions for existence of inverse of a

matrix and discuss two different methods for getting it.

3.2 Inverse of a Matrix

Let A be a square matrix of size n. A square matrix B of size n is said to be inverse

of Aif and only if AB = BA =1, where | is the identity matrix of size n.

N\ #£ 41
Example 3.2.1: Let A= [3 4} and B=| 1 Tt
2 2

Notice that AB = BA = Ll) ﬂ So A and B are inverse of each other.

Inverse of a matrix A is denoted by A™. If a square matrix has an inverse then it is
called invertible or non-singular, otherwise it is non-invertible or singular. Not all

square matrices are invertible.

Theorem 3.2.1: A square matrix has an inverse if and only if its determinant is

non-zero.
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Inverse of Matrices by Determinants and Gauss-Jordan Method

Some of the properties of inverse of a matrix are as listed below:
(1) Inverse of a matrix if exists is unique.
(2) Inverse of inverse of a matrix is the matrix itself, that is, (A™)™ = A.
(3) Inverse and transpose operations are interchangeable, that is, (A")™* = (A"

(4) If A and B are invertible matrices then (AB)*=B*A™.

3.3 Inverse by Determinants

Recall that for a square matrix A = (a;), the minor of any entry a; is the
determinant of the square matrix obtained from A by removing i" row and j"
column. Moreover the cofactor of a;; is equal to the minor of a; multiplied by (— 1)
*1. The cofactor matrix associated with an n x n matrix A is an n x n matrix A°
obtained from A by replacing each entry of A by its cofactor. The adjugate A” of A

Is the transpose of the cofactor matrix of A.
The following theorem gives an idea to find inverse of a matrix.
Theorem 3.3.1: For any square matrix A,
AA = A'A = (det A) |
where | is the identity matrix of the same size as A.
Corollary 3.3.1 If det A # 0 then

A A _ A A,
det A det A '
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Inverse of Matrices by Determinants and Gauss-Jordan Method

Thus we have the following formula for inverse of a matrix given in the theorem
below.

Theorem 3.3.2: For any square matrix A with det A # 0,

-1_ 1 *
A =
det A

Example 3.3.1: Here we find inverse of the matrix

0 -1
A= 1 2
1 1

w O N

We first check the value of determinant of A. Since detA =1 # 0, the inverse of A

exists.

One can check that the cofactor matrix A° of A is given by

-1 6 -3
AC -|-1 5 -2 .
1 -4 2
Then the adjugate A™ of A is
-1 -1 1
A* = 6 5 _4 .
-3 -2 2
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SincedetA=1, A l=—A"=A"
det A
1041 1
Hence, Al=l6 5 -4
3 2 2

Existence of inverse of a matrix can be linked with rank of A through the result

below given in the theorem.

Theorem 3.3.3: For a matrix A of size n, det A # 0 if and only if rank A =n. In
other words inverse of A exists if and only if rank A =n.

3.4 Inverse by Gauss-Jordan Elimination

Next we shall find inverse of a square matrix A of size n by Gauss-Jordan

elimination method. The following steps are followed in this method:

Step 1: If either det A # 0 or rank A = n then proceed to next step, otherwise
inverse of A does not exist.

Step 2: Form the augmented matrix (A I) where I'is'the n x n identity matrix.

Step 3: Apply elementary row operations to (A 1) so that first n column of it will
form an upper triangular matrix, say U. So now the resultant matrix is (U
B).

Step 4: Again apply elementary row operations to (U B) till first n columns form
the identity matrix. If the resultant matrix is (I K) then K is the inverse of

matrix A.

We shall consider an example below to explain this method.
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Example 3.4.1: Here we shall find inverse of the matrix

2 0 -1
A=|5 1 0. One checks that rank of A is equal to 3 or det A # 0, and so
0 1 3

2 0 —-11 O O

inverse of A exists. The augmented matrix is 5 1 00 1 O
O 1 3|0 0 1

Replacing R; by iRz one gets

1)1
I VR Lo 52 °F
2|2 15
1 0]0 1 0|-ftol0 4 21 1 0
Lo o . 01 3|0 01
1)1
e R 1003 -11
R4R,-R 5|5 R, >R+ R =3
_RoReR g 1 2|2 1 g RoRreR g 1 22 g
2|2 2|2
00 L[2 11 00 H2 41
AR 2| 2

1 003 -1 1
—>|0 1 0-15 6 -5
0 0 15 -2 2

The last matrix is of the form (I K). Therefore the inverse of A is given by
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3 -1 1
Al-|-15 6 -5|
5 -2 2

3.5 Conclusions

Several other methods are also there to find inverse of a matrix and for particular
type of matrices like upper or lower triangular matrices one can derive an easier
formula for the inverse. Applying inverse of a matrix one can find solution of the
system Ax =b if A is a square matrix of size n and rank of A is n. In this case x=A

b is the solution.

Keywords: Invertible matrices, Adjugate of a matrix, Gauss-Jordan elimination

method, Augmented matrix.
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Module 1: Matrices and Linear Algebra

Lesson 4

Vector Spaces, Linear Dependence and Independence

4.1 Introduction

In this lecture we discuss about the basic algebraic structure involved in linear
algebra. This structure is known as the vector space. A vector space is a non-empty
set that satisfies some conditions with respect to addition and scalar multiplication.
Recall that by a scalar we mean a real or a complex number. The set of all real

numbers R is called the real field and the set of all complex numbers 7 is called

the complex field. Here onwards by a field F we mean the set of real or the set of
complex numbers. The elements of vector spaces are usually known as vectors and
that in field F are called scalars. In this lecture we also discuss about linearly

dependency or independency of vectors.

4.2 Vector Spaces

A non-empty set V together with two operations called addition (denoted by +) and
scalar multiplication (denoted by.), in short (\V, +, .), is a vector space over a field
F if the following hold:

(1) V is closed under scalar multiplication, i.e. for every element o [1 Fand u [V,

a.u [ V. (In place of a.u usually we write simply au).

(2) (V, +) is a commutative group, that is, (i) forevery pair of elements u, v [ V,
u+v [J V (i) elements of V are associative and commutative with respect to +
(iii) V has the zero element, denoted by 0, with respect to +, i.e, u+0 =0+u=0,
for every element u of V and finally (iv) every element u of V has additive

inverse, i.e, there exists v [ V such that u+v = v+u =0.
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(3) Fora,BIFandu 1V, (a+p)u=ou+p.u
(4) ForaJFandu,w ] V,a. (utw)=au+ow.
(5) Foro,B I Fandu 1V, a.(B.u)=(af).u

(6) 1.u=u, forallu [JV, where 1 is the multiplicative identity of F.

If V is vector space over F then elements of V are called vectors and elements of F

are called scalars.

For vectors vy, Vy, . . ., V, in V and scalars ag, ap, . . ., o, In F the expression
o1Ve, 0Vo, . . ., anV, IS called a linear combination of vq, vy, . . ., V,. Notice that V
contains all finite linear combinations of its elements hence it is also called a linear

space.

Examples 4.2.1: Here we give example of some vector spaces.

(1) [J is a vector space over R. But IR is not a vector space over [ as it is not

closed under scalar multiplication.

(2) IfF=R or Fl thei{ X1, Xo, . . ., Xn) : Xj L) F, 1 <i<n} is a vector space

over F where addition and scalar multiplication are as defined below:
For X = (Xg, X2, . . ., Xn), Y= (Y1, Yo, . .., ¥n) [l F"and o [ F,

X +Yy = (Xp+y1, Xo+Ya, . ooy XneYn)

ax = (00X, 0Xp, . . . , OXp).

F" is also called the n-tuple space.
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(3) The Space of m x n Matrices: Here F™ " is the set of all m x n matrices over

F. F™ * " is a vector space over F with respect to matrix addition and matrix

scalar multiplication.

(4) The space of polynomials over F: Let P(F) be the set of all polynomials over

F,i.e.,

PF)={ay+ax+...+ax":a [JF,1<i<n,n>0is an integer}.

P(F) is a vector space over F with respect to addition and scalar multiplication

of polynomials, that is,
(@+ax+...+ax")+ (bg+bx+...+bx")

=Co+ CiX + CX2 + .+ XK

where Ci=a+ Dby, kK=max{m,n} a=hb=0
for I >nandj>m. And

a(ay+aX+...+ax)=oag+ aax+ ...+ aax".

The following results can be verified easily (proof of which can be taken as

exercise).

Theorem 4.2.1: If V is a vector space over F then
(@) 0.0 =0, for o L] F, here 0 is the additive identity of \V or the zero vector.

(b) O.u =0, for u [J V, here 0 in the left hand side is the scalar zero i.e. additive

identity of F and O in right hand side is the zero vector in V.
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(¢) (—a)u=-(a.u),forall o 1 F,ullV.

(d) Ifu#0in V then a.u = 0 implies a. = 0.

4.3 Subspaces

For every algebraic structure we have the concept of sub-structures. Here we

discuss about subspaces of vector spaces.

Let V be a vector space over F. A subset W of V is called a subspace of V if W is
closed under * +” and * .’ (which are the addition and scalar multiplication of V).
In other words (i) foru, v [ W, u+v [1 Wand (ii) foru [l Wand a [] F, au [] W.

The above two conditions of a subspace can be combined and expressed in a single
statement that: W is a subspace of V if and only if for u, v [1 W and scalars a, [
F, au+ Bv [J W,

Example 4.3.1: Here we give some example of subspaces.

(1) The zero vector of the vector space V alone i.e. {0} and the vector space V
itself are subspaces of V. These subspaces are called trivial subspaces of V.

(2) Let V = R ? the Euclidean plane, and W be the straight line in R * passing
through (0 0) and (a b), ie. W= {(x y) 0 R?:ax + by = 0}. Then Wis a
subspace of R % Whereas the straight lines which do not pass through the origin

are not subspaces of R>.

(3) The set of all n x n symmetric matrices over F forms a subspace of F"*" (F is a
field).
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(4) The set of all n x n Hermitian matrices is not a subspace of 1" * " (the
collection of all n x n complex matrices), because if A is a Hermitian matrix
then diagonal entries of A are real and so iA is not a Hermitian matrix

(However the set of all n x n Hermitian matrices forms a vector space over R).

4.4 Linear Span

Let V be a vector space over F and S be a subset of V. The liner span of S, denoted

by L(S), is the collection of all possible finite linear combinations of elements in S.

Then L(S) satisfies the following properties given in the theorem below.

Theorem 4.4.1: For any subset S of a vector space V
(1) L(S) is a subspace of V.

(2) L(S) is the smallest subspace of V containing S, i.e. if W is any subspace of V
containing S then £(S) contained in W.

Example 4.4.1: In R? if S = {(2, 3)} then £(S) is the straight line passing through
(0,0) and (2, 3) i.e. L(S) =2x +3y=0.1fS={(1, 0), (0, 1)} then L(S) = R~

4.5 Linearly Dependency/Independency

A vector space can be expressed in terms of very few elements of it, provided that ,
these elements spans the space and satisfy a condition called linearly
independency. Short-cut representation of a vector space is essential in many

subjects like Information and Coding Theory.
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Consider a vector space V over a field F and a set S={ vy, Vo, . . ., Vi } of vectors in
V. Sis said to be linearly dependent if there exist scalars a;, ay, . . ., ok (in F), not

all zero such that

oqVy + opVo + ...+ oV = 0.

If S is not linearly dependent then it is called linearly independent. In other words
S is linearly independent, if whenever a,v; + apv, + ... + anv, = 0, all scalars a;
have to be zero. This suggests a method to verify linearly dependency or
independency of a given set of finite number of vectors, as given in the next sub-

section.

4.5.1 Verification of Linearly Dependency/Independency
Suppose the given set of vectors is S = {vy, Vo, . . ., Vk}.

Step 1: Equate the linear combination of these vectors to the zero vector, that is,

o1Vq +opVo t+ ..+ oV = 0, where a;’s are scalars that we have to find.

Step 2: Solve for scalars ay, 0y, . . ., o If all are equal to zero then S is a linearly
independent set, otherwise (i.e. at least one «; IS non-zero) the S is linearly
dependent.

Properties 4.5.1: Some properties of linearly dependent/independent vectors are

as given below.
(1) A superset of a linearly dependent set is linearly dependent.
(2) A subset of a linearly independent set is linearly independent.

(3) Any set which contains the zero vector is linearly dependent.
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Example 4.5.1: Let V = R® be the vector space (over R) and S; = {(1, 2, 3), (1, 0,
2), (2,1,5}and S, = {(2, 0, 6), (1, 2, — 4), (3, 2, 2)} be subsets of V. We check

linearly dependency/independency of S; and S,.

First consider the set S;. Let a4, ay, az be scalars such that
(l]_(l, 29 3) + (12(1, 03 2) + (13(2, 1’ 5) = (01 O’ O)

Then we have

((Xl +op + 2(13, 2(11 + o3, 3(11 =+ 2(12 + 5(13) = (0, O, 0)

And is equivalent to the system

o, +o,+20,=0
20, +0, =0
3a, +2a, + 50, =0

On solving this system we get o; = ap, = a3 = 0, S0 S; is linearly independent.

Next for S,, we can take a; = 0, = 1 and a3 = — 1 and get

(l]_(z, O: 6) + (X'Z(ls 21 - 4) + 0"3(31 2’ 2) =0.

So S, is a linearly dependent set.

We can also test linearly dependency/independency of vectors in F" (in particular

in R") using echelon form of a matrix. This method has been explained in the

example below.
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Example 45.2: LetV=R'and S={(1,2,1,-2),(2,1,3,-1),(2,0,1, 4} and S*

={(,1,2,-1),(1,2,0,3),(1,3,2,2),(0,1, 1, 1)} be subsets of V. We will check
linearly dependency/independency of S and S'.

We consider S first. We write the vectors in S as a matrix taking the vectors as
rows and then apply elementary row operations and convert it to echelon form. If
there is a zero row in the echelon form then the set is linearly dependent otherwise

linearly independent.

1 21 =2 1 2 1 =2
2 1 3 —1|—Re=Re®h 510 31 3
2 01 4 2 0 1 4

1 2 1 =2 1 2 1 =2

—ReoRe R 10 -3 1 3 |—Re2%Re?h 5l 3 1 3

0 2 -1 8 0 0 -5 18

The last matrix is in echelon form and all the rows are non-zero. Hence S is

linearly independent.

Next we consider

$'={(0,1,2,-1),(1,2,0,3),(1,3,2,2),(0,1, 1, 1)}.

While forming the matrix we may not have to take 1% vector in S* as 1% row, 2™
vector as 2™ row and so on. Since we have to convert the matrix into echelon form
we may take 1% row of the matrix a vector in S for which the 1% entry is non-zero.

So let the matrix be
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. O O
N N, O

w Pk P DN

We convert this to echelon form by applying elementary row operations and is

given by
120 3
011 1
001 -2
000 O

There is a zero row in the echelon form so S* is linearly dependent.

4.6 Conclusions

Vector spaces are the main ingredients of the subject linear algebra. Here we have
studied an important property of the vectors that is linearly
dependency/independency. This property will be used in almost all the lectures. In
the next lecture also we discuss about some basic terminologies associated with a

vector space.

Keywords: Vectors, scalars, vector spaces, subspaces, linearly dependent or

independent vectors.
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Module 1: Matrices and Linear Algebra

Lesson 5

Basis and Dimension of VVector Spaces

5.1 Introduction

In the previous lecture we have already said that vector spaces can be represented
in a short-cut form in terms of few linearly independent vectors. The set of these
few vectors have a name called basis. The number of elements in a basis is fixed
and this number is called the dimension of the vector space. In this lecture we
shall discuss on these two important terms basis and dimension of a vector space.
We shall also give an another definition of the rank of a matrix in terms of linearly

independent rows/columns and finally present the rank-nullity theorem.

5.2 Basis and Dimension

Let V be a vector space over F. A subset S of V is called a basis for V if the
following hold

(i) Sisalinearly independent set

(if) S spans V i.e., L(S) = V (or in other words every element of V can be

written as a finite linear combination of vectors in S).

If V contains a finite basis B then V is called a finite dimensional vector space and
dimension of V is the number of elements in B. If V is not finite dimensional then

it is infinite dimensional vector space. Dimension of a vector space is well defined

because of the theorem below.
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Theorem 5.2.1: If a vector space V has a basis with k number of vectors then
every basis of V contains k vectors (in other words all bases of a vector space are

of the same cardinality).
Next we shall see some examples of vector spaces with their bases and dimensions.

Example 5.2.1:

(1){(2,0,6), (1,2,-4), (3,2,2)} is not a basis for & as it is not linearly independent
because (2,0,6)+(1,2,-4)=(3,2,2).

(2)S = {(2,0,0),(3,4,0)} is also not a basis for R ° as it does not span R’
because (0, 0, o), a. # 0, cannot be written as linear combination of vectors in S.

(3) The set {(1,0,0,...,0), (0,1,0,0,...,0),...,(0,0,...,1)} of vectors in R " forms a
basis for R ". This basis is called standard basis of R". So dimension of R" is

n.

(4) The collection of all polynomials over F, P(F) is an infinite dimensional vector
space over F because S={1,x,x*x,.....} is a linearly independent set and spans
P(F) but no finite subset of S spans P(F). However P,(F) , the set of all
polynomials of degree < n, is a finite dimensional vector space with

{1,x,x2x%,...,x"} as a basis. Hence dimension of P(F) is equal to n + 1.

(5) The set R?*2 of all 2 x 2 real matrices is a finite dimensional vector space over

1 0)(0 1)(0 0Y(0 O
R with 0 0 ! 0 0 ! 1 0 ! 0 1 as a basis. So dim R2X2=4.
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Next we shall list some of the well known properties of an n-dimensional vector

space.

Theorem 5.2.2: The following results are true in an n-dimensional vector space V:

(i) Every basis of V contains n number of vectors.

(if) A setof n+ 1 or more vectors in V is a linearly dependent set.

(iii) If Sis a set of n vectors in VV and £L(S) =V then S is linearly independent.

(iv) If S is a set of n linearly independent vectors in V then £(S) = V. In other
words S is a basis of V.

(V) If S={vy, Vo, ..., Vy } is aset of m vectors in V, m < n, then S can be
extended to a basis of V i.e. there exist vectors, Uy + 1, . . ., Uy Such that S = {
Vi, Vo, ..., Vi, Umst, - - ., Uq} IS @ basis for V.

(Vi) If S = {wy, Wy, ..., W}, k>n, is a set of vectors in V such that £(S) =V,

then S contains a basis for V.

(vii) If W is a subspace of V then dim W <dim V.

In the following example we shall use some of the results of Theorem 2.2 to check

for a basis.

Example 5.2.3: Here we show that S = {(1, 0, — 1), (1, 1, 1), (1, 2, 4)} is a basis
for R in two different ways. Here we shall use the fact that dimension of R is
3.

WhatsApp: +91 7900900676 www.AgriMoon.Com



Basis and Dimension of Vector Spaces

Method 1: We will show that S is a linearly independent set. We get the echelon
form of the matrix formed by the vectors in S. The matrix and its row reduced

matrices are as follow:

1 0 -1 1 0 -1
11 1 RoRR 510 102
1 2 4 1 2 4
1 0 -1 1 0 -1
R;—>R3-R; 0 1 2 R;—>R3-2R, 0 1 2
0 2 5 0 0 1

The last matrix is in echelon form and no zero row is there in it. So S is a linearly
independent set of 3 vectors and since dimension of R® is 3, by Theorem 2.2(iv) S

is a basis of R,

Method 2: Next by applying Theorem 2.2(iii) we show that S is a basis of R °.
Here we show that every vector in R ® can be expressed as a linear combination of

vectors in S. Let (X4, X2, X3) [ R > be an arbitrary vector and o, B, v [ R such that

(Xl; X2; X3) = (l(l, Oa - 1) + B(la 19 1) + Y(la 29 4)9

=(a+PB+y,B+2y,—atp+4y)

Soo+P+y=X,B+2y=xy,-0+p+4y=x;and is a linear system with

unknowns a, B, y. On solving we get

(X:2X1—3X2+X3,B:—2X1+5X2—2X3,'Y:X1—2X2+X3
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Thus for every vector in R * we have found scalars to express the vector as a linear

combination of vectors in S. Hence S forms a basis for R°.
[In particular if (Xq, X2, X3) =(1,2,3) thena=-1,=2,y=01.e.
(1,2,3)=(-1)(1,0,-1)+2(2,1,1) +0(1, 2, 4).]

In the next example we shall find basis and dimension of a subspace generated by a

set of vectors.

Example 5.2.4: We consider the subspace W of R generated by the vectors u =
(1,3,1,-2,-3),v=(1,4,3,-1,-4),w=(2,3,-4,-7,-3), x=(3,8,1,-7,
- 8).

Here we find a basis and the dimension of W.

The dimension of W will be the maximum number of linearly independent vectors
in {u, v, w, x}. To determine this we take help of echelon form of the matrix whose

rows are the vectors u, v, w, and X. The matrix is

1 3 i -2 -3
1 4 3 -1 -4
2 3 4 —7 -3
3 8 i -7 -8

Replacing R, by R, — Ry, Rz by Rz — 2R; and R, by R4 — 3R; the matrix will be
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1 3 1 -2 -3
O 1 2 1 -1
O 3 -6 -3 3
o -1 -2 -1 1

Replacing R; by R; + 3R, and R4 by R4 + R, in the above matrix we get

1 3 1 -2 -3
O 1 2 1 —1
0O O O O )
0O O O O )

which is in echelon form.

In the echelon form there are two non-zero rows only. Therefore dimension of W is
equal to two and these non-zero rows form a basis for W. So {(1, 3, 1, — 2, — 3),
(0,1,2,1,— 1)} is a basis for W.

5.3 The Rank-Nullity Theorem

Here we give a definition of the rank of a matrix in terms of linearly independent
rows or columns. The rank of a matrix A is defined as the maximum number of
linearly independent rows in A. This is same as the dimension of the subspace
spanned by the rows of A. This subspace is also called the row space of A.
similarly one defines the column space of A. It is known that the dimension of the
row space of A is same as the dimension of the column space of A. Therefore the
rank of a matrix is also equal to the dimension of its column space. From this one

can also conclude that a matrix and its transpose have the same rank.
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For any matrix A its nullity may be defined as below. Recall that a homogeneous
system of m linear equations on n variables is of the form AX =0, where Aisam
x N matrix and X is the n x 1 matrix (Xy, X,, . . ., Xp). HOmogeneous systems are
always consistent because (0, O, . . ., 0) is always a solution of it. Also this is true
because of the fact that the co-efficient and augment matrices of this system have

the same rank.

Let S be the collection of all solutions of AX = 0. One can easily check that S is a

subspace of R " and this subspace is called the solution space of the system. The

dimension of the solution space of the system AX = 0 is called the nullity of A.
Now we are ready to state the famous rank-nullity theorem for matrices.
Theorem 5.3.1: Let A be an m x n matrix. Then rank A + nullity of A =n.

We illustrate the above theorem through some examples below.

Example 5.3.1: We verify the rank-nullity theorem for the matrix A

1 2 -1
2 5 2
=1 4 7
1 3 3
1 2 -1
O 1 4
We convert A into row echelon form and is givenby| O O O
O 0 O
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From this we get that rank of A is equal to 2 since there are two non-zero rows in

the row echelon form of A.

The homogeneous system corresponding to A is AX = 0, where X is the 3 x 1

matrix say (X1, Xz, X3)". S0 the system is
X1+ 2X,—X3=0
2X1+5x, +2%X3=0
X1 +4X, + 7X3=0

X1+3X2+3X3=0

From the echelon form of the matrix A, the above system is equivalent to
X1+ 2%, —X3=0

X2+4X3:O

Here X3 is the free variable. Let X3 = o, o [ R. Then X, = — 4a. and x; = 9. So the

solution space of the system AX=01is S = {(9a, —4a, o) -: o [ R }.

A basis for S is {(9, — 4, 1)} because this vector generates S, that is, all other
vectors in S are scalar multiple of the vector (9, — 4, 1). Therefore nullity of
A =dim S = 1. Now rank of A + nullity of A = 3 which verifies the rank-nullity

theorem.

5.4 Conclusions
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Basis and Dimension of Vector Spaces

In this lecture we have learned that if we know a basis for a vector space then the
whole vector space can be generated by taking all possible finite linear
combinations of the basis vectors. Because of this wonderful structure, vector
spaces are widely used in coding and decoding of messages in Information and
Coding theory. We shall find application of the rank-nullity theorem in some of the

subsequent lectures.

Keywords: Finite dimensional vector spaces, basis, dimension, homogeneous

system of equations, rank-nullity theorem.
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Module 1: Matrices and Linear Algebra

Lesson 6

Eigenvalues and Eigenvectors of Matrices

6.1 Introduction

The concept of eigenvalues and eigenvectors of matrices is very basic and having
wide application in science and engineering. Eigenvalues are useful in studying
differential equations and continuous dynamical systems. They provide critical
information in engineering design and also naturally arise in fields such as physics

and chemistry.

6.2 Eigenvalues and Eigenvectors

Let A be square matrix of size n over a real or complex field F. An element A in F
is called an eigenvalue of A if there exists a non-zero vector x in F" (oran x 1

matrix) such that Ax = Ax.

If A is an eigenvalue of A then all the non-zero vectors x satisfying Ax = Ax are
called eigenvectors corresponding to A. For a single eigenvalue there may be
several eigenvectors associated with it. In fact all these eigenvectors form a

subspace as we shall see below.

Theorem 6.2.1: Let A be an n x n matrix, A be an eigenvalue of A, and S be the set

of all eigenvectors corresponding to A. Then SU{0} is a subspace of F".

Proof: Let X3, X, be eigenvectors corresponding to A. Then

A(Xl + X2) = AXl + AXZ = le =+ XXZ = X(Xl + Xz).
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A(ox;) = 0Ax; = aAx; = Moxy). SO X; + X, axXy [ S and hence the result.

If S is the set of all eigenvectors corresponding to an eigenvalue A then the
subspace SU{0} is called the eigenspace corresponding to the eigenvalue A.

5 4
Example 6.2.1: For the matrix A = [1 2] over the real field R, 6 is an

4
eigenvalue because for the vector x = [:J in R?

5 4\(4 24 4
Ax = 1 211171 6 =61 = 6X.
2
Similarlyy = | 1 | isalso an eigenvector of A corresponding to the eigenvalue 6.
2

Next we shall find all eigenvalues and associated eigenvectors of a matrix

systematically.

6.2.1 Method to find Eigenvalues and Eigenvectors

If A is an eigenvalue of A and x is a corresponding eigenvector then

Ax=)lxor(A-Al)x=0 (6.1)

where | is the n x n identity matrix. Note that (6.1) is a homogeneous system of

linear equations. If (6.1) has a non-zero solution then rank (A — Al) <n. Then A —
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Al is not invertible and one gets that det (A — AI) = 0. Therefore if A is an
eigenvalue of A then it satisfies the equation det (A - AI) = 0 (because it will have a
non-zero eigenvector). Since det (A — Al) is a polynomial in A of degree n, we
obtain all values of A by solving det (A — Al) = 0, and this equation will have n
solutions with counting multiplicities. We summarize the above discussions as

follows:
1. Eigenvalues of A are the solutions of det (A — AI) = 0.
2. If A is of size n then A has n number of eigenvalues with counting multiplicities.

3. If A is an eigenvalue of A then all non-zero solutions of the system (A — Al) X =

0 are the eigenvectors of A corresponding to A, here X = (X4, Xz, . . . , Xn)".

Eigenvalues of matrices are sometimes called characteristic values. The equation
det (A — AI) = 0 is called the characteristic equation and det (A — Al) is called the

characteristic polynomial associated with A.

We explain this method of finding eigenvalues and eigenvectors of a matrix

through an example below.

Example 6.2.2: Find all eigenvalues and their corresponding eigenvectors of the

matrix

>

I
N A Gl
N oA
N NN

Solution: The characteristic polynomial of A is
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5—A4 4 2

det(A-anp=| 4 S-4 2|
2 2 2-2

=— (2 -10)(2 -1 ).

So the characteristic equation is (A — 10) (. — 1) = 0 and the eigenvalues A are
A=10,1, 1.

Eigenvectors Corresponding to A = 10: Here we solve the system (A — 101) x = 0.

-5 4 2\ X
4 -5 2 || x%x,]|=0
2 2 -8)\ X,

Xl
where X = | x, |.
X3
g LA L2

Echelon form of the co-efficient matrixis| 0 -9 18|,
0 0O O

or

So the given system of equations will be
- 5X1 + 4X2 + 2X3 =0.

- 9X2 + 18X3 =0.
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Here X3 is free variable. So let X3 =a, a #0, a [J R . Then we get X, = 2a and X; =

X, = 20.. So the set of all eigenvectors corresponding to A = 10 is {(2a, 2a, o) : o [

R, a#0}.

Eigenvectors corresponding to A = 1: Here we have to solve the system
(A-1)x=0.

4 4 2)\(X
or |4 4 2| X%,|=0
2 2 1){x,
4 4 2
Echelon form of the co-efficient matrixis |0 O 0. so the system will be
0 0O

4X1 + 4X2 + 2X3 =0.

or 2X;+2X, +2x3=0.

Here X, and x3 are both free variables. So let X, = o, x3=p, o, p [ R, and o =0,
B = 0 cannot hold simultaneously. Then x; = — é (2o + B). The set of all
eigenvectors corresponding to A = 1 is {(- 51 Qa+p),a B):a, p R aandpdo

not take the zero value simultaneously}

6.2.2 Properties of Eigenvalues and Eigenvectors

In the following we present some properties of eigenvalues and eigenvectors of

matrices:
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(1) The sum of the eigenvalues of a matrix A is equal to the sum of all diagonal
entries of A (called trace of A). This property provides a procedure for

checking eigenvalues.
(2) A matrix is invertible if and only it has non-zero eigenvalues.

This can be verified easily as det A = (A — 01) = 0 if and only if 0 is an
eigenvalues of A. Also recall that det A = 0 if and only if A is not invertible.

(3) The eigenvalues of an upper (or lower) triangular matrix are the elements on

the main diagonal.

This is true because determinant of an upper (or lower) triangular matrix is

equal to the product of the (main) diagonal entries.

(4) IfAis an eigenvalue of A and if A is invertible then % is an eigenvalue of A",

Further if x is an eigenvector of A corresponding to A then it is also an

eigenvector of A~ ' corresponding to %

The above is true because if x is an eigenvector of A corresponding to the

eigenvalue A then Ax = Ax. Multiplying both sides by A !, x =LA A" X or

_ 1
A lx==x
a

(5) IfAis an eigenvalue of A then aA is an eigenvalue of aA where a is any real or
complex number. Further if x is an eigenvector of A corresponding to the
eigenvalue A then x IS also an eigenvector of oA corresponding to eigenvalue

aA. This is true because (aA) x = (ad) X.

(6) If A is an eigenvalue of A then A* is an eigenvalue of A* for any positive

integer K. Further if x is an eigenvector of A corresponding to the eigenvalue A
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then x is also an eigenvector of A* corresponding to the eigenvalue A*. This is

true because if X 1s an eigenvector of A corresponding the eigenvalue A then
A*x = AKTHAX) = A I0x) = A (AT = A2 (A X)) =L =aRx

(7) If A is an eigenvalue of A, then for any real or complex number ¢, A — C is an
eigenvalue of A — cl. Further if x is an eigenvector of A corresponding to the
eigenvalue A then x is also an eigenvector of A — cl corresponding to the

eigenvalue A — C
This is true because (A —cl) X = AX —¢cx = Ax — ¢x = (A — ¢) x for an
eigenvalue A and its corresponding eigenvector x of A.

(8) Every eigenvalue of A is also an eigenvalue of A'. One verifies this from the
fact that determinant of a matrix is same as the determinant of this transpose

and
A-A|=| (AN =A"|[=| (AT=AD"| = | AT = 1A |.

(9) The product of all the eigenvalues (with counting multiplicity) of a matrix

equals the determinant of the matrix.

(10) Eigenvectors corresponding to distinct eigenvalues are linearly independent.

6.3 Conclusions

Some more properties of eigenvalues and eigenvectors will be discussed in the
next lecture. In a subsequent lecture we shall show that eigenvalues and

eigenvectors are used for diagonalization of matrices.

Keywords: Characteristic equation, eigenvalues, eigenvectors, properties of

eigenvalues and eigenvectors.
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Module 1: Matrices and Linear Algebra

Lesson 7

The Cayley Hamilton Theorem and Applications

7.1 Introduction

The Cayley Hamilton theorem is one of the most powerful results in linear algebra.
This theorem basically gives a relation between a square matrix and its
characteristic polynomial. One important application of this theorem is to find

inverse and higher powers of matrices.

7.2 The Cayley Hamilton Theorem

The Cayley Hamilton theorem states that:
Theorem 7.2.1: Every square matrix satisfies its own characteristic equation.

That is if A is a matrix of sizenand ya(A) =ap+ ah+...+a, A" '+1"=0is

the characteristic equation of A then

wa(A) =al +aAt ... +an—1An_1+An=0nxn

where 0, x » is the zero matrix of size n, and for any positive integer i, A’ is the

product A x A ... x A of i number of A.

1 2
Example7.2.1: Let A = (4 3} Characteristic equation is A — 4, — 5 = 0. One
neckthat A2= | > |.aa=[ % 2ls
can check that 16 17) ~ 116 12.0
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) (9 8 4 8 5 0
A—AA=ST= 116 17) M1 12) "o 5)
9-4-5 8-8-0 00
~ (16-16-0 17-12-5) |0 0)
The Cayley-Hamilton theorem can be used to find inverse as well as higher powers

of a matrix.

7.3 Method to Find Inverse

Here we consider a square matrix A of size n and its characteristic polynomial ya
(\) =det (A-AT)=ag+ aA +...+a,_ A" "+ A" The following is a well known

result for matrices.

Theorem 7.3.1: If ya (\) = det (A- A ) =ap + a;A + . . . + a5 _ A"~ L+ A" is the
characteristic polynomial of a square matrix A then determinant of A is equal to (-
1)n do.

The following is an immediate consequence of the above theorem.

Corollary 7.3.1: Ais invertible if and only if ag # 0.

In light of the above results to find inverse of A we should have a; # 0. By the

Cayley- Hamilton theorem we have

al +aA+...+a, (A" 1+A"=0.

or Al +aA+. ..+ A" H=—gl.
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or A{_ai(aﬂ Fa A+, +AT Y=,
0

Therefore A"*=—L (a1 + a,A + ... + A""%) which is a formula for inverse of A.
aO

We will illustrate this method in the example below.

2 -11
Example 7.3.1: Here we find inverse of the matrix A = |3 -2 1| applying
0 0 1

Cayley- Hamilton theorem. One finds that the characteristic equation of A is
det (A-AD)=—-A+A*+A1-1=0.

The matrix A is invertible because a; = — 1 # 0. By the Cayley-Hamilton theorem
AP+ AP+ A-1=0.
orAA>+A+1)=1.
1=0%pY (g=tli= 1} (l “o=0
or A l=—A2+A+]1=-]0 1 2|+/3 -2 1|+/0 1 O
0 0 1 0 0 1 0 0 1

2 -1 -1
=3 -2 -1
0O 0 1

7.4 Computation of powers of A

Applying Cayley-Hamilton theorem we can also find higher powers of a square
matrix. For this we need a famous theorem of algebra called the division algorithm,

which is stated below.
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Theorem 7.4.1: (Division Algorithm) For any polynomials f(x) and g(x) over a
field F there exist polynomials q(x) and r(x) such that f(x) = q(x) g(x) + r(x) where
r(x) =0 or deg r(x) <deg g(x).

The polynomial r(x) is called remainder polynomial.

Here we shall discuss about a method that finds value of higher degree polynomial
on a square matrix A and in particular the value of higher power of A. The method

as follows:

Step 1: Let A be a square matrix of size n and f(A) be a polynomial in A of any

finite degree m, usually m > n.

Step 2: Compute the characteristic polynomial y(A) of A. From division algorithm
we get f(A) =q(A) x(A) + r(A), where q(A) and r(A) are polynomials in A and deg
r(A) < deg x(A) or r(A) = 0.

Step 3: From Cayley-Hamilton theorem we get y(A) = 0. Therefore f(A) = r(A),
that is f(A) is equal to a polynomial in A of degree less than n. Then we compute

r(A) which involves at the most n unknown constants and up to (n — 1)th powers of

A, that is, r(A) can be written as:
r(A) —al +taA+...+ an_lAn_l.
To find r(A) one has to compute the co-efficients ay , a; , . . ., a,_1 and powers of

A. We use the eigenvalues of A to find these co-efficients. This procedure is

divided into two cases depending on the eigenvalues are distinct or not.
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Step 4: In this case we assume that A has distinct eigenvalues Ay, Ay, . . . , Ap. From

Cayley-Hamilton theorem we have f(A) = r(A). Therefore
f(A)=r(\) foralli=1,2,...,n,thatis

fh) =1(0) = ap + ahs + @A’ +. .. +an_ A"t

fh) =1(00) =ap+ aho + @k  +. .. +a,_1A" !

fh) =1(\) = 0 + &hn + QA + . ..+ An_ A" 1

Solving this system one finds the values ag , a; , . . ., a1, since f(A;) and A;, 1 <i<

n, are known.

Step 5: In this step we consider the case that A has multiple eigenvalues. If 4; is an
eigenvalue of A of multiplicity k then we differentiate the equation f(Aj) =r(A;) Kk —
1 times, and get k equations:

f(h) = r(7Li)-

df (1)) dr(n)

dr | N .

d“f(x)  d™r(a)
| A .
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This is how one gets a system of n equations using all the eigenvalues of A and

from this system the values of ay, a; , . . . , @, can be determined.

2 -1
Example 7.4.1: Here we shall find the value of f(A) = A, for A = {2 5]

applying Cayley-Hamilton theorem. Characteristic polynomial of A is
det (A — Al) = A*> — 70 + 12. Eigenvalues are 3 and 4. Since characteristic

polynomial of A is of degree 2 the remainder will be of degree at the most one.
Therefore

A =al +aA (7.1)
3% =a,l + 3a

47 = a1 + 4a,

On solving we get a; = — 3" + 4% and a, = 4 x 3" — 3 x 4’® Putting this value in
(7.1),

2 X 378 . 478 378 _478
—2x 3% +2x4" -3%4+2x4")

o - O

1 1
Example 7.4.2: For the matrix A = | 0 01, we find the value of f(A) = A" -
0 2

5A% + 2A3,
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Eigenvalues of the matrix A are 1, 1 and 2. Since the characteristic polynomial is

of degree 3 we get

f(A) = agl + A + a,A” = r(A).

For eigenvalue 2 we get the equation

29 5 x2°+2x 2= ay + 2a, + 4a, (7.2)

Since 1 is a eigenvalue of multiplicity two we get equations

df (1) dr(})
fQ)=r()and — | ~ . That is,
dr - dr by
—2=q+a+aand —14 =a; + 2a, (7.3)

From (7.2) and (7.3) we have the system
ap + 2a; +4a,=720

aptayta=-2

at2a,=-14

On solving this system we get a; = 748, a; = — 1486 and a, = 736.

Thus f(A) = A —5A° + 2A% = 748 | - 1486 A + 736 A’
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1 0 3
A2:010_
00 4
100 1 0 1 10 3
Now f(A) = 748/0 1 0| + (- 1486)|0 1 0| + 736/0 1 0=
00 1 0 0 2 0 0 4
2 0 722
0 -2 0 |
0 0 1720

7.5. Conclusions

In this lecture we have seen that how powerful the Cayley-Hamilton theorem and
the concept of eigenvalues are? In the next lecture also we shall use the theory of

eigenvalues for diagonalization of matrices.

Keywords: Cayley Hamilton theoem, division algorithm, inverse of matrices,

power of marices.
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Module 1: Matrices and Linear Algebra

Lesson 8

Diagonalization of Matrices

8.1 Introduction

Diagonalizable matrices are of particular interest in linear algebra because of their
application to computation of several matrix operations and functions easily. Not
all matrices are diagonalizable. In this lecture we learn technique to identify

matrices that are diagonalizable.

8.2 Similar Matrices

Diagonalizable matrices are defined through similar matrices. Two square matrices
A and B are said to be similar if there exists an invertible matrix P such that A = P~
B P or equivalently PA = BP.

2 4

4 2

31 } are similar because PA

3 5
Example 8.2.1: (i) Matrices A = ( ) and B = (

4 0

1 5]. Note that P is invertible as det P = 20 # 0. However

= PB, where P = [
2 0 2 1
matrices R = 0 2 and S = 0 2 are not similar because otherwise the

a b

0 0] and is a non-invertible

matrix P, satisfying P;R = SP; will be of the form (

(or singular) matrix.

In the following we shall present an important result on similar matrices.
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Theorem 8.2.1: Similar matrices have the same characteristic equation (and hence

the same eigenvalues).

Proof: Let A and B be similar matrices. We have to show that
det (A — AI) = det (B — AI). A =P ' B P, where P is an invertible matrix.

det (A—Al)=det (P"'BP - P 'AIP) =det (P * (B — Al) P)
= det (P~ 1) det(B — AI) det (P) = det (B — AI).

The above theorem also gives a criteria for checking that the given matrices are

similar or not.

4 1

3 2] are not similar because

.2
Example 8.2.1: Matrices A = (4 3] and B = (

their characteristic polynomials are A* — 4\ — 5 and A* — 6\, + 5 respectively.

8.3 Algebraic and Geometric Multiplicities

For diagonalization of matrices we need to understand the algebraic and geometric
multiplicities of eigenvalues. Let A, be an eigenvalue of A. The geometric
multiplicity of A is the dimension of the eigenspace of Ao, that is the dimension of
the solution space of (A — Agl) x = 0, which is also the nullity of (A — Agl).
Whereas the algebraic multiplicity of A, is the largest positive integer k such that (A
— )" is a factor of the characteristic polynomial of A.
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-3 1 -1
Example 8.3.1: Consider the matrix A= | =7 9 —1| Characteristic polynomial
-6 6 -2

of A is det (A — AI) = (A + 2)> (A — 4). So — 2 is an eigenvalue of multiplicity two
and therefore algebraic multiplicity of the eigenvalue — 2 is equal to 2. One can
check that rank of (A + 2I) is equal to two hence its nullity is equal to one. So
geometric multiplicity of the eigenvalue — 2 is equal to 1. The following theorem

gives a relation between these two multiplicities.

Theorem 8.3.1: The algebraic multiplicity of an eigenvalue is not less than its

geometric multiplicity.

8.4 Diagonalizable Matrices

A square matrix is said to be diagonalizable if it is similar to a diagonal matrix. In
other words A is diagonalizable if and only if there is an invertible matrix P such

that P A P is a diagonal matrix.

The following theorem gives a criteria for diagonalizable matrices.

Theorem 8.4.1: Let A,,, be an square matrix with eigenvalues Ay, Ay, . . ., A Let
Y1, Y2, - - - » Yk be the geometric multiplicity of Ay, Ay, . . ., A, respectively. Then A is

diagonalizable if and only if y; +y,+ ... +yc=n.

From theorems 8.3.1 and 8.4.1 we get the following result.
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Corollary 8.4.1: A matrix A, . , is diagonalizable if and only if for every
eigenvalue A of A, the algebraic multiplicity of A is equal its geometric

multiplicity.
Corollary 8.4.2: If A, ., has n distinct eigenvalues then A is diagonalizable.

8.5 Algorithm to Diagonalize a Matrix

Input: A square matrix A, . n.

Output: A diagonal matrix similar to A.
(1) Find eigenvalues of A say Aq, Ap, . .., A, k<n.
(2) Find geometric multiplicity y; of A;, 1 <i<k.

(3) If y1 + v+ ...+ v« = n then continue otherwise return that A is not

diagonalizable.

(4) Find basis for eigenspace of each A;. Let { X jﬂi : 1 5j <v; } be a basis for the
eigenspace corresponding to A;, 1 <1 <k.

(5) Take P = (xl’ll--- X, X2 X2 X, B XX xyk*k) bethe n,n

72
matrix such that each Xjﬂi IS a column vector i.e. a matrix of size n , 1.
Obviously P is invertible.

(6) P"' A P = diag(h, M A A2 M. A2y oM Ak ... A ) IS the diagonal

matrix similar to A.
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Example 8.5.1: Consider the matrix A =

N B~ O
N O B~
N NN DN

A has two eigenvalues A; = 10 and A, = 1, where algebraic multiplicities of A; and

A, are 1 and 2 respectively. Recall that the eigenspace of A4 IS
S:1= {20, 20, a): a [1 R} (here we include the zero vector also).

dim S; = 1 =y, the geometric multiplicity of A; Eigen space of A, is
S;={(- ;2o +P), o, B): @ B (1 R}and dim S, =2 =y,.
Now v; + v, = 3 = size of the matrix A. So A is diagonalizable.

A basis for Sy is {(2, 2, 1)}. A basis for S, is {(- 1, 1, 0), (- é, 0,1)} (obtained by

taking o =1, =0 and thena =0, = 1). SO

P
2 1 -1
2

_ 1
1 0 1
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10

and is similar A.

o — O
, O O

One checks that P *AP = | 0
0

Not all matrices are diagonalizable and we will see such an example below.

Example 8.5.2: As we have seen in Example 8.3.1 that for the matrix A =
-3 1 -1

—7 5 -1] the eigenvalues are A, = — 2, A, = 4, A, is of multiplicity 2. Also the
-6 6 -2

algebraic multiplicity of A is 2 and the geometric multiplicity of it is 1. Therefore

A is not a diagonalizable matrix.

8.6 Computation of Functions of Diagonalizable Matrices

In the following theorem we shall list some properties of diagonal and

diagonalizable matrices.

Theorem 8.6.1: The following are true for a diagonal or a diagonalizable matrix
D:

a 0
() If D = (O bj is a diagonal matrix the k™ power of D is equal to
nxn

a“ o0
O bk an.

(1) If A is a diagonalizable matrix with A = P-'D P, where D is a diagonal matrix,
then A* = P-*D*P. (For k=2 one verifies that A>= A A= (P-*DP) (P-'DP) = P!
D (PP-)DP=P 'D*P.)

WhatsApp: +91 7900900676 www.AgriMoon.Com



71

Diagonalization of Matrices

(1) If P(X) =ag + aix + . . . + a,Xx" be any polynomial and A be a diagonalizable
matrix with A = M D M, where D is diagonal, then P(A)= M P (D) M-*. (One can
get this by taking P(A)=M ag I M- '+ May DM+ ... +MaD"M 1)

0 1
Example 8.6.1: Here, We compute A* for A =£ j This matrix is

-2 3

1 1 1 0
diagonalizable as A=M D M !, where M = [1 2) and D = (0 ZJ . Thus by

_ o 30_11110 2 -1
Theorem 8.6.1(i) and (ii)), A" =MD M "~ = 1 20lo0 22 /l.1 1]

2_230 230_1
“lo-gF 22-1)

Example 8.6.2: If P(x) = x'" - 3x>+2x*+1 then we find the value of P(A) = A" -
3A° + 2A? + |, for the same matrix A in Example 8.6.2. By Theorem 8.6.1 (iii) ,
and Example 8.61, P(A)=A"" — 3A° + 2A% + |

227 oY _1q 3 2_25 251 ) 222 22_1 N 1 0
“l2-28 21®_1q 220 20_1 228 22_1) |0 1)

8927 _88+2"
17628 _17542% |-

8.7 Conclusions

Here we have seen that finding higher powers of a diagonalizable matrix or value

of any polynomial on a diagonalizable matrix can be computed easily.

WhatsApp: +91 7900900676 www.AgriMoon.Com



72

Diagonalization of Matrices

Keywords: Similar matrices, diagonalizable matrices, algebraic multiplicity,

geometric multiplicity, functions of diagonalizable matrices.

Suggested Readings:

Linear Algebra, Kenneth Hoffman and Ray Kunze, PHI Learning pvt. Ltd., New
Delhi, 2009.

Linear Algebra, A. R. Rao and P. Bhimasankaram, Hindustan Book Agency, New
Delhi, 2000.

Linear Algebra and Its Applications, Fourth Edition, Gilbert Strang, Thomson
Books/Cole, 2006.

Matrix Methods: An Introduction, Second Edition, Richard Bronson, Academic
press, 1991.

WhatsApp: +91 7900900676 www.AgriMoon.Com



73

Module 1: Matrices and Linear Algebra

Lesson 9

Linear and Orthogonal Transformations

9.1 Introduction

In order to compare mathematical structures of same type we study operation
presenting mappings from one structure to another. In case of vector spaces such a
mapping is called a linear transformation. Matrices and linear transformations are
closely related, in fact one can be obtained from the other easily. Orthogonal

transformations are particular type of linear transformations.

9.2. Linear Transformations

Let V and W be vector space over the same field F. A mapping T: V — W is called

a linear transformation if
(i) Tu+v)=T (u) +T(v), foruyv ] V.

(i) T (au) = aoT (u) forallu [1 V and a ['F.

(Combiningly these two statements can be written as:
T(au + Bv) =aT(u) + B T(v), foruv [1 Vand a, B [] F).

Example 9.2.1: Let T4, T, be mappings from R to R? defined as:

T1 (Xq, X2, X3) = (X1 + Xz, X3) and T, (X1, Xz, X3) = (X1X2, X3).

T, is a linear transformation because
T1((X1, X2, X3) + (Y1, Y2, ¥3)) = T1 (Xaty1, X2 + Yo, X3 + Y3)

= (X1tY1 + X2 + Y2, X3 +Y3).
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= (X1 + X2, X3) + (Y1 + Y2, ¥3).

= Tl (Xl’ Xo, X3) + T2 (yl’ Y2, y3)

Ty (o0 (X1, X2, X3)) = Ty (aX1, 0X2, 0X3).

= ((XX]_ + 00Xy, (XX3) =o (X1 + Xo, X3) =aoT (X]_, Xo, X3).

T, is not a linear transformation because

To (X1, X2, X3) + (Y1, Y2, ¥3)) = T2 (Xaty, Xo + Y2, X3 + Ya).
= ((Xaty1) (X2 +Y2), (X3 +Y3))

7 (X1 Xz, X3) + (Y1 Y2, ¥3) = T (X1, Xo, X3) + T (Y1, Y2, ¥a)-

A linear transformation T: V. — W is called an isomorphism if T is a one to one
mapping. Vector spaces V and W are said to be isomorphic if there is a an
isomorphism from V on to W. A vector space V is trivially isomorphic to itself
because the identity mapping is an isomorphism from V onto itself. If V. and W are
isomorphic and T is an isomorphism from V on to W then T"* : W — V is also-an

isomorphism.

In the theorem below we list some properties of isomorphisms.

Theorem 9.2.1: Let T: V — W be a linear transformation. Then

(1) T(0) = 0. Further if T is an isomorphism then T(v) = 0 implies v = 0.
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(2) If T is an isomorphism and S = {Vy, V,, ..., Vi} is a linearly independent set
of vectors in V then { T(V1), T(V.), ..., T (Vk)} is a linearly independent set
in W.

An important result for finite dimensional vector spaces is given in the theorem

below.

Theorem 9.2.2: Two finite dimensional vector spaces over the same field are

isomorphic if and only if they have the same dimension.

Corollary 9.2.1: Every n-dimension vector space over F is isomorphic to F". In

particular every n-dimensional vector space over R is isomorphic to R".

Next we shall define the null space and range space of a linear transformation. Let
T: V. — W be a linear transformation. The kernel of T, Ker T, is the set Ker T = {v
[1V:T(v) =0}The set T(V) ={T(v) : v [1 V}is called the range of T, denoted by
rang(T). It is an well-known result that Ker T = {0} if and only if T is an
isomorphism One can verify easily that Ker T is a subspace of V, called the null
space of T, and Rang(T) is also a subspace of W, called the range space of T. If V
and We are finite dimensional vector spaces then dimension of Ker T is called the
nullity of T and the dimension of rang(T) is called the rank of T. One should not
get confuse with these terminologies because very shortly we are going show that

linear transformations can be represented as matrices and the vice versa.

Example 9.2.2: (1) Consider the linear transformation T: R® — R? defined as:
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T((X1, X2, X3)) = (X1, X2, 0). Then Ker T is the z-axis and rang (T) = R°.

(2) Consider the linear transformation T: R® — R? given by T (X, Xz, X3) = (X1, O,

0). Then Ker T is the yz-plane and rang (T) is the x-axis.

Like matrices one can also have the rank-nullity theorem for linear

transformations.

Theorem 9.2.3: Let V and W be finite dimensional vector spacesand T: V — W

be a linear transformation. Then nullity of T + rank of T =dim V.

9.3 Linear Transformations from Matrices

Every linear transformation can be represented as a matrix and every matrix can
produce a linear transformation. So people sometime treat matrices as linear
transformations and vice versa. Here we shall discuss about the method to get a

linear transformation from a matrix.

Let VV and W be finite dimensional vector spaces over F with dimV =n and dim W
=n, and Ay« n = (@j)m « n be @ matrix over F (same field). From Corollary 9.2.1

every vector in V can be expressed as an n-tuple of elements in F, in other words,

Xl
we can take V = F"*! i.e. V consists of n x 1 matrices (or column vectors L, X;
Xn
Xl
1 F). Similarly elements of W can be taken as column vectors | - |, x; [1 F, I.e.
X
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Xy X,
W = F™ ! Then the mapping T: V — W defined as T | * | = Anxn
Xn Xn nx1l
> 2,
j=1
= : Is a linear transformation because
QX
j=1
" n 3
> ay (XJ T Y )
X1 y1 =1
A +| =< : > _
Xn yn -
> an (Xj T Y )
L J=1 )
" n 3 C n N
Zaljxj E :aljyj
i=1 i=1 X, Y.
J : L b < : L =A| : |+A]| :
n n
Xn yn
2_amX, > amY;
U5=1 ) U= }
and
ax, X,
Al  |=ai{A
ax, X

Notice that if A is an m x n matrix then we get a linear transformation from an n-

dimensional vector space to an m-dimensional vector space.
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1 3 -2
Example 9.3.1: Let A = (O 4 1 j be a matrix over R. The mapping T:
2x3

R*®— R given by:
1 3 2\
T(xl,xz,x3)T = X,
0O 4 1

X, +3X, —2X,
= Is a linear transformation.
4X, + X,

9.4 Matrix Representation of a Linear Transformation

Let V and W be vector spaces over F and T: V — W be a linear transformation.
LetdimV =n,dimW =m, {vy, V5, ..., Vp} and{wy, W,, ..., Wy} be bases for V
and W respectively. Note that T (v4), T (v2), ..., T (v,) are vectors in W and so
these vectors can be expressed as linear combinations of vectors in{wy, Wy, . . .,
Wn}. So let

T (V]_) = aptWwy + dioWo +...+ A1mWm.

T (Vo) = agWy + apWs + . .. + 8ymWi,.

T (V) = amWy + agWo + .. . + anmWn, Where a; [ F.

Then the matrix A given below is a matrix representation of T:
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aj;  ady v dy
dj, Ay vt A,
A : . . .
A Qo o Ay mxn

Note that if we consider different bases in V and W then we may get different
matrix representations of T (of course these matrices are all similar). In the above
if we represent T (vi) = (air, aip, . . ., ain)T. then the matrix corresponding to T can

be written as:
A= (T(vy) T(Vo). .. T(vpn)).

Example 9.4.1: Consider the linear transformation T: R® — R ? defined by T(xy,

Xo, X3) = (X]_ + Xo, 2X3).

Take bases B = {(1, 1, 0), (0, 1, 4), (1, 2, 3)} and B; = {(1, 0), (0, 2)} in R* and R?

respectively.
T(L, 1,0) = (2, 0) = 2(, 0) + 0(0, 2).
T(0, 1, 4) = (1, 8) = 1(L, 0) + 4(0, 2).
T(1, 2, 3) = (3, 6) = 3(, 0) + 3(0, 2).

2 1 3
So the matrix representation of T is the matrix(0 4 3)

9.5 Orthogonal Transformations
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Before defining orthogonal transformations we recall same terminologies defined

in the vector space R ". For any two vectors X = (X;, X, . . . , X,) and

Y =(Y1, Y2 - - ., ¥n) in R" the standard inner product of x and y, denoted by (x, y),

n
IS given by (x, y) = in Yi. Since (x, x) > 0, positive square root of
i=1

(x, x) denoted by || x||,is called the norm (or length) of x. Two vectors x and y

in R" are said to be orthogonal if {x, y) = 0. A basis {vi, V5, ..., Vv, } of R"is
said to be an orthonormal basis if (V;.V;)=0for 1 <i#j<n,and| vl =1 for

allk=1,2,...,n.

Recall that a real square matrix A of size n is said to be orthogonal if A A" = ATA
= I, where 1 is the n x n identity matrix. Orthogonal matrices satisfy the following
properties: (1) A" = A" ' (2) det A = +1 and (3) Product of two orthogonal

matrices of the same size is orthogonal.

A linear transformation T: R" — R " is called an orthogonal transformation if
(T(u), T(v)) = (u,v) for every vectors u and v in R ". So an orthogonal

transformation not only preserves the addition and scalar multiplication, it also
preserves the length of every vector.
An orthogonal transformation is also called an isometry because of the following

result.

Theorem 9.5.1: A linear transformation T: R " — R " is an orthogonal

transformation if and only if || T(v) || = || v || for all vectors vin R".
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2X-y x+2y]
. : ‘w2 m2 defi | == = |
Example 9.5.1: The mapping T: R R “ defined as T(X, y) ( NN IS

an orthogonal transformation. One can check that T preserves addition and scalar

multiplication and hence is a linear transformation. Next we show that
I T y) || = 11 (%, y) ||, for all vectors (x, y) in R?.
1T y) 1l = i{(2x-y)z + (x+2y)2}; .
’ 5

1
:%{SXZ +5y?12 = \x*+y* = |[(x.¥)Il.

In the following theorem we show that the matrix associated with an orthogonal

transformation is also orthogonal.

Theorem 9.5.2: Let T: R" — R " be an orthogonal transformation and A be the
matrix representation of T with respect to the standard basis {e1, &5, ..., e} in R".

Then A is an orthogonal matrix.

Proof: The matrix representation of T can be written as A = T(ey), T(ey), . . .,

T(e,)). Since T is an orthogonal transformation,<T(ei),T(e,-)>=<ei,e,-> The

standard basis in R" is orthonormal. So <T(ei),T(ej)> is equal to 1 if i = j and is

zero otherwise (i.e. i#j). Thus A A" = | and A is orthogonal.

9.6 Conclusions
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Linear transformations are used to recognize identical structures in linear algebra.
Using these transformations one can transfer problems in a complicated space to a
simpler space and then workout. Orthogonal transformations are also applied for

reduction of matrices to some important foms.
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Lesson 10

Quadratic Forms

10.1 Introduction

The study of quadratic forms began with the pioneering work of Witt. Quadratic
forms are basically homogeneous polynomials of degree 2. They have wide

application in science and engineering.

10.2 Quadratic Forms and Matrices

Let A = (a;) be a real square matrix of size n and x be a column vector x = (X3, Xy,

..., X»)". A quadratic form on n variables is an expression Q = x" A x.

In other words,

Q=x"Ax= (X1 X0 vy Xy)
a'n]_ coo a X
= apXe” + AXaXo F . .+ AgXaXn F XXy F AgoXoT L Lt BpXoXn + L F A XXy +

n

n
AnoXpXp + ... F annxn2 = Zzaijxixj .
=1 i1

The matrix A is called the matrix of the quadratic form Q. This matrix A need not
be symmetric. However, in the following theorem we show that every quadratic
form corresponds to a unique symmetric matrix. Hence there is one to one
correspondence between symmetric matrices of size n and quadratic forms on n

variables.
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Theorem 10.2.1: For every quadratic form Q there is a unique symmetric matrix B
suchthat Q =x"B x .

Proof: We consider an arbitrary quadratic form Q = x' Ax, with A = (a;j). We
aij+ aji

2

A x = X' B X, i.e. quadratic forms associated with A and B are the same.

construct a matrix B = (b;;), where bj;; = . This matrix B is symmetric and x"

1 2 3
Example 10.2.1: For A=|4 5 6 the quadratic form associated with A is
7 8 9
1 2 3)(x,
o=(% X, X3)|4 5 6%,
7 8 9)\ X,

= X12 + 2X1X2 + 3X1X3+ 4X2X1 + 5X22 + 6X2X3+ 7X3X1 + 8X3X2 + 9X32.

= X;2 + 6X1Xp + 10X Xg+ Xo° + 14XoXs+ TXaXq + 9X32.

This quadratic form is equal to the quadratic form x' B x where B =

o1 w o
~N O w
©O© N o

which is a symmetric matrix.
If D is a diagonal matrix then the quadratic form associated with D is called a

diagonal quadratic form, that is if D = diag (a11, 8z, - . . , @) then X' D X = agx;® +

axnX,” + ... + a,X.. This is also called the canonical representation of a quadratic
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form. The theorem below says that every quadratic form has a canonical

representation.

Theorem 10.2.2: every quadratic form x" A x can be reduced to a diagonal
quadratic form y' D y through a non-singular transformation Px =y, that is, P is a

non-singular matrix.

The above theorem says that, for x = (X, Xz, . . ., X,)' and Yy = (Y1, Vo, . . ., Vo),
variables Xy, Xo, . .., X, in X" A x can be changed to yy, ¥y, . . ., yn through Px =y,
P is a non-singular matrix, so that x' A x =y' D y, where D is a diagonal matrix.

We shall explain the above result through some examples.

Example 10.2.2: We reduce the quadratic forms (a) 4x:° + X;° + 9x3> — 4x;X, +

12x:x%3 and (b) XX, + XoX3 + X3X; to diagonal forms.

For (), 4x;,° + X,° + 9X5” — 4X1X; + 12X;X3

= 4{X12 + X1(3X3 - Xg)} + X22 + 9X32

2 2
=4 {xf + 2% 2 (3}‘3_“2) }+ X7+ 9x, % — 4(—“3_“2)

2 2
2
3 —_
=4 (Xl + %) + X22 + 9X32 - 9X32 + X22 + 6XoX3.

= (2X1 + 3X3 — Xp)* + 6XoXs.

We change the variables as: X; = y;, X, = y,, and X3 = y, + y3. Then the above

expression (2x; + 3Xs — X)% + 6XXs
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= (2y1+ 3y2 + 3y3 = ¥2)* + 6Y2 (Y2 + Va)
= @+ 22+ 3y + 6yt + 2y, 24 (%) ]-6 ()
-(2y1+2y2+3y3)+6(r "—)——y
= (2y1 + 2y, + 3ys)’ + = {2y, + ya)* — 47}

Finally changing the variables as 2y; + 2y, + 3y; = 7, 2y, + y3 = Z, and y3 = z3, we

get the above quadratic form is Zi? + g (z,% — z3%) which is in diagonal form. Here

the transformation Px = z is non-singular, because here P is the non-singular the

2 -1 3
matrix [0 1 1
0O 1 -1

For the (b) part the quadratic form is XX, + XoX3 + X3X;. Here no square term is

there and since the 1% non-zero term is x;x,, we change the variables to x; = i,

Xo =Y; + Y, and X3 = ys. So thisform isy; (1 + yo) + (Y1 + Y2) Yz + V13
= V1% + V1Yo + YiYs + YoYs + Y1y

=yys + vy, + 2y + Y2Y3

{yl + 2.y, (B2 4 (L) } (222 ) s vy,

2 2

2 4
= (}’1 + Lﬁh) - ;{}’22 + 4y5° + 4y.yaltYays.

2

= i (2y; + yo + 2y3)*- §Y2ZY32-
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Finally replacing 2y; + 2y, + 3y; = z;, and y, = z, and y; = z3 the above form will

1 . . .
reduce to " (z,2— z,%) —z3° Here also the transformation Px = z is non-singular

1 1 2
asthe matrix Pis | 1 =1 0| which is non-singular.
0O 0 1

10.3 Classification of Quadratic Forms

Quadratic forms are classified into several categories according to their range.

These are given below.

Definition 10.3.1: A quadratic form Q = x" A x is said to be
(i) Negative definite if Q <0 for x # 0.
(i1) Negative semi-definite if Q <0 for all x and Q = 0 for some x # 0.
(i11) Positive definite if Q > 0 for x # 0.
(iv) Positive semi-definite if Q > 0 for all x and Q = 0 for some x # 0.

(v) Indefinite if Q > 0 for some x and Q < 0 for other x.

Since there is one to one correspondence between real symmetric matrices and
quadratic forms similar kind of classification is also there for the symmetric
matrices. A real symmetric matrix A belongs to a class if the corresponding

quadratic form x" A x belong to the same class.

Example 10.3.1: The form Q; = — x,° — 2x,% is a negative definite form where as:
Q, = — x,° + 2X; X + X,° is a negative semi-definite because Q, = — (x; — X,)* which

Is always negative and also takes value zero for x; = X, # 0. The form Qs = 2%,° +
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3x,% is positive definite where as: Qs = X° — 2X1X, + X,° is positive semi-definite.

Finally Qs = x,* — X, is an indefinite form.

10.4 Rank and Signature of a Quadratic Form

To define rank and signature of a quadratic form we use its diagonal representation

as given below.

For a real symmetric matrix A let P(A) and N(A) be the numbers of positive and
negative diagonal entries in any diagonal form to which x"A x is reduce through a
non-singular transformation. The number P(A) — N(A) is called the signature of
the quadratic form x" A x. However rank of the matrix A is called the rank of the

form x" A x.

The quadratic form in example 10.2.2(a) has signature equal to 1 where as that in

example 10.2.2(b) has signature — 1.

The classification of quadratic forms can also be done according to their rank and

signatures as given in the theorem below.

Theorem 10.4.1: Let Q = x" A x be an n variable quadratic form with rank r and

signature s then Q is
(i) Positive definite if and only if s =n.
(i1) Positive semi-definite if and only if r = s,
(i11) Negative definite if and only if s =—n.

(iv) Negative semi-definite if and only if r = —s.
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(v) Indefinite ifand only if |s| <.

The following is an important result on non-singular transformation of quadratic

forms.

Theorem 10.4.2: Two quadratic forms on the same number of variables can be
obtained from each other through a non-singular transformation if and only if they

have the same rank and signature.

10.5 Hermitian Forms

The complex analogue of real quadratic form is known as Hermitian form. Here all

vectors as well as matrices are taken as complex.

For a vector x in  "land a hermitian matrix A, the expression X'A x is called a
Hermitian form where x is complex conjugate of x. Notice that if x and A are real

then Hermitian form will be a quadratic form only.

Although the vector x and the matrix A are complex, the Hermitian form always

takes real value that can be seen in the theorem below.

Theorem 10.5.1: A Hermitian form takes real values only.

Proof: Let H = x" A x be a Hermitian form. Complex conjugate of H is

H=FAx)=(x')Ax=x"AX
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T — —
Since H is a scalar, H=H" = (x'Ax) =x"ATx. Since A is Hermitian A = 4, so

H=x"Ax=X'ATx=H"=H. Therefore A is real.

2 3+i
Example 10.5.1: Consider a Hermitian matrix A :[3—i 1 j The Hermitian

form associated with this is

e 0,2, ()

=24 X, tB+H) XX +(B-1) X, X4 + X X5,
=2/ %P+ 2Re {(3+ 1) x, X} + | X2 [*

which is a real number.

10.6 Conclusions

Vast literature is there on quadratic forms, to know them on should do further
reading. Quadratic forms occur naturally in the study of conics and quadrics in

geometry.
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e-course Linear Algebra problems

1. Identify the following matrices as symmetric, skew-symmetric, Hermitian, skew-Hermitian or none?

2 0 2
(&) |5 1 0
0 6 3
0 -1
(b) 1
-1 1 3
0 -1
()] -5 0 -1
1 0
1 -1 7
@l-1 o 1-i
—i 1+ 2
) —i 341
(e) —1 ] 0
-3+7 0 3

2. Whether the system below is consistent? Justify.

T+ 2y — 3z
3r—y+2z =
5+ 3y —4z =

3. Solve

r+2y—3z4+2w =
2z 4 5y — 8z + 6w
3r+4y —5z+42w =

4. Find rank of the matrix given below.

1 2 -3 0
2 4 -2 2
3 6 -4 3

5. Check whether the following are vector spaces?

(a) Let V' be the set of all real polynomials of degree > 5, with the usual addition and scalar

multiplication.

(b) Let V be the set of all nonzero real numbers with addition defined as = + y = zy and scalar

multiplication defined as ax = x.
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6. In the following, find out whether S forms a subspace of V7

(a) V=R3 S ={(x1,79,23) : 71 + b2 + 323 = 0}

(b) V=R3 S ={(x1,29,73) : 21 + 519 + 3x3 = 1}

() V=R3 S={(z1,22) : 71 > 0,22 > 0}

(d) V = P(R), the set of all polynomials over reals and S = {p(x) € P(R) : P(5) = 0}
(e) V=R"S={(x1,72,.... %) : T1 = T2}

(f) V=R3S={(z1,22,....2,) : 23 = 23}.

7. Prove or disprove:

(a) Union of two subspaces of V' is a subspace of V.

(b) Intersection of any number of subspaces is a subspace.

8. If x, y, z are linearly independent vectors then whether z+vy, y+2, z+x are linearly independent?

9. For what values of k, do the vectors in the set {(0,1,k), (k,1,0),(1,k,1)} form a basis for R3?

10. Check whether the following set of vectors are linearly dependent or independent.

(a) §={(1,2,-2,—1),(2,1,-1,4), (~3,0,3,—2)}

(b) S={(1,3,-2,5,4),(1,4,1,3,5),(1,4,2,4,3),(2,7,-3,6,13)}

11. Determine whether or not the following form a basis for R3?

(a) {(17 17 1)3 (1’ 717 5)}

(b) {(1,1,1),(1,2,3),(2,—-1,1)}

(C) {(1’ 27 S)a (1707 _1)a (37 _1a 0)7 (27 ]-7 _2)}

(d) {(1,1,2),(1,2,5),(5,3,4)}

12. Let W be a subspace of R® generated by the vectors in 10(b). Find dimension and a basis for it.

13. Applying Gauss Jordan elimination method find inverse of the matrix

2 0 -1
A=15 1 0
01 3
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14. Whether f is a linear transformation in each of the following? If yes then whether it is as isomor-

15.

16.

17.

18.

19.

20.

phism?

(a) f: R? — R?, f(xy,m2) = (21 + 22, T122).

(b) f: R3 — Rs, f(z1,m2,23) = (22,21,0).

(C) f : RB - Rga f(xhﬂjg,l'g) = (1’1,1’3,$1).

(d) f : ]RB - RSa f($17$2,$3) = (Z’l - 27562 - 4,$3)~

Let T : R® — R? be a linear transformation defined by T'(z1,z2,23) = (v1 — 72,21 + 23). Find
the matrix of T with respect to the basis {u1,uz,uz} of R® and {u},ub} of R? respectively, where
up = (1,—-1,0), ue = (2,0,1), uz = (1,2,1), v} = (-1,0) and u = (0,1).

For the system

T+ 2y —z =
2x 4+ 5y + 2z
r+4dy+7z =
T+ 3y + 32

o O o O

find the solution space as well as its dimension.

2 1 0
Consider the matrix A=]0 1 -1
0 2 4

For this find all eigenvalues and a basis for each eigenspace. Is A diagonalizable?

Applying Cayley-Hamilton theorem find inverse of the matrix

1 20
-1 1 2
1 2 1

Find the symmetric matrix of the quadratic form 2;10% + 2x129 — 6273 — ac%

Check whether the matrices below are positive definite or positive semi-definite?

10 2 0
@2 4 6
0 6 10
8 2 -2
) [ 2 8 -2
—2 -2 11
3 10 -2
i) |10 6 8
—2 8 12
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Answer and Hints

1. (a) none (b)symmetric (c¢) skew-symmetric (d) Hermitian (e) skew-Hermitian

2. Not consistent. Check that rank of the co-efficient matrix is 2 where as that of the augmented

matrix is 3.

3. Check that the system is consistent, where the rank of both the co-efficient matrix and augmented

matrix is 2. In echelon form the system is

r4+2y—32+2w = 2
y—22z4+2w =

Taking z and w as free variables, i.e., z = o, w = (3, we get the set of all solutions is {(—a+28,1+
200 — 28,0, 0) : o, B € R}.

4. Making elementary row operations Ry — —2R; + Ry, R3 — —3R; + R3, R3 — —5Ry + 4R3, get

1 2 -3 0
an echelon form [0 0 4 2
0 0 0 2

Thus rank of the given matrix is 3.

5. (a) Not a vector space because zero vector is not there.

(b) Yes, it is a vector space as it satisfy all the axioms. Here 1 is the zero vector, and for any

1

vector x its negative vector is .

6. (a) yes, (b) neither closed under addition nor under scalar multiplication; (¢) not closed under

scalar multiplication, (d) yes, (e) yes, (f) not closed under addition.

7. (a) No, Counter Example: V = R2, S; = {(z1,22) : 21 = 22}, S2 = {(21,72) : 11 + 225 = 0}.
(]., 1) € Sl, (72,1) € Sy but (1,1) + (72, ].) = (71,2) € Sl,SQ.

(b) Yes. Let S;(i = 1,2,---) be subspaces of V and S =NX,S;. z,y € S = z,y € S; Vi. Then
x4y €S; Viand so x +y € S. Similarly S is closed under scalar multiplication. So (b) is true.

8. Yes, linearly independent.
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10.

11.

12.

13.

14.

Taking scalar multiplication of the vectors and equating to 0 one gets the system in «, [3,7,
Bk+~v=0

a+pB+k=0

1 1 k
ak + v = 0. An echelon form of the system is | 0 &k 1

0 0 2—k?

The system should have unique solution and hence rank of this matrix is 3. So k2 # 2. k can not
be equal to zero otherwise the set will have only two vectors. So k can be any real number other
than 0 and +v/2.

(a) Echelon form of the corresponding matrix
1 2 -2 -1 1 2 -2 -1
2 1 -1 4 ]is|0 3 —3 —6]. So the given set of vectors are linearly independent.
-3 0 3 =2 00 -3 -7

(b) Echelon form of the corresponding matrix

1 3 -2 5 4 1 3 -2 5 4
14 1 3 5 0o -1 -3 2 -1
is . So the given set of vectors are linearly dependent.
1 4 2 4 3 0 O T 1 -2
2 7 -3 6 3 0 0 0 0 0

(a) No, because dimR3 = 3.
(b) Yes, because the set is linearly independent.
(¢) No, because it contains more than 3 vectors.

(d) No, because it is linearly dependent.

First 3 rows of the echelon form in 10(b) forms a basis for W. Therefore dim W = 3.

2 0 —-1|1
Consider (A|I)=1 5 1 0 |0
01 3|0 01
Apply each of these elementary row operations in the updated matrix Ry — %Rl, Ry — Ry —5Ry,
R3 — R3+ Ro, Ry — Ry + R3, Ro — — Ry, Ry — R — 5R3, R3 — 2R3 and get

0 0
1 0

100 3 -1 1 3 -1 -1
01 0/-15 6 -5 |.So, A t=]-15 6 =5
001, 5 =2 2 5 =2 2

(a) No. (b) Yes; not an isomorphism. (c¢)Yes; an isomorphism. (d) No
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16.

17.

18.

19.

20.

-2 -2 1
T(ug) = (—1,2) = 1(—1,0) 4+ 2(0,1). So, answer is ( L3 2).

The system in echelon form is

T+2y—z =
y+4z =

The solution space is {(9a, —4o, ) : @ € R}. It’s dimension is 1.

Eigenvalues are 2,2, 3. Basis for eigenspace corresponding to 2 and 3 are {(1,0,0)} and {(1,1,-2)}
respectively. The matrix is not diagonalizable beacuse sum of dimension of eigenspaces is not equal
to 3.

-3 -2 4
Characteristic polynomial is —A* +3A2 = A+3. So A™' = $(A2 -34A+1)=3| 3 1 -2
-3 0 3
2 1 0
-1 3
0 3 0

(i) Positive semi-definite.
(ii) Positive definite. (iii) Neither of them.

WhatsApp: +91 7900900676 www.AgriMoon.Com



Module 2: Complex Variables

Lesson 11

Limit, Continuity, Derivative of Function of Complex Variable

11.1 Introduction

First we introduce some basic notations and terminology for the set of complex

numbers as a metric space.

11.1.1 Circle, Disk and Annulus

Let |z|=1be the unit circle and let |z—a|= pdenote the circle of radius pand
centre a. |z —a|<pdenotes the interior of the circle of radius pand centre a .
It is also called an open circular disk. Similarly |z —a|£pis the closed circular
disk and |z —a|> pis the exterior of the circle.

The open circular disk |z — a| < pisalso called a neighbourhood of a.

Also p < |z — a| < p,denotes an open annulus or a circular ring.

11.1.2 Half-Planes

The following notations are used for half-planes:
(i) {z=x+1iy:y >0} —>upper half-plane
(i) {z=x+iy:y <0} —lower half-plane
(iii) {z=x+iy:x>0} —>right half-plane

(iv) {z=x+iy:x <0} —>the left half-plane
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Limit, Continuity, Derivative of Function of Complex Variables

11.1.3 Interior, Exterior and Boundary Points

A point z,is said to be an interior point of a set D if there is a neighbourhood of

z,that is entirely contained in D.

A point z,is called an exterior point of a set D if there is a neighbourhood of z,

which does not have any point of D.

A point z,is called a boundary point of a set D, if every neighbourhood of

z, contains points of D as well as points of D°.
11.1.3.1 Example: The boundary of the sets, |z|<1 or |z|<1 is |z|=1.

11.1.4 Open and Closed Sets

A set D is said to be an open set if all its points are interior points. For example,

the open circular disk, the right half-plane etc. are open sets.

A set is closed if it contains all its boundary points. The closure of a set D is the

closed set consisting of all points in D together with the boundary of D.

11.1.4.1 Example: The set {z:]z|< p}is a closed set.

11.1.4.2 Example: The set {z:0<|z|<1} is neither open nor closed.

11.1.4.3 Example: The set of all complex numbers is both open and closed.

11.1.5 Connected Sets, Bounded Sets, Domain

An open set D is said to be connected if each pair of points z, and z, can be
joined by a polygonal line, consisting of a finite number of line segments joined

end to end, that lies entirely in D.
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Limit, Continuity, Derivative of Function of Complex Variables

11.1.5.1 Example: The open set {z:|z| <1} is connected.

Example: The open ring {z:1<|z| < 2} is connected.

An open connected set is called a domain. Any neighbourhood is a domain. A
domain together with some, none or all of its boundary points is called a region.

A set D is closed if and only if its complement is open.

A set D is bounded if every point of D lies inside some circle |z| =R, otherwise

it is unbounded.

A simple closed path is a closed path that does not intersect or touch itself. A
simply connected domain D in the complex plane is a domain such that every
simple closed path in D enclosed only points of D. A domain that is not simply

connected is called multiply connected.

11.1.5.2 Example: The set {z § I |z| < 2} Is bounded whereas right half plane is

unbounded.

11.1.6 Examples

1. |z —2+ i| <1 closed, bounded

N

. |22 +3|> 4 open, connected set, unbounded

3. Imz>1 open, connected , unbounded
4, Imz=1

5. Osargzs%,(z;tO)

»

. |z—4|2|z|
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Limit, Continuity, Derivative of Function of Complex Variables

7. |Re z| < z|

8. Re(EJ si
Z 2

9. Re(zz)>0

11.2 Function

Let D be a set of complex numbers. A function f defined on D is a rule that
assigns to each z in D a complex number w. The number w is called the value of
f at wand is denoted by f(z); that is w = f(z). The set D is called the domain
of definition of f. The set of all values of a function f is called the range of f.

Suppose that w = u + iv is the value of a function fat z = x + iy, so that

u+iv=f(x+1iy)

Each of the real numbers u and v depends on real variable x and y, and so it
follows that f(z) can be expressed in terms of a pair of real-valued functions of

the real variables x and y:

(@) =ulxy) +iv(x,y)

Converse is not true, i.e., given two real functions (x, y) we may not be able to
define a complex function of z = x + iy in an explicit form, for example,

w = (2x+vy)+i(bxy).

11.2.1 Function in Polar Form: If the polar co-ordinates  and & are used then

i0

u+iv=f(re”), wherew =u+iv and z=re’. So we may write

f(z)=u(r,0) +iv(r,0).
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Limit, Continuity, Derivative of Function of Complex Variables

11.2.2 Example: If f(z)=2z% then f(x+iy)=(x+iy)*= (X" —y?)+ 2ixy
Hence u(x,y) =x"—y*, v(x,y) = 2xy.

When polar co-ordinates are used,

f(re”)= (re“g)2 =%’ = r?c0s26 +ir?sin 26. Consequently,

u(r,0) =r?cos26, v(r,0) =r?sin20. If v is always zero then f is a real-valued

function of a complex variable. For example, f(z) = |z|2 = (x2 + yz).

11.2.3 Polynomial and Rational Functions

Ifa,,a,,...,a are complex numbers,a, #0,n>0,thenP(z)=a, +a,z+...+a,z"is
a polynomial of degree n.The domain of z is the entire complex plane. For

example, P(z) =1+ 2z —3z%

: P(z . : . .
Quotients Lof polynomials are called rational functions and are defined at
z
2
each point z, where Q(z) = 0. For example, g(z) = 22 _4223.
+

11.2.4 Examples
1. Domain of definition of f(2) :iis the entire complex plane excluding the
z

origin.

2. Domain of definition of f(z)= . L ~1s the entire complex plane excluding

the circle |z|:1.
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Limit, Continuity, Derivative of Function of Complex Variables

11.2.5 Multiple-Valued Function

If to each value of z, there are several values of f(z), f is called a multiple-

1
valued function. For example, if w=z", then w may take any of n values:

1{ (9+2kﬁ) . (9+2kﬁj}
Wk=Z” COS o +1SIN o

for k =0,1,...,(n— 1). In such cases, we consider those parts of the domain in

which the multiple-valued function behaves like a single-valued function. Each
one of these single valued functions is called a branch of the multiple-valued

function.

11.3 Limit of a Function

Let a function f be defined in some domain D containing z,. We say that

lim f(z)=s,if for every e>Othere exists 6>0 such that |f(z)-s|<e

72124

whenever |z -z,|<§.

11.3.1 Examples

1. limZ_2!
72 3

%(z —2)‘ :%|z -2 <%<e whenever|z—2|<5and 5 <3e.

2. Iingédoes not exists, as along (x,0), ézﬁzland along (0,v),
250 7 Z X
2.0
Z -y
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Limit, Continuity, Derivative of Function of Complex Variables

3. Iim[\/z—3| \/2+,]_|,m[(2—3i)—(z+i)]

7 9% 73 +z+I

=lim 4 =lim “4ivu =0.
o0 7 -3 +/7 +1 U*O\/l 3iu+1+iu

11.3.2 Theorem: Suppose that f(z) = u(x,y) +iv(x,y), z,=X,+1iy,, and

W, =U, +iv,. Thenlim f(z)=w, if and only if lim  u(x,y)=u,

11y (%,¥)—>(%0,Y0)

and lim  v(x,y)=V,.
(XY)=>(% Yo)

11.3.3 Theorem: Suppose that limf(z)=¢, and limg(z)=/,. Then
lim[f(2)9(2)]=a,+B, . lim[f(2)9(2)]=c,p,, and if B =0, then
Ilmf(z) aO

= g (Z) :Bo

11.3.4 Infinite Limits and Limit at Infinity

We say that lim f(z) = if for every positive >0, these exists ¢ >0 such

7217,

that |f (2)| > whenever z-2z,<5.
S

z+3
11.3.4.1 Example: Ilm( * ):oo
-1 741

We say that lim f(z)=w,if for every >0 there exists ¢ >0such that

Z—»00

z—0

| f (z) — w,| <e whenever |z |>i Equivalently, we can say that Ilmf(lj W, .
z
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11.3.4.2 Examples: im22- 22 iy lim—2— = |
o0 741 250 2 — iz

We say that limf(z)=wif for everye>0, there exists 6>0 such that

Z—0

| (2)|> lwhenever 2| > % One can alternatively say Iirrgi1 =0.
[= Z—>
z

3 —
11.3.4.3 Example: lim22—2
oo 741

=0

11.4 Continuous Function
A function f is continuous at a point z, if limf(z)=f(z,). Using the

definition of limit, we define f is continuous at z if for every > 0, there exists

& >0such that | f (z) - f (z,)| < ewhenever |z -z,|< & .
Compositions of continuous functions are again continuous.

1141 Remark: If f(z) is continuous, let g(z)="f(z). Now

19(2) - 9(z,)|=|f(2) - £ (z,)| =|f (2) - f(z,)]<e , whenever |z-z)|<5. So

g(z) is also continuous.

11.4.2 Examples
1. f(z)=2%is continuous on the whole complex plane.

sinz
2.

f(z)=1 — s continuous except at z =+i.
+Z
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(1m(z)

220
3. f(2)={ [

4. f(2)=1 |

are not continuous at z = 0

ﬂ yAERN
5 f(@)=qz+i’
0,z=-1I

IS not continuous at z = —ias lim f(z) =-2i = f (-i).

11.5 Differentiability of a Function

The derivative of a complex function f at a point z,is defined by

lim f(z, +Az) - f(z,) £(2,)

Az—0 AZ

provided the limit exists. Then the function f is said to be differentiable at z,.

11.5.1 Example: f (z) = z°

2 (N2
lim Zo A2 =(Z0)" _ i (a7 4+ 22) = 22

Az—0 AZ Az—0

11.5.2 Remark: It can be easily seen that the differentiability of a function at a

point implies its continuity at that point.
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General differentiation rules are the same as in real calculus such as
(cf) =cf', (f+qg)=1"+q',(fg) =g+ fg'.

(éj :fgg;zfgprovided g does not vanish.

11.5.3 Examples:

1. f(2)=17.

f(z,+A2)— f(z) (2, +A7)—(2,) Az AX—idy
Az Az AZ  AX+IAY

Now for Ay=0 this value is +1 and for Ax=0, it is —1. Hence

lim f(z,+Az)- f(z,)
Az—0 AZ

does not exist for any z. That is, f|z|=Zis not

differentiable at any point.

2. f(2)=|z[ =2z

f(z+A7)—f(z) (z+A2)(Z+A7)-2Z
Az Az

=724+ 7T+Az

AZ

f(0+A2)- f(0) _—

Now for z = 0, AZ
Az

which has limit 0 as Az — 0. Hence |z|2is differentiable at z = 0. However for

any z=0, llmo% does not exist. Consequently |z|2iS not differentiable at any
z—> Z

other point.

3. f(z) =Re(z)is not differentiable for any z.
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4. f(z)=1Im(z)is not differentiable for any z.

5 f(z)=7"

(z +A§2n -7 :iﬁsz“mz +(;]Z"2(Az)2 +...+[:J(A2)n}

—nz"tas Az — 0.

Hence i(z“): nz"* for all z.
dz
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Module 2: Complex Variables

Lesson 12

Analytic Function, Cauchy-Riemann Equations, Harmonic Functions

12.1 Analytic Functions

A function f(z) is said to be analytic at a point z,if it is differentiable at z,and
also at each point in some neighbourhood of z,. The function f is said to be
analytic in a domain D, if it is analytic at every point in D.

Analytic functions are also called holomorphic functions.

12.1.1 Examples:

1. f(z)=2z", na positive integer, is analytic at every point in the complex plane.

2. p(z)=a,+az+..+a,z"wherea,,a,...,a,are complex constants is analytic

at every point in the complex plane.

3. (2) =%, where P and @ are polynomials, is analytic at all points except

where @(z) vanishes.

12.1.2 Entire Function

A function which is analytic at all points in the complex plane is called an entire

function.

12.1.3 Examples:

1. Every polynomial is an entire function.

2. f(2)= |z|2is not analytic anywhere as it is differentiable only at z = 0.
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Analytic Function, Cauchy-Riemann Equations, Harmonic Functions

A function f(z) is said to be analytic at z =ooif f (ljis analyticat z = 0.
Z
Let us write the function

f(@) =ulxy) +iv(xy)

and let u,,u v, v, denote the partial derivatives of u and v with respect to x

and y respectively.
12.2 Cauchy-Riemann Equations

u=v,u =v (12.2.1)

12.2.1 Theorem: Let f(z) = u(x,y) + iv(x, y) be defined and continuous in
some neighbourhood of a point z = x + iy and differentiable at z itself. Then at
that point the first order partial derivatives of « and v exist and satisfy the

Cauchy-Riemann equations (12.2.1).

Hence, if f(z) is analytic in a domain D, then partial derivatives exist and

satisfy (12.2.1) at all points of D.

Proof: Given that f'(z) = lim f(z+Az)-1(2)

exists. This implies that
Az—0 Az

- {[u(x +AX, Y + AY) + V(X + AX, Y + Ay) | = [u(x, y) +iv(X, y)]}
(A%, Ay)—(0,0) (AX +1Ay)

exists.

Hence along (Ax,0)and (0, Ay)the limit should be same. Now along (Ax,0) the

limit is
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Analytic Function, Cauchy-Riemann Equations, Harmonic Functions

lim (U(x+ A%, y) —u(x, y)) +i(v(x+ Ax, y) = V(X,Y))

AX—0 AX

=Uu, (X, y)+iv (X, Y), (12.2.2)

since limit is assumed to exist.

Similarly along (0, Ay) the limit is

lim (U(x, y +Ay) —u(x, y))+i(v(x y +Ay) —v(X,Y))
Ay—>0 IAY

=iu (X, y)+v,(x,y) (12.2.3)

Equating the real and imaginary parts in (12.2.2) & (12.2.3), we get the Cauchy-

Riemann equations.

12.2.2 Example:
1. Let f(z)=Z=x-ly, u=x,v=-y. It can be easily seen that
u,=Lv,=-1u =0,v, =0. Hence the Cauchy-Riemann equations are not

satisfied. So f cannot be differentiable at any point.

2.Letf(z)=£= 2X > 2y - 2#0
Z X +y X“+y
22
uxzu:v ,u :—Lzz—vxexcept at z=0. The function is

(x2+y2)2 Y (x2+y2)

nalytic everywhere except at z = 0.

12.2.3 Theorem: If two real-valued continuous functions w(x, y) and v(x, y) of

two real variables x and y have continuous first order partial derivatives that
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Analytic Function, Cauchy-Riemann Equations, Harmonic Functions

satisfy the Cauchy-Riemann equations in some domain D, then the complex

function w = f(z) = u(x, y) + iv(x, y) is analytic in D.

Proof: Consider a neighbourhood of z. Now the partial derivatives of u(x, )

and v(x, y) are continuous. Therefore, we can write
Au=u(X+AX Yy +Ay) —u(X,y) =UAX+U Ay+ € AX+ €, Ay,
and  Av=V(X+AX, Y +Ay) = V(X Y) =V AX+V Ay+ €, AX+ €, Ay,

where €, €,, €;,€,— 0asAx, Ay — 0.

Now Aw= f (z+Az)- f(z) =Au+iAv

= (U, +iV,)AX+ (U, +1V )AY + (€, +i €,)AX + (g, +i €,)Ay

If we apply Cauchy-Riemann equations, the above expression reduces to
AW = (U, + 1V, )AX + (V, +1U,)AY + (€, +1 €;)AX + (€, +i €,) Ay

= (U, +1V,) (AX+IAY) + (€, +i €;,)AX + (€, +i €,)Ay.

5o | f(z+Az)- f(z)—(ux+
AZ

iv,) < |(e1 +i es)| + |(e2 +i e4)|

g
Az

Ay
Azl

Using the fact that Ii)Z(I Sl&IiZI <1, we get

lim f(z+Az)-1(2)
Az—0 AZ

=U, +iv, =u, +iv,.

This proves that f is differentiable at an arbitrary point in D and so it is analytic

in D.
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12.2.4 Examples:
1. f(z)=2°=x>-3xy* +i(3x*y — y®)is analytic in D.
(z)°

2. t(2)=1 7 270

0, z=0.

Then Cauchy-Riemann equations are satisfied at (0,0) but f is not differentiable

at (0,0).

3. Let f(z) be analytic in a domain D and| f (z) |=k forall ze D. So writing

f(2) = u(x,y) + iv(x,y), we get u®+v’=k?>. Differentiating with respect to
x and y we get

uu, +w, =0 (12.2.4)

and uu,+w, =0 (12.2.5)

Using v, =-u, in the first equation and v, =u, in the second equation, we get
uu,—vu, =0 and uu +vu, =0

:>(u2+v2)uX =0, (u2+v2)uy =0
If u*+v?=k?>=0 then u =0 =wvandhence f = 0.

If k=0 then u, =u, =0, then v,and v, are also zero. So u = const. , v = const.

This proves that f is constant.
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12.2.5 Polar Co-ordinates

Let x=rcosd,y=rsing. Consider the function w = f(z). If we write
z = x + iy, then the real and imaginary parts of w = u + iv are expressed in
terms of the variables x and y. Similarly, if we write z= re',(z#0), the real
and imaginary parts of w = u + iv are expressed in terms r and 8. Assume
the existence and continuity of the first-order partial derivatives of w and v with
respect to x and y everywhere in some neighbourhood of a given non zero point
z,. Then the first order partial derivatives with respect to » and & will also exist

and be continuous in some neighbourhood. Using the chain rule for

differentiating real-valued functions of two real variables we obtain

u_dudu oudy u_oudu oudy
or oxor oyor 00 oxo6 oy oo

so that u, =u, cos@ +u,sind, U, =—u, rsind+u, rcosé. (12.2.6)
Similarly v, =v, cos@ +v,sind, v,=-v, rsind+v, rcoso. (12.2.7)

If the partial derivatives with respect to x and y also satisfy the Cauchy-

Riemann equations u, =v,,u, =-v,at z,, then equation (12.2.7) becomes
V, =-U,cosf+u,sind,v, =u rsing+u,rcosd (12.2.8)

r —

Comparing (12.2.6) and (12.2.8), we get
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u, = Eve andv, = —Eug. (12.2.9)
r r

12.2.6 Theorem: Let the function f (z) =u(r,8) + 1 v(r,0) be defined throughout
some e-neighbourhood of a non-zero point z, =r,exp(ig,) . Suppose that the
first order partial derivatives of the functions u and v with respect to r and
@ exist anywhere in that neighbourhood and that they are continuous at (ro,é?o).

Then if those partial derivatives satisfy the polar form (4) of the Cauchy-

Riemann equations at (r,,6,), the derivatives f’(z,) exists and
f'(z,) =" (u, +iv),
where the right hand side is evaluated at (r,,6,).

1 _cos@_isine

12.2.7 Example: f(z):lz =
r r

Z Tre

The conditions in the theorem are satisfied at every non-zero point z = re"in the

plane. Hence the derivative of f exists there and

_cosd .siné?j_ 1 1
r r

f’(z):e'e( —+i— _(re“‘))z 2

12.2.8 Example:

f(z) =z(Rez) = x* +ixy. Then u, =2x, u, =0, v, =y, v,=x
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So C. R. equations are satisfied only at the origin. Hence f is not differentiable
at any point z=0. At z = 0, partial derivatives are continuous. Hence f is

differentiable at z = 0.

12.2.9 Example:

f(z)=—5, 20,
t
=l, z#0
Z
X -y
U=————, V= .
X2+y2 X2+y2

Here fis differentiable everywhere except at z = 0.

12.3 Harmonic Functions

A real valued function ¢(x,y)of two variables x and y that has continuous
second order partial derivatives in a domain D and satisfies the Laplace

equation
2 2
T, 2 _
ox~ oy

Is said to be harmonic in D.

12.3.1 Theorem: If f(z) = u(x,y) + iv(x,y) is analytic in a domain D, then u

and v satisfy Laplace’s equation

2 2
Viu=u,+u,=0and Viv=v, +v =0
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respectively in D and have continuous second order partial derivatives in D.

Proof: The function f satisfies the Cauchy-Riemann equations
u =v,, (12.3.1)
and u,=V,. (12.3.2)
Differentiating (12.3.1) with respect to x and (12.3.2) with respect to y we get
u, =v (12.3.3)
and u, =-v (12.3.4)

If £ is analytic in D then u and 1 have continuous partial derivatives of all

orders in D. Hence v, =v, . Hence adding equations (12.3.3) and (12.3.4), we

get u, +u,, =0. Similarly we can prove that v, +v, =0.

If two functions « and 1 are harmonic in a domain D and their first order partial
derivatives satisfy the Cauchy-Riemann equations throughout D, v is said to be

a harmonic conjugate of w.

12.3.2 Theorem: A function f(z) = u(x,y) + iv(x,y) is analytic in a domain

D if and only if v is a harmonic conjugate of w.

12.3.3 Example:
Let u=x*—y*—v.
Then

u, =2x,u, =2,u, =-2y-1u, =-2.
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So u,, +u, =0;thatis, u is harmonic.

To find the conjugate harmonic function wvof wu, we should have

v,=u,=2xand v, =-u, =2y +1. Integrating the first equation with respect to

y, we get v = 2xy + h(x).

Differentiating with respect to x, we get v, =2y +h'(x) =2y +1,

or, h'(x)=+1= h(x) =+x+k. Hence v = 2xy+ x + k.

This v is the general conjugate harmonic function of 1 and

f(2)=u+iv=(x* -y’ —y)+i(2xy+ x+k) =(2* +iz + k) is analytic.

12.3.4Remark: A conjugate of ‘a given harmonic function is uniquely

determined up to a constant.

12.3.5 Remark: If u(x,y) and v(x,y) are any two harmonic functions, then

(u + i1) need not be analytic in D. However, if second order partial derivatives

of u nad v are continuous then (uy —vx) + i(uX + vy) is analytic in D.

12.3.6 Example: Let u=x*—y? v=3x’y—y®. Then w and v are harmonic. But
u,#v,and so f = u+ tvis not analytic. Let U =u,—v,and V =u, +v,. Then

U + iV is analytic.

12.3.7 Example: Let u(x,y) =2x+ y> —3x°y.
U, =2-6xy,u, =—6Yy,u, =3y* —3x°,u, =+6y.
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So u,, +u, =0, that is, u is harmonic.

For finding conjugate 1,

V,=U =2-6xy=Vv=2y-3xy’ +h(x)

y

=V, =-3y? +h'(x) =—u, =3x* -3y’

=h'(x)=3x*=h(x)=x*+c¢

Hence v=2y-3xy*+ x*+c. f =u+iv=2z+iz’ +icis analytic.

12.3.8 Laplace Equation in Polar Form

Consider the function f in polar form f (z) =u(r,8) +iv(r,0).

Cauchy-Riemann equations are

u, :%vg (12.3.5)

1
and Fue =V, (12.3.6)
(123.5) =v,=ru, =V, =U,+ru, (12.3.7)
(12.3.6)=v,, :—%ugg (12.3.8)

: 1
Assumlng Uy = Vg » WE get U, +TU, =——Uy
r

1 1 1
= U, +ru, +-u, =0, or, u, +-=u, +—u, =0. (12.3.9)
r r r
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Similarly, we will have

vV, +%vr +ri2v99 =0. (12.3.10)

Equations (12.3.9) and (12.3.10) are Laplace equations in polar form.
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Module 2: Complex Variables

Lesson 13

Line Integral in the Complex Plane
13.1 Introduction
Complex definite integrals are called complex line integrals written asj f(z)dz,
C

where Cis a curve in the complex plane called the path of integration. We may

represent such a curve C by a parametric representation
z(t)=x(t)+iy(t), ast<h. (13.1.1)

The sense of increasing t is called the positive sense on C. We assume Cto be
smooth curve, that is, C has a continuous and nonzero derivative z = dz/dt at
each point. Geometrically this means that ¢ has a unique and continuously
turning tangent. Consider the partition a = t, < t, < --- <t,_, <t, = b. Let

Zy A a2 A e L i (L) B =00,

Further, we choose point ¢, between z,_, and z; i = 1,2,...,n; and consider

thesum S, = 251 F($m) A,

where AZ,, = (., — (s - (13.1.2)

The limit of S, as the maximum of |At,. | = |t,,— t,._,| approaches zero
(consequently |Az,,| = |z,, — Zz,—1 | @pproaches zero) is called the line integral

of f over C and denoted by jf(z)dz or, by ¢ f(z)dz, if z, coincides with z,
C

(that is, € is a closed curve).
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In general all paths of integration for complex line integrals are assumed to be
piecewise smooth. The following three properties are easily implied by the

definition of the line integral.

1. Linearity: [(kf,(2)+k,f,(2))dz =k [ f,(2)+k, [ f,(2).

2. Sense Reversal: [~ f(z)dz = — [° f(2)dz.

3. Partitioning of Path: [ f(z)dz={f(z)dz+[ f(z)dz.
Cc C C
13.2 Existence of the Complex Line Integral
From our assumptions of the existence of the complex integral, f is continuous
and C is piecewise smooth. Let us write f(z) = u(x,y) +iv(x,y). Let us

further take ¢, = &, +1,, and Al = Ax,, +iAy,,. Then the sum S, in

(13.1.2) becomes
f— Z (u+ iv)(Ax,, + idy,,)
m=1
= Juldx,, — Xvdy,, +i(Zudy, + Zvix,,) (13.2.1)
These sums are real. Since f is continuous, u and v are continuous. As

maximum of |At,| — 0, maximum of Ax,_, and Ay, also converges to zero and

the sum on the right becomes a real line integral.

lims, :_[ f(z)dz :.[udx—_[vdy+{fudy+.[vdx} (13.2.2)

n—oo
C

2
122 WhatsApp: +91 7900900676 www.AgriMoon.Com



Line Integral in the Complex Plane

This shows that under assumptions on f and C, the line integral exists and its

value is independent of the choice of subdivisions and intermediate points ,...

13.2.1 Theorem: (Indefinite integration of analytic functions)

Let f(z) be analytic in a simply connected domain D (every simple closed
curve in D encloses only points of D). Then there exists an indefinite integral of
f(2)in the domain D, that is, an analytic function F(z) such that F'(z) = f(z)

in D, and for all paths in D joining two points z, and z, in D we have
[} F@dz = F(z,) — F(z). (13.2.3)

13.2.2 Examples

. = i - -
1L [r2dz=T | =c(1+0)P=—Z+-0

30 T g

2. f_n;cnszdz = sinz|™ . = 2sinwi = —2isin hn
3. [z = et = 2(e4F ) o,
(since e is periodic with period 2i).

4. [ Z=ini-In(-)=Z-(-F)=m.

4

13.2.3 Theorem (Integration by the use of the path)

Let ¢ be a piecewise smooth path, represented by z = z(t), where a <t < b. Let

b .
f(=) be a continuous function on . Then [ f (z)dz = [ (z(t))z(t)dt, (13.2.4)

a

d=

where z = £
dt

3
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Proof: The LHS of (13.2.4) is given by (13.2.2) in terms of real line integrals,
and we show that the RHS of (13.2.4) also equals (13.2.2). We have z = x + iy,

hence z = i + iy. We simply write wfor w[x(t),v(t)] and v for v[x(t), y(£)]. We
also have dx = % dt and dy = y dt.

Consequently, in (13.2.4)

f fz()z (Ddt = J (u + iv) (% + iv)dt

= [ [udx - vdy +i(udy +vx)]
C

- I(udx—vdy)+ ij(udy+vdx).

C

13.2.4 Examples

dz . ) .y .
1. J'—:Zm, where C is a unit circle, counter clockwise.
z
C

Solution: z(t) = cost + isint = &%,0 < t < 2z (representation of unit circle)

#(t) = —sint +icost =ie"
1 .
f[z[t]) = E = g it

Thus from (13.2.4), we get
1 27 ) ) 2z

j Zdz= j e tigdt = i j dz = 27i.
z 0 0

C

2. f(z) = (z —z,)™ m s an integer, z, is a constant. ¢ is circle of radius p with

center at z, counter clockwise.

Solution: ¢ can be represented in the form

4
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z(t) = z, + p(cost +isint) =z, + pe™,0 <t < 2m.

Then  f(2)=(z—z)" =p™e™,  dz=ipe”dt.

2z 2z
I(Z -1, )m dz = J pmeimtipeitdt _ ipm+1J' ei(m+l)tdt
0 0

C

= jpm+l _I";R [cos(m + 1)t +isin(m + 1) t]dt

When m = —1, p™*! = 1,c0s0 = 1,sin0 = 0, SO that the integral equals

if;” dt = 2xi. For m = —1, the two integrals vanish. Hence

J(Z—Zo)m ={27ri, m=-1

0, m = —1 and integer.

3. Integrate f(z) =Re z=xfrom0to 1 + 2i
(@) along c,, straight line joining origin to 1+2i
(b)along ¢ containing of ¢, and ¢, straight lines from originto 1 and 1 to 1

+21.

Solution:

@z(t)=t+2it,0<t<1, 2t)=1+2i flz()) ==x(t) =1t

1
[Rezdz :It(1+2i)dt:%+i.
0

(b) Along c,, z(t) =t,2(t) = 1,f(z(t)) =x() =t0 <t < 1.

Along ¢, z(t)=1+it,2(t) =i, f(z(t)) =x(t) =1, 0=t < 2.

Hence j f(z)dz = j

G

1 2
) 1 ..
f(z)dz+ | f(2)dz=|tdt+|idt==+2i.
(2) c[() JrdesJide=7

5
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Thus the integral is dependent on the path.
13.3 Bounds for the Absolute Value of the Integrals

13.3.1 ML- inequality

<ML, where L is the length of ¢ and M a constant such that |f(z)| < M

if(z)dz

everywhere on .
Proof: |5, = | Zn=y F({) Az, | < ooy IF (G042, | S MET |4z, |

Now |Az,,| is the length of the chord whose endpoints are z,,_, and z,, Hence

the sum on the right represents the length L* of the broken line of chords whose

endpoints are z,,z,,...,z,(= z). If n approaches infinity such that max |At,, |
and so max |Az,, | tends to zero, then L* approaches the length L of the curve C,

by the definition of the length of the curve. This proves the ML- inequality.

13.3.2 Examples

1. Evaluate jRe(zz)dz, where c is from 0 to 2 + 4i represents
Cc

(a) a line segment joining the points (0,0) and (2,4),
(b) x-axis from 0 to 2, and then vertical line to 2 + 4,

(c) parabola y = x2.
Solution: (a) Equation of Cis z(t) =t + 2it = (1 + 2i)t, 0=t <2

z2'(£) = (1 +20) f(z(t)) = Re(2%(t)) = Re(t*(1 + 2i)*) = Re((—3 + 4i)t?) = —3¢?

Hence, we obtain 1= [ f (z(1)) z'(t) dt = j(—3t2) (1+2i) dt = —8(L+ 2i).

6
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(b)cyisz(t)=t,0=t =<2
C,iSz(t)=2+42it,0 <t <2
Forc, =z(t)=1, f[z(t]) = Re(z?) =1t?

Forc, z(t)=2i, f(z(t)) =Re((2+ 2it)%) = 4 — 4¢*

Hence, we obtain

L= [ f(z(t))z (t)dt+ [ £(z(t))z (t)dt

C, C,

= [ t3dt + [) (4 — 4t?)2idt

=[Z—5+ 2:1[4::—%::3)]3 = (1—20)

(c) The parametric form of the curve y = x* can be written as
z=z(t) =t +it? 0<t<2

So z (t)=1+2it, and

f[z[t:]) = Re [:z:[t:]) = Re(t 4+ it?)*=(t* —t*)

Hence I =[f(z(t))z (t)dt= j(t2 —~t*)(1+2it) dt

O
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Module2: Complex Variables

Lesson 14

Cauchy’s Integral Theorem and Cauchy’s Integral Formula

14.1 Cauchy’s Integral Theorem

A simple closed path is a closed path that does not intersect or touch itself. A
simply connected domain D in the complex plane is a domain such that every
simple closed path in D enclosed only points of D. A domain that is not simply

connected is called multiply connected.

14.1.1 Theorem (Cauchy’s Integral Theorem)

If £(z) is analytic in a simply connected domain D, then for every simple

closed path C in D, [ f(z)dz=0 (14.1.1)
C

Proof: We have from (13.2.2),

4) f(z)dz =<ﬁ(udx—vdy)+i j(udy+vdx).

c C (&

Since f(z) is analytic in D, u and v have continuous partial derivatives in D.

Hence by Green’s Theorem

E:[ (udx —vdy) = J;J.(—% - %uj dxdy,

where R is the region bounded by C. By Cauchy-Riemann condition v, = —u,,,

o

the RHS vanishes. Similarly the second integral also vanishes.
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14.1.2 Examples
1. q:)ezdz=0, choszdz=0, gSz”dz:O, n=0,12,... for any closed path Cas
c c c

these are all entire functions.
2. gSsecz dz=0, C s the unit circle, as secz has singularities at ig,iz—”,

c

outside the unit circle.

3. cf;%dz =0, C isunitcircle, z = +2iare outside the unit circle.
el +

2z
4. ¢z dz= [eie" dt=27i, C:z(t)=€" is the unit circle. Here 7 is no analytic.
C 0

2
= je*”‘.ieit dt =0, C is the unit circle taken counter clockwise. iz Is not
yA

V4
0

N|o_
NN

5. §

analyticat z=0.

2

cﬁ% dz=2zi, C is the unit circle taken counter clockwise.

C

14.1.3 Theorem (Independence of Path): If f(z) is analytic in a sSimply
connected domain D, then the integral of f(z) is independent of the path in D.
Proof: Let z, and z, be any points in D. Consider two paths C; and ¢, in D
from z, to z, without further common points. Let C, = be the path €, with
orientation reversed. Integrate from z;, over C, to z, and over C, * back to z,.

This is a simple closed path, and Cauchy’s theorem applies under our

assumptions and gives zero:

jfdz+jfdz=o,

C, c,

= jfdz:-jfdz:jfdz.
C, C,

C
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This proves the theorem for paths that have only the endpoints in common. For
paths with finitely many further common points the above argument is applied

to each loop.

14.2 Principle of Deformation of Path

The idea is related to path independence. We can imagine that path €, was
obtained from (; by continuously moving €, (with ends fixed) until it coincides
with C,. As long as our deforming path always contains only points at which
f(z) is analytic, the integral retains the same value. This is called the principle

of deformation of path.

14.2.1 Theorem (Existence of Indefinite Integral)

If f(z) is analytic in a simply connected domain D, then there exists an
indefinite integral F(z) of f(z) in D, thus F'(z) = f(z) which is analytic in D,
and for all paths in D joining any two points z, and z, in D, the integral of

f(z) from z, to z, can be evaluated by
| reaz=Fe) - FG).

Proof: Since f is analytic in , the line integral of f(z) from any z, in D to any z
in D is independent of path in D. We keep z, fixed. Then this integral becomes

a function of z, say F(z).

F(z) = f f(s)ds
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J-z+ Az J-z +hz

Now F(z + Az) — F(z) = f(s]ds—f f(s)ds = f(s)ds,

where the path of integration from z to z+ Az may be selected as a line

segment.

Since f:rﬂz ds = Az, we can write f(z) = if;mzf(zjds. So

F'fz+ﬂz] F(z)

— @ == [77I() - F@)]ds.

Since f is continuous at z, for each positive €, >0 3 |f(s) — f(z)| <€

whenever |s — z| < &.Choosing |Az| < &, we have

|F(z+Az)—F(z)

- 1(z) <ig|Az|:g

‘ Az |Az|
that s, lim -~ ZHA2)=F(2)_ )
Az—0 AZ

of, F'& == {z).

Since z is arbitrary, F is analytic in D.
Further if G'(z) = f(z), then F(z) — G(z) is constant in D. That is two

independent integrals differ by a constant.

14.3 Cauchy’s Theorem for Multiply Connected Domains

Consider a doubly connected domain D with outer boundary curve ¢, and inner

curve C,. If f is analytic in any domain D* that contains D and its boundary
curves, then jcl f(z)dz = jcz f(z)dz, both integrals being taken counter

clockwise (or clockwise, full interior of £, may not belong to D*.
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Cauchy’s Integral Theorem and Cauchy’s Integral Formula

In general: let

(@ C beasimple closed curve (counter clockwise)

(b) C,,...,C, are simple closed curves (all in counter clockwise directions)

and interior to C and whose interiors have no points in common.

14.3.1 Theorem: Let C and C, .... C,, be simply closed curves as in (a) and (b).

If a function f is analytic throughout the closed region D. Then

As a consequence of the above results we have the following important

observation:

I(Z_Zo) {Zm m=-1

m = —1 and integer,

for counter-clockwise integration around any simple closed path containing z,

in its interior.

14.3.2 Examples

1. ge*dz=0, C is unit circle, (Cauchy’s Theorem is applicable), as e~=" is

analytic in the given domain.

2z ) ) 2 . .
= j ie"dt =¢" | (;z:o. Here Cauchy’s Theorem is not applicable.
0

:—Zm #i, C is unit circle, (Cauchy’s Theorem is

e Ly

c c(z

applicable)

133 WhatsApp: +91 7900900676 www.AgriMoon.Com
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4, 95 dzg_ =2zi, Cisthe circle |z| = m,as 3i is inside this circle.
2 z-3i

5. gﬁ%dz:o, (using Cauchy’s Theorem for doubly connected domain) C is a

C

circle |z| = 2 counter clockwise and |z| = 1 clockwise.
6. C, is upper semi-circle of |z| = 1, clockwise.

C, is lower semi-circle counter-clockwise.

1 0 - it ) 1 2 -
Ilz({;dz:i%dt:—ﬂl and IZ:C{;dz_;[%dt_m

I, and I, are not same, i.e., principle of deformation of paths is not applicable
since the curve €, cannot be continuously deformed into C, without passing

through z=0 at which f(z) is not analytic.

<_|52(2+ where C is any rectangle containing the points z = 0 and z = 2

c

inside it.

Solution: Enclose points z = 0 and z = 2 inside circles €, and C, respectively

that do not intersect. Then applying Cauchy’s integral theorem for triply

connected domains, we get

dz dz dz
(fz(z+2) :£Z(Z+2)+‘[ 2(z+2)

G

Rt B I i ———2| 0+0-27i)=0.
I z+2 I e 1+2 (2 )
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14.4 Cauchy’s Integral Formula

14.4.1 Theorem: Let f(z) be analytic in a simply connected domain D. Then
for any point z,, in D and any simple closed path C in D that encloses z,
1 ¢ f(2)

f =— dz,
() 27l g 71-1, :

(C is taken counter clockwise direction.)

14.4.2 Examples

I ¢’ dz = 2rie®, forany C which has z, =2 as interior point
22 0,  forany C whichhas z,=2 as exterior point

2. IZ@E' C:|Z|=1

Now 2-7=2-Z—2-% on c.Hence
Z Z

=4 AT U E YL A
Y2;-1 20 1 272772

The integrand is not analyticat z = 0 and z = i We write

22+1 z2°+1 (1 i
I:C'f) l—cﬁ » dz:2m[z+1j—2m.1:?.

cz-=- ¢

2

14.4.3 Theorem (Derivatives of Analytic Function)
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If (=) is analytic in a domain D, then it has derivatives of all orders in D, which
are then analytic functions in D. The values of these derivatives at a point z, in

D are given by

f'(z,) iqg 1@ 4

“27i ) (z-17,)

and in general

1
(z) 27

cﬁ 1) -dz, n=12,...
2 (z-z,)™

Here C is any simple closed path in C that encloses =z, and whose interior is a

subset of D.

14.4.4 Examples

1§ dz =27 (c0S2)'|,_,,= ~27isinzi = 2z sin h(z).

- =xi
C

(z— i)

2. For any curve C for which 1 lies inside and +2i outside

e’ .d [ e
C‘f(z—l)z(zz ) :2”'5(22 +41_1

| e’ (2 +4)-e*.2z 6eri
— 27i s ==
(22 +4) . 25

14.4.5 Cauchy’s Inequality: Let f(z) be analytic within and on ¢:|z —z,| =r

£ )| < 2

.r.?‘!

and |f(z)| = M on C, then
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14.4.6 Liouville’s Theorem: If an analytic function f(z) is bounded for all

values of z in the complex plane, then f(z) must be a constant.

Proof: Let [f(z)| = k ¥ z. By Cauchy’s inequality

If z)l== foranyr.

Taking r — «, We get £ (z,) = 0.Since z, is also arbitrary, f(z,) = 0v z S0

F must be a constant.

14.4.7 Maximum Modulus Principle: If a function f is analytic and not

constant in a given domain D, then |f(z)| has no maximum value in D.

14.4.8 Corollary: Suppose that a function f is continuous in a closed and

bounded region R and that it is analytic and not constant in the interior of r
Then the maximum value of |f(z)|in R, which is always reached, occurs

somewhere on the boundary of r and never in the interior.

14.4.9 Examples

dz .
l.1=¢p———, C:z-il]=2
§>(22+4)2

The integrand is not analytic at z = 2i. The point z = 2i lies inside the domain

but z = —2i lies outside it. So

f(z) dz where f(z) = 1

CJS( 2|) (z+2|) Sﬁ(z—Zi)z' (z+2i)?

. . T
=27 f'(21)=—
12 =1
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4 2
2 I=<_[>(32 +52°+2)dz
C

D’ , Where C is any simple closed curve containing the
Z+

point z = 1 inside its interior.

27

| =2
3!

d—3(324 +52°+2)| =-24ri

dz® - '
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Module 2: Complex Variables

Lesson 15

Infinite Series, Convergence Tests, Uniform Convergence

15.1 Infinite Series

Let p, k = 1,2, ... be a set of real or complex numbers. Then

o, =Lio by =pytp, +o (15.1.1)

Is an infinite series of numbers and p, is its kth term. The partial sum s, of the

series is defined by

5,= Epk =E§=1Pk =Py TPy T T Py

The remainder of the series (after the nth term) is defined as

—L x

R, = tic=n+1P%x = P41 TPnsz +

The series (15.1.1) is said to be convergent if the sequence {s,} of the partial
sums is convergent. The limit S of the sequence {s,}is called the sum of the

series.

15.1.1 Theorem: A necessary condition for a series X p, to be convergent is

lim, .. p, = 0.
Proof: Suppose that the series X p,. IS convergent. Then
limS,=S5and lim S5,_;, =5.

1 —HD fi—ao
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Since p, =5, —5,_,. We get

li =lmS,—limS, ,=5S—-5=0.
15.1.2 Theorem (Cauchy’s criterion for convergence): The series Zp, IS
convergent if and only if for any given real positive number = = 0, there exists a
natural number n such that

IS, —S,.—,| <& forall n,m = N.

n

15.1.3 Theorem: The series Xp,, where p, =x, +iy,, of complex numbers
converges to s = x +iv if and only if the series of the real parts X x,converges to

X and the series of the imaginary parts X y, converges to v.

15.1.4 Geometric Series

Consider the geometric series X=_, »*, where r is any real number. We now find

the conditions for the convergence of this series.

First consider the sequence of partial sums

—?"n
Sp=ltr+ri4otrni= T
m
or, S,——=-—
1-—r 1-r
Therefore, |5, ——=|= ‘—1’"_'?“ = l'l’ﬂl

140 WhatsApp: +91 7900900676 www.AgriMoon.Com



Infinite Series, Convergence Tests, Uniform Convergence

Note that |r|* — owhen |r| < 1, hence the geometric series converges to

1/(1—r), when |r| < 1.
When |r| = 1, |r|™ = = aS n — . SO the geometric series diverges in this case.

For r = 1, each term in the series is unity. Hence the partial sum s, =n — «as

— oo . Thus the series is divergent in this case.

For r = —1, the terms in the series are +1 and 1 alternatively. Now the sequence
{51 has two subsequences with limits 0 and 1. Hence in this case, the sequence

{5..1does not converge and consequently the series does not converge.

15.1.5 Example: Using the above argument, one can show that the series

Y=_,z"converges to 1/(1 —z) if |z] < 1. Here z is complex variable.

15.1.6 Harmonic Series:

Consider the harmonic series E:Zii. We show that this series is divergent.

The sequence of partial sums is defined by
s,=1+ ! + -+ !
mo 2 n

1 1

_|_

nt+l nt2

1 1 1 o
_|_ aen

ntp ntp ntp ntp

and |s S

ntp rz|

1
LR e

Note that -2 == when p == Thus |s,, — S, = 2. This shows that for = <
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one cannot satisfy the condition |S,., — 5,| < en = N,p = 1,2,.... This violates

ntp
the condition for Cauchy convergence. By Theorem 15.1.2 we conclude that the

harmonic series is not convergent.

15.2 Tests for Convergence

The following results are frequently used to test the convergence of an infinite

Series.

15.2.1 Comparison Test: Let X=_,p, and X*_,q, be two real series with

positive terms and p,, < kq,for any real positive k and » = 1,2, ... Then,

(i) convergence of the series £=_, q,, iImply convergence of the series ¥*_,n,,,
(ii) divergence of the series £=_,p,, implies the divergence of the series

Z::D qn'

15.2.2 Limit comparison test ¥*_,p, and X*_,q, be two real series with

positive terms and lim,, __ Zﬂ =[,0.< [< e

m

Then, both the series £=_,p, and X=_, q,, converge or diverge together.

15.2.3 Theorem: The series ini" p>0 is convergent if p = 1 and divergent if
n=1

p =1

Proof: We write
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The last series is a geometric series with common ratio = = —. Therefore, the

2F

1

=1
bl o

<lorp>1 For o=p=1,

R

series is convergent if r= gni Since the

harmonic series Z%is divergent, applying the comparison test, the series

Zipis also divergent for 0 < p < 1,
n

n=1

15.2.4 Example: Prove that the series i L

Is convergent. Also find its
=n(n+1)

sum.

Solution: We can write

5—1+1+ . 1 _(1 1)+(1 1)+ +(1 1 )_1 1
" 12 23 nn+1) 2/ \2 3 n n+l/ = n+1
Now lim, . 5, = 1, SO the given series is convergent and the sum of the series is

1.

15.2.5 D’ Alembert’s test (Ratio test): Let X p be a real series of positive

terms or a complex series. Let
lim | 2241

11—+ p?’!

Then, the series Xp, is (i) convergent if ¢ < 1 and (ii) divergent if ¢ = 1. The

ratio test does not give any information on convergence of the series when ¢ = 1.

15.2.6 Examples: Apply ratio test to the following series
(i) =, (i) x (iii) Tniz™

Er.‘1.
(nt+1)’

Solution:
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n

In+2

Snsa| — iy

(i)

N = |z|.

z| = (i) Iz] . Hence lim
1+;

Gn

Therefore, the series is convergent when |z| < 1 and divergent when |z] = 1.

The test fails when |z| = 1.

1
nt2

(i) |en=s . S0 lim

=0<1

z —H0

Cnts
n

Gn
So the series is convergent for all =.

(i) Here = |(n+ 1)zl = (n + 1)|z| and SO lim,, _, |22

=aow = 1.

T —H0

i B 1
En

So the series is divergent for all z.

15.2.6 Examples When Ratio Test Fails

(i) The series £~ is divergent. However, lim, _, %5 = 1

2y

(i) The series T is convergent. However, lim, _,,, <52 = 1

Bn

15.2.7 Cauchy’s Root Test: Let X p.be a real series of positive terms or a
complex series. Let lim__ |p,|*™ = ¢. Then, the series L p, is (i) convergent if
¢ < 1 and (ii) divergent if ¢ = 1. The root test does not give any information on

the convergence if ¢ = 1.

15.2.7 Example: Let p, = (1+ =)™ ,p >0 . Using the Cauchy root test we

have
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f 1 _» 1
)" =1+ ) =———
(145"

Now, lim

T —HD

So the series X p,, IS convergent.

15.3 Alternating Series

A real series in which the terms are alternatively positive and negative is called

an alternative series and is of the form X=_,(—1)"p,. », = 0. The following

theorem gives a sufficient condition for the convergence of an alternative series.

15.3.1 Theorem (Leibnitz theorem): Let X*_,(—1)"p,. p, =0 be an

alternative series satisfying the following conditions
(i) The sequence {p, } is non-increasing, that is »,., = », for all n, and

(i)lim, .. p, = 0.
Then, the series X*_,(—1)"p,, IS convergent.

15.3.2 Examples: Using Leibnitz Theorem, we can conclude that the following

series are convergent:

() T (i) e

15.3.3 Absolutely Convergent Series
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Let £ p, be an arbitrary series of real or complex numbers. If the series of
positive terms X |p, | IS convergent, then we say that the series X p, is absolutely
convergent. If the series X p, is convergent but X |p, | is divergent, then the

series is called conditionally convergent.

15.3.4 Example: The series Z(—l)“% Is conditionally convergent.

15.4 Uniform Convergence of the Series of Functions

Let f,(z) + f.(z) +-~ Dbe a series of single-valued complex functions defined in
a domain D (or a series of real functions defined on a closed interval). Let

Su(2) = £1(2) + £o(2) + -+ £.(2) pe the nth partial sum. If a point z = z, in D, the
sequence {5, (=)} of partial sums converges to f(z,), then we say that the series
¥ f.(z,) converges to f(z,). This convergence is called pointwise convergence of

the series X £.(z).

We say that the series X £, (z) converges uniformly to £(z) , if, for a given real
positive number = = 0, there exists a natural number ~ independent of z, but

dependent on = such that
15, (z)— f(z)| =& for n=N.

Thus, a series which is uniformly convergent is also pointwise convergent.
Weierstrass’s M-test gives sufficient conditions for the uniform convergence of

a series.
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15.4.1 Theorem: (Weierstrass’s M-test) Let X £ (z) be an infinite series
defined in some domain D of the complex plane and let {a7,} be a sequence of
positive terms, where |f,(z)| = M, for all n and for all z in D. If the series ¥ M,

Is convergent, then the series X £, (z)is uniformly and absolutely convergent.

15.4.2 Example: We discuss the uniform convergence of the series X E‘ﬂ'zll on
the disk |z| = 1.
Note that
z"—1 zt 41 2
= ol J—
(2 n? + |z|2l T n? +|z|? ::nz

forall zin |z| < 1.
Since, the series ¥ 1/n? is convergent, the given series is uniformly convergent.

15.4.3 Example: We show that the geometric series 1+ z + z% + -+ IS

(i) uniformly convergent in any closed disk |z| = r < 1.

(if)not uniformly convergent in the open disk |z| < 1.
We have

S,(D=1+z+z" 44271

and f2)=5() =lim,__5.() =—=.lzI < 1.
In the closed disk |z] =+ < 1, we have

1 1
=
1-|=l 1-r

[1—z|=1—|z|=1—roOr
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Then 15,(2) —s(2)| = |zt 42" 4| = | | = =

—= 1—r"

[y

Using » < 1, the right hand side can be made as small as necessary by choosing

n large enough.

Hence, |5,.(z) — f(z)| < = for » = N and for all z. This shows that the given series

is uniformly convergent.

If we consider the open disk |z| < 1, we can find a z for a given n and a real

number k (no matter how large) such that

z?!

1 B

|z|™

= =k
1—|z|

by taking |z| sufficiently close to 1. Thus, for no N we can have
|5, (z) —s(z)| = = for every z in the open disk |z| = 1. Thus N depends both on =

and = So the series is not uniformly convergent.
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Module2: Complex Variables

Lesson 16

Power Series

16.1 Introduction

A power series in powers of (z — z,) is a series of the form
roCn(Z—29)" = co+c1(z—2g) + c3(z—2g)* + - (16.1.1)

where z is a complex variable and ¢g, ¢y, ... are complex (or real) constants,
called the coefficients of the series, and z, is a complex (real) constant, called

the center of the series.

If z, = 0, we obtain a power series in the powers of z:

L=al

Z CpZ™ = Cp+ €12+ €225 + -+
n=0
16.1.1 Examples

1. It can be seen easily that the series 3>,z = 1+ z + z% + --,, converges

absolutely if |z| < 1 and diverges for |z| = 1.

n 2
2. The series T;_o— = 1+ 2+ —+ - is absolutely convergent for every z. In

fact, by the ratio test, for any fixed z,

zﬂ+1/
(n+ 1)! _ |z|
Zﬂfn, n+1

= 0asn— oo,
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16.1.2 Theorem: (Convergence of a Power Series)

(@) Every power series (16.1.1) converges at z = z,.

(b) If (16.1.1) converges at z = z, # z,, it converges absolutely for every z
closerto z, than z,, i.e., |z — z,| < |z, — 2.

(c) If(16.1.1) diverges at z = z, then it diverges at every z further away from

z, than z,.

Proof:

(a) The proof follows by observing that for z = z, the series reduces to a,.

(b) Since X ,a,(z; —zy)™ is convergent, the necessary condition for the
convergence of a series implies that the n-th term a,,(z; — z,) — 0as n — oo.
Hence the terms a,(z, —z,) are bounded. So there exists M such that

la, (z; —zy)| = M for all n. Thus we have

T

=M

T

—Zp Z— 2z

|'ﬂ-ﬂ[:z_ Zﬂjﬂl = I':[*J-illi'r_zlllﬂﬂl 3 |"t“-1-i||z_zlllwl

1 0 Z) — I

=ME".

Now for k < 1, ¥ k™ is a convergent geometric series with common ratio k.

Therefore 3 a,,(z — z,)™ converges absolutely for |z — z,| < |z, — 24].

(c) The proof follows assuming contrary to assumption.

16.2 Radius of Convergence

Let R be the radius of the circle with center at z, that contains all points at

which the series is convergent and the series is divergent at all points outside it.
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Then |z —z,| = R is called the circle of convergence and R is the radius of
convergence. The power series may or may not converge on the boundary. If

R = 0, the series is convergent only at z =2z, and if R = oo, the series

converges for all z.

16.2.1 Examples
1. The series Zf;converges for |z|<1. Here R=1.

2. The series Z% converges for z = —1 but diverges for z=1. Here R=1.

3. The series 3’ z™ diverges for z = 1.Here R=1.

16.2.2 Theorem (Radius of Convergence) Let lim,,_,., | “::| = L. Then the

radius of convergence of the power series }» a,(z — zy)" IS R = % (The case

L = 0and L = = is included). (Cauchy-Hadamad formula)

Proof: By the ratio test, consider

a,.q

. Ap:1(Z —Zp)" .
lim | = lim

z— 2z =Llz— z,].
lim | =275 = lim |z — 2ol = Liz—z,

T

If L = 0then for all z, the power series will converge and sO R = oo, If L = oo

then I%IIZ—ZUI > 1 for z # z, and all n > N (for some N). Hence the

series will not converge for any z. So R = 0. In all other cases, the series will

converges for L|z—zy| < 1 0r |z — zy| < % and diverges for L|z — z,| = 10r

1 1. .
|z — zy| = o Hence R = LIS the radius of convergence.
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16.2.3 Example: Consider the series » >, % (z — 30"

L1 2n+2)! n)*] = 2n+1D2n+2)
T |+ D 200 | e m+ 1%

1 . . 1 .
Hence = e So the power series converges for |z — 3i| < : and diverges for

o1
|z — 3i| =~
4

16.2.4 Remark: We can also take R = Ll where L* = lim (|aﬂ|lfﬂ).

n—oo

16.2.5 Examples

2 L1
1. For the series Z% we find R = i

i ; ' . n+1)12"
2. Consider the series Zj—n (z+ 1—1)" Here ( 2”*1) %: rl;r1_>OO

Hence R = 0, that is, the series convergesonly at z = —1 + 1.

z z l.f{n
3. For the series 2, (1 +f—1) z™, note that lim ((1 +5) ) = e2. Hence

n
R=e"2
4. Take the series ¥ n'®™ z™. LetL= Iim(n'”'““)%. So
loglog L = limtim < In In(n""") = Iimliml(ln(ln n)2=0.
n n
Hence L=e’=10r,R=1.

E.Zil"I:

5. For the series 2,

a > 0, let p, denote the nt" term.

4o’
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N4z n. o
Prn4a| _ £ 4'n

Pn

Then

Am+1 I:']‘?.+ 1:]'1 I

Hence the series converges for |21<2 and diverges for 121> 2.

6. Zﬂ—;z“ p IS a positive integer. Here
T

=(n —|—1]( )p—}oo

(n+ lj?’ n!

Hence R = 0.

72

, Z, 11
Z'Jt+1:' 2

2m:

|Z|ZJ‘T+1

— Ofor|z] < 1.

2
2 J"t+1zl|"t

Hence the series converges for |z| < 1.

an(lzz;l) Zn_{2+1jn( ) :Z’ﬂ_{ﬂﬁl”‘rC
g. "

(1+2)"*1  nis™
(n+1)15M+1 (14207

_J1+2i] 45

.:{11+ 1:] 5(n+1)

Hence R = co.
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9. ¥n"z",

10, ¥

n —
anasn’ R

16.3 Results on Power Series

If any given power series > ,a,z™ has a nonzero radius of convergence
R(R > 0), we write its sum a function f(z);

flz) = Z a,z", |z| < R.

n=0

We say that f(z) is represented by the power series or it is developed in the
pOwWer series.

16.3.1 Theorem: The function f(z) in (1) with R = 0 is continuous at z = 0

Proof: £(0) = a,. Nowf(z) converges absolutely for |z| < for any r < R
Hence the series

Ziulﬂﬂlrﬂ_l

=2 ola,lr™ with r = 0 converges.
Let

2olay|lrt =S5(=0). Thenfor 0 < |z| = r,
|f(2) — aol =

S
n=0
= |z|S < €,

L=a] o0
< 121 ) la,llzl™ <zl ) la,lrt
n=0 n=>0

For |z| < & (6 <r,é< E) Hence f is continuous at z = 0.
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16.3.2 Theorem: Suppose that the power series ., a,z" and ¥ >, b, z" both
converge for |z| < R (R > 0) and have the same sum for all these z. Then these

series are identical, i.e., a, = b,¥Yn=0,1,2, ...

Proof: Given ag+ a,z+a,z*+---=by+b,z+b,z*+--V|z| <R.

Taking z = 0, we get a, = by.

Assume a,, = b, Vn < k. Then

k+1 o . R+l 4

Ap1Z = b1z

Dividing both sides by z¥*! and then taking z — oo, we get a.q; = by.q.
Hence by Mathematical induction a,, = b,, ¥ n and so the two power series are

identical.

Term by term addition or subtraction of two power series with radii of

convergence R, and R, yields a power series with radius of convergence at

least equal to the smaller of R, and R,.
Term by term multiplication of two power series
flz)=2720a,z" and g(z) =2 72,b,z"
means the multiplication of each term of the first series by each term of the

second series and the collection of like power of z. This gives a power series

and is given by
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Power Series
agby + (aghy + a;by)z + (agh, + ayby + azby)z* + -

== Z(ﬁubﬂ + -t ﬂﬂbujzﬂ
n=0

This power series converges absolutely for each z within the circle of

convergence of each of the two given series and has the sum

s(z) = f(z)g(z)

16.3.3 Theorem: The derived series of a power series has the same radius of

convergence as the original series.

Proof: f(z)=2X,2,a,z" have the same radius of convergence

By +4

R =1lim,__

The series after differentiation is

(= a}

f(z) =Znaﬂz“‘1 =a,+2a,z+3azz’+ -

n=1
Now

n|ia n a a
lim Ol i (—) ]im| nit| _ g |Gnrt| _ g
n—oo (‘H‘, + 1j|ﬁn+1| n—w \1 + 1/ n—c a,, n—= | a,

16.3.4 Example: Consider the series
Z:ii(?zi)zﬂ =z2+323+6z* +102° + -

Then
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n+1)n
( 2) z‘ﬂ+1 n+1

nn—1) - = n IZI_}Izl
—2 ¥4

So the series converges for R << 1 and diverges for R > 1.

16.3.5 Theorem: The power series Ziu%i’“” = agz + %32 + --- obtained
n+

by integrating f(z)=2X=,a,z" term by term has the same radius of

convergence as the orginal series.

16.3.6 Theorem: A power series with a nonzero radius of convergence R
represents an analytic function at every point interior to its circle of
convergence. The derivatives of this function are obtained by differentiating the
original series term by term. All the series thus obtained have the same radius of

convergence as the original series. Hence each of them is an analytic function.

Proof: Consider the two series f(z) = Y. 2 a,z",f1(2) = 2.2, na,z" !
Let f(z) have the radius of convergence R. We will show that the function f is

analytic and has derivative f,(z)in the interior of the circle of convergence.

f(z + Az) — N Az)" — 2
(z + ﬁi fizj_ﬁ(ﬂ:;aﬂ [(z—l— ﬁi A—

_ Z a,Az [(z+ Az)"2 + 22 (2 + Az)" 3 + -+ (n — 17" 2]

n=2
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The bracket contains (n — 1) terms, and the largest coefficient is (2 — 1). For
|z| = Ry, |z+ Az| = Ry, Ry < R, the absolute value of the series is less than or

equal to

< |az|Z|aﬂ | (n— 1)?R1-?
n=2

< 1871 ) la, | n(n— DR}
n=2

The series 2.2 a,n(n— 1)RE? is the second derived series of f(z) at
z = R, (Ry < R) and converges absolutely. Let K(R,) be the sum then

| f(z+Az)-f(z2)
Az

- fl(z)

<|Az]K(R,)—>0 as Az —0.

This completes the proof of the theorem.

16.3.7 Examples:

T
1. f(z) = ;';Eﬁ. Differentiating twice, we get ¥.2,z" 2 which is

convergent for |z| < 1and is divergent for |z| > 1.

2. Y2y i—n (z — i)™ Differentiating, we get 3.2, 6™ (z — i)™ * whose radius of

n=1

1

. . il 1
convergence is lim iy

N0 on41

3. ,_,f;zn(n—l]G)ﬂ. Consider the seriesY, =, G)n Differentiating this

twice and multiplying by z2, we get the original series. Now clearly the

radius of convergence of this new series is 5.
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4. 320 (f)ﬂ Differentiating the series 3, G)ﬂ term by term k times and

T

ZR - - - -
multiplying by o we get the original series. Now the radius of convergence

dg@fb&
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Module 2: Complex Variables

Lesson 17

Taylor Series and Laurent Series

17.1 Taylor Series

The following theorem shows that a Taylor series can be found for an analytic

function.

17.1.1 Theorem: Let f(z ) be analytic in a domain D and let z = z, be any

point in D. Then there is a unique Taylor series

flz) =2 _pa,(z—zp)", (17.1.1)
where
1o, 1 f(z) .
a, = n!f (zg) = 2mi ). =z dz (17.1.2)

and (€ contains z,. This representation is valid in the largest open disk with
center z, in which f(z) is analytic. The remainder R, (z) of (17.1.1) can be

represented as:

(z—zp)" f(z)

R.(2) = 2mi (z5 —zo)"* (2" — 2)

dz* (17.1.3)

The coefficient satisfy the inequality |a,,| < Eﬂ where M is the maximum of
s

|f(z)|on acircle |z — z,| = r in D whose interior is also in D.

Proof: By Cauchy’s integral formula, we have
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f(z)= 1_ f(z) dz’ (17.1.4)

e
2mi ), z° — 2

for z lying inside €. Now

1 1 1
z'—z ' —zo— (2—Zp) (1—{_3“)[2*—2.])
¥4 _Zu
1 z—z2 Z— Zp\* zZ—Zy\"
= 1+ "+( ") 4ot ")
" — Zg ZT— Zy ZT— Zp T —Zp
+(Zz_zu)'ﬂ+1 1
S 1 Z—%o
zZ" — Zp

#+ 1, we can do so as z* in on € and we

This expansion is valid for |

T
choose z inside the circle of radius r with center z, so that | — ‘:‘ <1,
=0
Thus
1 1 zZ—zZ Z — Zp\* Py Zocin}
— = — [1+ * "+(Z* ") + et (= ")
£ —Z £ — I Z —Zj — Z — £y
1 zZ— 7 n+l
+— (Z “) (17.1.5)
-z —Zy

Using (17.1.5) in (17.1.4), we get

Z—Zy (z— 2o)?
1@ =g ], 16 J[ SN
(z—zp)" 1 (z—z¢)"""!

dz”

(Z* _Zu)ﬂ+1 z* —Z(Z* _ Zu]ﬂ+1
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1 & _ &
LA @) g zmn [ @)
2mi ), 77—z 2mi Jo (27 —zy)*
z—zZp)" z”
4 ( ‘u] J' *f( ]ﬂ+1 dz’
2mi c (z°—zy)
(z —zo)™*! fz)
+ dz” 17.1.6
2mi c (" —2z)(z" — zp)™*! z ( )

This is Taylor’s formula with remainder term.

Since analytic functions have derivatives of all orders, we can take n in (17.1.6)
as large as possible. If we let n — oo, we get (17.1.1). Clearly, (17.1.1) will

convergence and represent f(z) if and only if

limR,(z)=0.

H—oD

Since z* ison € and z is inside C, |z* — z| = 0. Since f(z) is analytic inside

ﬂzgj, i.e.,

and on (, it is bounded, and so is the function

ZF—2

=M, VzZon C.

Also C has the radius r = |z* — z,| and the length 27mr.

Hence by the ML-inequality, we get from (17.1.3)

z — zg|**L z"
Rﬂ:—l ol - ﬂ-*] —dz’
2m c (z°—z)(z° — zp)
{lz—zﬂlﬂ+1m*2
< - ’TTTﬂ+1
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z_zu n+1

=M"T|

r

Now |z — z,| < r as z lies inside €. Hence the term on the right — 0as n — co.

Hence the convergence of the Taylor series is proved. Uniqueness follows since

power series have unique representation of functions.

Finally

z" M
f@) 1dz" = —.
c (Zx_zl]]m- rt

I =
| 'i'i.l 211_

17.1.3 Maclaurin’s Series

A Maclaurin’s series is a Taylor series with center z, = 0. That is,

— (0
flz) = Zfﬂ—?fr )z“, |z| < Ry .
n=0

A point z = ¢ at which f(z) is not differentiable but such that every disk with
center ¢ contains points at which f(z) is differentiable. We say that f(z) is

singular at ¢ or has a singularity at c.

17.1.3 Theorem: A power series with nonzero radius of convergence is the

Taylor series of its sum.
Proof: Given the power series

f(zj =ag+ ﬁi{:z— Zujl—|- {IZ(Z— zu]2_|_
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Then f(zy) = ay. Now
f'(2) = ay +2a,(z— zg) + -

Thus f'(z,) = a4. Further,
f'(2)=2a;,+3+2a3(z— zg) + -
Thus ' (z,) = 2as,.

In general, f*(z,) = n! a,,. With these coefficients the given series becomes

the Taylor’s series of f(z).

17.1.4 Remark: Complex analytic functions have derivatives of all orders and
they can always be represented by power series of the from (17.1.1). This is not
true in general for real valued functions. In fact, there are real functions for
which derivatives of all orders exist but it cannot be represented by a power

Series.

_1 y. a1
Consider for example, f(x)=e sz’ x#0 =0, x=0

This function cannot be represented by a Maclaurin’s series since all its

derivatives vanish at zero.

17.1.5 Examples:

n!

{l—z n+1?

1

1. f(zj=1— Then f*(z) =

—Z

f™(0) =n! Hence the Maclaurin’s

expansion of f IS the geometric series

%: ezt =1+z+z"+--, |z =1
—Z

165 WhatsApp: +91 7900900676 www.AgriMoon.Com



166

Taylor Series and Laurent Series

f(z)is singular at z = 1. This point lies on the circle of convergence.

n 2
2. f@=€e=FRo-=1+z+"+
n!
_ W f__q3n z0 _ __EE _j .
3. cosz= oD =gt
N _ oo . n zZ]'.I.-l'j_ B _ﬁ f 3
4osinz =R (DT =z et
5 ‘nh . z2hH -
' Sin Ez)_ n:Dm—Z_F;—F;—F
on z20 B =2 7%
6' CGSh{:‘Z] - “zD{En:]: —_ 1+ 21 + 4! + .

7. Ln(l1+z) =z—2—2+2—3—|—---, lz] < 1.

8. Ln(f) = 2(z+2—3+§+---), lz| < 1.

1-=

9 1 __ 1 _

1+z2 1—(—z2)

10. To find Maclaurin’s series for f(z) = tan™' z,

L 1224zt 284 |zl =1

fl2)=

14=z2

Integrating the power series term by term:

. z? z°
tamtz=z——4+——--, Jz|=1

3 5

representing the principal value of tan=? z.
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17.2 Laurent Series

The following theorem gives the conditions for the existence of a Laurent’s

Series.

17.2.1 Theorem: If f(z) is analytic on two concentric circles €, and €, with
center zg and in the annulus between them, then f(z) can be represented by the

Laurent series

o0

- b
f(2) =Zﬂn(.z—2u]“+ Z&_—;u)ﬂ
n=0

n=0

by by
=ag+a,(z— zg) +a(z— zg)*+---+ +

+o (17.2.1)

consisting of nonnegative powers and the principal part (the negative powers).
The coefficients of this Laurent series are given by the integrals

a

T

1 f(z’)

S 2mi ), (27— zp)"!

dz*, b, ZTEIJ’ (z" —zp)™ ! f(z)dz" (17.2.2)

taken counter clockwise around any simple closed path € that lies in the annulus

and encircles the inner circle.

This series converges and represents f(z) in the open annulus obtained from the
given annulus by continuously increasing the outer circle €, and decreasing €-

until each of the circles reaches a point where f(z) is singular.
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In the special case that z, is the only singular point of f(z) inside C5, this
circle can be shrunk to the point z,, giving convergence in a disk except at the

center.

Proof: By Cauchy’s integral formula for multiply connected domains, we get

@) .. 1 f(z)

2mwi ), 2" —Z 2mi ), z°—z
1 A

f(z)=g(z)+ h(z)+ dz* (17.2.3)

where zis any point in the given annulus and both €, and C, are counter-

clockwise. Now g(z) integral is exactly the Taylor series so that

90 =5 [ L2 ar =% a2

2mi ), z°—1Z
1 n=>0

/ s 1 BN flz*) .
with coefficients a,, = — | P dz".

Here €, can be replaced by € by the principal of deformation of path as z, is a

point not in the annulus.

To get the expansion for k(z), we note that [==22| < 1 for z"on €, and z is the
Z—Ip
annulus.
Now
1 B 1 _ —1
z"—z z°—z9g—(z—2zy) _ _EZ—Z
° ° (z Z“](l z—zn)
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1 z'—z z" — Z\ > z" — Zg\ "
=— 1+ "+( ") +---+( ")
Z_zu Z_zu E_Zu E_Zu

&
B 1 (z —zu)
Z—Z°\Z—Z

n+1l

Multiplying by 2 and integrating over €, on both the sides, we get
f(z J 1 f
h(z) = - me " 2mi|z— Zy fz)az
1
+——F | (z7

(z — z9)? Cy

—zg)f(z*)dz" + - + f (2* — zo)"f(2")dz’

+R,(2),

where,

]ﬂ+1

(z* —
2mi(z — zu]“”ﬂg (z —z%)

R, (z) = f(zHdz".

The integral over €, can be replaced by integrals over C.

We see that on the right, the power iIs multiplied by b, as given in

{Z—Zu:]"
(17.2.2). This proves Laurent’s theorem provided lim,, .., R}, (z) =

Now if the principal part consists of finitely many terms only, then there is
f{,z]

nothing to prove. Otherwise, we note that in R;,(z) is bounded in the

f 'fz*‘]

absolute value, say < M" Vz" on (€, because f(z") is analytic in the
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annulus and on €5, and z* lies on €, and z outside, so that z — z* + 0. From

this and the ML-inequality, we get

1
* * n+l s —
R, (z) = 2z — zg [ |z* — zo|"*"M*L (L= Length(,)

- 0asn— o.

ML |z" —zy|™!
2m

zZ— 2z

The first series in (17.2.1) is a Taylor series (g(z)) and hence it converges in
the disk D with center z, whose radius equals the distance of that singularity of
g(z) which is closet to z,. Also, g(z) must be singular at all points outside

C,where f(z)is singular.

The second series in (17.2.1) representing h(z) is a power series in z =

Z—Zp

Let the given annulus be r, < |z — z4| < r; Where r,and rare radii of C, and

. 1 1 J ..
C, respectively. Then — = |z| = —. Hence this power series in z must converge
Tz L

at least in the disk |r| < L This corresponds to the exterior |z — zy| = r, of
Tz

C-, so that h(z) is analytic for all z in the exterior E of the circle with center z,
and radius equal to the maximum distance from z, to the singularities of f(z)

inside €,. The domain common to D and E is the open annulus.

17.2.2 Remark: The Laurent series of a given analytic function f(z) is unique
in its annulus of existence. However, f(z) may have different Laurent series in

two annulus with the same center.
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17.2.3 Examples:
1. f(z) =z~ sin z, with center 0.

. B 73 75
Z7°smz=z"" z——+5r+

1 1 1 z7 zZ°
S 4+ — 4 — — ...
Z“‘ 31z 51 71 gl

for |z|>0. Hence the annulus is the whole complex plane except the

origin.

+ -, |z| = 0.

3 f(z)= —Zﬂ 0z, zl <1
and

1 ~/ NS ENT
F@=-— j——;‘zﬂﬂj e

valid for |z| = 1.

4. f(z) =
From the previous geometric series, we get by multiplying zia
1 1 1 1
33—34_3_3+z_2+z+1+ 0<|z| < 1.
1 1
pompr il S S
5. f(z) = z; center 0
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—2z+3 B 1 1

z2—-3z+2 z—1 z-2

B 1 N 1

T 1-z _Z
2(1-%)

= Nz +2 T, (5) for|z| < 1 (first for |z| < 1 and second for

=—+-z+_-z"+
2 "477g”
. 1 1 1 1
We can also write f(z) = — +-—= ) )
— f:u;ﬁ — f:uzi—jifor|z| = 2 (first for |z| > 1 and second for |z| = 2)
= To(1+2") o,
iy ey
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Module 2: Complex Variables

Lesson 18

Zeros and Singularities

18.1 Singular Points

A function f(z) is singular or has a singularity at a point z = z, if f(z) is not
analytic at z = z, but every neighbourhood of z = z, contains points at which
f(z)is analytic. Then we say that z = z, is a singular point of f(z).

The point z = z, is called an isolated singularity of f(z) if z=z, has a

neighbourhood without further singularites of f(z).

18.1.1 Example: The function f(z) = tan G) has a non-isolated singularity

atz = 0.

18.1.2 Example: The function f(z) = tan(z) has isolated singularities at

z =i%, 37 ete

18.2 Poles

Isolated singularities of f(z) at z = z, can be classified by the Laurent series

L=

- b
f(z]=Zaﬂ(z—zu]“—|— Z(z——;u]“ (18.2.1)
n=0

n=0

valid in an immediate neighbourhood of the singular point z = z, at z, itself,

that is, in a region of the form 0 < |z — z,| < R. The sum of the first series is
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analytic at z = z,. The second series, containing the negative powers, is called

the principal part of (18.2.1). If it has only finitely many terms, it is of the form

b,y b, b,
+ fod—2 b,
z—zy (z—2zp)* (z —zo)™

=0 (18.2.2)

Then the singularity of f(z) at z = z, is called a pole, and m is called the

order of the pole. Poles of the first order are called simple poles. If the

principal part of (18.2.1) has infinitely many terms, we say that f(z) has an

isolated essential singularity at z = z,.

18.2.1 Examples:

1 3 - .
1. f(z) = G2) + — has a simple pole at z = 0 and a pole of fifth

order z = 2.

2. f(z2)=elz=1+ i +——+ - has an isolated essential singularity at

2IE

3. f(z) =sin G)

_ v (="
n=0 (Zn+1)1z2n+1
1 1 1
— > _ + + .

z 3!z 5iz5

has an isolated essential singularity at z = 0.

4. f(z) =z Ssinz=—— —+———z2 +-.

z¢  6z® 120 5040 H 1zl =0

has a pole of order four at z = 0.
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. —+—+-+1+-, 0<]zl<1
F4 F4 F4

5. fl2) =——~=
z¥—z _i_i_..., Igl}]

The first expansion shows that there is a pole of order 3 at z = 0. The second

expansion has infinitely many terms of negative power. But it is no

contradiction as this later expansion is valid for |z| = 1.

18.2.2 Theorem: If f(z)is analytic and has a pole at z =z, then

|f(z)| —= 0 as z — zy in any manner.
0 y

18.2.3 Example: f(z) = iz hasapoleatz=0and [f(z)| = asz — 0in

any manner.

18.2.4 Theorem (Picard’s Theorem): If f(z)is analytic and has an isolated
essential singularity at a point z,, it takes on every value, with at most one

exceptional value, in an arbitrarily small neighbourhood of z,.

18.2.5 Example: The function f(z) = ez has an isolated essential singularity
at z = 0. It has no limit for approach along the imaginary axis. It becomes
infinite if z — 0 through negative real values. It takes on nay given value
¢ = cge'® # 0 in an arbitrary small neighbourhood of z = 0. Letting z = rei?,
we must solve the equation

{cos 8—i sin E]Kr

1 .
elz=e r= cge’”

for  and 8. Equating the absolute values and the arguments, we have
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cos 8 . .
e = cp 1.6, co0s0 =rincygand —sinf =ar.

From these two equations and cos®@ + sin? 8 = r*(Incg)* + a*r* =1,

we obtain the formulae

o

T2=;and tan @ = — .
(Incy)? +a? In g

Hence r can be made arbitrary small by adding multiples of 2w to e, leaving

¢ unaltered.

18.2.6 Removable Singularity

We say that a function f(z) has a removable singularity at z = z, if f(z)is
not analytic at z = z, but can be made analytic there by assigning a suitable
value f(zy). Such singularities are of no interest as they can be removed.

sinz

18.2.7 Example: The function f(z) =

becomes analytic at z = 0 if we

F4

define £(0)=1.

18.3 Zeros

A zero of an analytic function f(z) in a domain D is a z = z, in D such that
flzg)=0. A zero has order n if not only if f but the derivatives
fof - fm Y are all 0 at z = z, but £ (2y) # 0. A first order zero is
called a simple zero. For a second order zero f(zy) = f'(z) =0 but

f'(zy) # 0.
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18.3.1 Examples:

1. The function (1 + z?2) has simple zeros at z = +i.

2. The function (1 — z*)? has second-order zeros at z = +1 and +i.
3. The function (z — a)? has a third order zeros at z = a.

4. The function e= has no zeros.

5. The function sin z has simple zeros at z = 0,+m, +2m, ... and sin? z has

second-order zeros at these points.

6. The function (1 — cos z) has second-order zeros at 0, +2m, +4, .....

18.3.2 Taylor Series at a Zero

At an nt*-order zero z = z, of f(z),the terms f(zy),f' (2¢), ..., f® V' (zp) are

all 0 and £ (z,) # 0. Therefore, the Taylor series is of the form

f@)=a,(z—zy)"+a,.(z—z5)" ! + -

=(z—zp)"[a, + ay1(z—2p) + a,.2(z— Zujz + -] (18.3.1)

Conversely, if f(z) has a such a Taylor series then it has an n**-order zero at

Z:Zu.

18.3.3 Theorem: The zeros of an analytic function f(z)(= 0) are isolated, i.e.,
each of them has a neighbourhood that contains no further zeros of f(z).

Proof: In (18.3.1), the factor (z — z,)™ is zero only at z = z,. The power series
in the parenthesis represents an analytic function say g(z). Now
g(z)=a, #0.Since g(z) is also continuous, g(z)=0 in some

neighbourhood of z = z,. Hence f(z) # 0 in some neighbourhood of z = z,,.
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18.3.4 Theorem: Let f(z) be analytic at z = z, and have a zero of nt*-order at

Z = zy. Then 1/f(z) has a pole of n**-order at z = z,.

The same holds for :{—{3 if h(z)is analytic at z = z, and h(zy) + 0.

18.3.5 Analytic or Singularity at Infinity

Infinity (o0) has been added to the complex plane resulting in the extended

complex plane. The extended complex plane can be mapped into sphere of

diameter 1 touching the plane at z = 0. The image A* of a complex number A
Is the intersection of the sphere with the segment from A to the “north pole” N.

The point oo Is the image N.

The sphere representing the extended complex plane in this way is called the
Riemann number sphere. The mapping of the sphere onto the plane is called

stereographic projection with center N.

Thus for investigating a function f(z) for large |z|, we set z =21 and

investigate f(z) = f&) = g(w) in the neighbourhood of w = 0. We define

f(z) to be analytic or singular at infinity if g(e) is analytic or singular at

w = 0.

We also define g(0) = lim,,_. , g () if this limit exists. We say that f(z) has a
nth-order zero at infinity if f G) has such a zero at @ — 0. Similarly we define

poles and essential singularities.
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18.3.6 Examples:

2

1. The function fr[zj=l2 is analytic atoo. Since g(w)= w* is analytic

at w = 0 and f has a second-order zero at co.
2. The function f(z) = 23 is singular at e and has third-order pole there since

the function g(w) = f G) = % has such a pole at e = 0.

3. The function f(z) = e? has an essential singularity at o since e/ has such
a singularity at @ — 0. Similarly, cos z and sin z have essential singularity at

o0,

By Liouville’s theorem a bounded entire function is constant. Hence a non-

constant entire function must be unbounded. Hence it has a singularity at <o, a

pole if it is a polynomial or an essential singularity if it is not.

18.3.7 Meromorphic Function

Let f(z)be analytic function and it has only singularities in the finite plane
which are poles. Then f(z) is called a meromorphic function. Some examples
of meromorphic functions are rational functions with nonconstant denominator,

trigonometric functions tan z, cot z,sec z and cosec z.

18.3.7 Examples:

1. f(z) =cosecz =

gin =

Here z = 0 is a singular point of f. Now we can write

1 1

sin z z3 z3
z—grtert e
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1 z? g4 -
=—[1___|___|_...l

Z 3! 5!
1 =z ]
=7 + 3 + higher powersof z.

The principal part of the Laurent series is the single term i

Hence, z = 0 is a simple pole.

2. f(2) = —
_1[ 1 4 1 ]
T 2l1-z 1+z
1 11 1
S _1—1+_—]
PR Py
1 17, z—17"
= — — —_ -1 —
2(3 1) +4_1+ 2 ]
1 1] z—-1 (z—1)*
Sy T a1 Y N
2(3 1) +4_1 T gV l

which is valid for |z — 1| < 2.
Hence z = 1 is a simple pole.

Alternatively, we can express

_1(+1T1+1h z+1I1
f(2)=5(z 1 >
1 4,1 z+1 (z—-1* .
=E(z—|— 1) —|—1 1+ 2 + 1 + higher powers of (z+ 1)

for|z+1| <2
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Hence z = —1 is simple pole.
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Module 2: Complex Variables

Lesson 19

Residue Theorem

19.1 Residues

If £f(z) has a singularity at z = z, inside a simple closed curve C, but is otherwise
analytic on € and inside €, then we can expand the function f(z) in a Laurent

series as

f(Z]=Zaﬂ(z—zu]“+ by + b, + ..

z—zy (z—2zp)*

n=0

This series is convergent for all points near z = z, (except at z = z,) in the same

domain of the form 0 < |z — z,| < R.

1

Z—IZp

of this Laurent series is

Now the coefficient b, of the first negative power
given by

1
b — = d =
1 zﬁi_[:. f(z')dz

f f(z)dz* = 2mib, (19.1.1)
c

We define b, to be the residue of f(z) at z = z, and denote it by

by
= lim f(=z) (19.1.2)

:xn
19.1.1 Examples:
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1. We want to integrate f(z) = z~*sin z around the unit circle . Consider the

Laurent series expansion as

sinz_ 1 1 A
z¢  z3 31z 5!

f(z) =

This is convergent for |z| = 0. Hence b, = L

1

2. Here we integrate f(z) = clockwise around |z| = i The function f(z)

33_34
has singularities at z = 0 and z = 1. However, z = 1 lies outside the circle

C. So we can expand f(z) in Laurent series at z = 0 as

1 1 1
f@)=5+5+=-+1+--, 0<]z[<1
z z z

Note that the residue is 1 and we get

1
J; z3—z“dz = — 2mi ]zi:IEJI Res f(z) = — 2mi

19.1.2 Residue at Simple Pole

For a simple pole at z = z,, the Laurent series is

b
flz) = 1 +ag+a,(z— zg)+a,(z— zy)*+-- (0
Z_ZI]

< |z —zy| < R).

This implies that
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(z—2z9)f(2) = by +ag(z—zp) +a,(z— z¢)* + -

So lim,_, (z — z9)f(z) = by = lim,_, Res f(z).

Ly R T - q z+i =1I]i=_ .
19.1.3 Example: lim T llmgi i) 2G0GD — 2D oi
19.1.3 Remark: Suppose we have f(zjl:%, where p and g are analytic,
q

p(zy) # 0and g(z) has a simple pole z, so that f(z) has a simple pole z,. So by

Taylor series, we find

1) = (2= 20)4' )+ E 20 g (zg) + -
S0 lim,..,(z = 20)f (2) = lim, -, (Z — 20) 25
= (2~ 2)p(2)
0 (7— 20)q'(20) + T 7 (20) + -
_ p(zo)
q'(zo)

19.2 Residue at Pole of Any Order

If £(z) has a pole of any order m > 1 at z = z,, then its Laurent series can be written

as

bm m—1 Ih':L
—z)"  z=zg)™ + z_zu+ﬂu+ﬂ1[z zy)

f(z) =

where b,,, = 0.
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The residue of f(z) at z =z, is b,. If we multiply both sides by (z — z,)™, we
get
(z—20)"f(2) = by + b1 (z— 2g) + -+ by(z—zo)™"

+ag(z—2z9)™+a,(z—zg)™ ! + -

The residue b, of f(z)at z = z, is now the coefficient of the power (z — zo)™!
in the Taylor series of the function g(z) = (z — zo)™ 1 f(2) with center at

Z = Zj. SO

1

by = (m —1)!

g™ (zy)

(by Taylor’s Theorem). Hence, if f(z) has a pole of the mt*-order at z = z,, the

residue is given by

1 dm1
!LI;; Res f(z) = m!