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Module 1: Numerical Analysis 

Lesson 1 

FiniteDifferences 

 

1.1 Introduction 

The analytical solution to a problem provides the value of the dependent 

variable for any value of the independent variable. Consider, for instance the 

simple Spring-mass system governed by the differential equation. 

 

 
2 0y yλ+ =              (1.1) 

 

whose analytical solution can be readily written as: 

 

 1 2( ) sin cosy t c t c tλ λ= +             (1.2) 

 

on any interval. Solution (1.2) gives the function value at any point in the 

interval.If equation (1.1)  is solved numerically, the time interval is first divided 

into a pre-determined finite number of non-overlapping equally spaced  or 

otherwise subintervals and the numerical solution is obtained at the end points 

of these subintervals. If the interval considered is (say) [ 0 , nt t ]and if the interval 

is divided into N number of non-overlapping subintervals, say of equally spaced 

ones, then the numerical solution is obtained at the set of points 

{ 0 1 2 1, , ,...., ,N Nt t t t t− }, with the difference between 1jt +  and jt being constant for 

every j , j 0,1,..., 1N= − . 

 

 

0t 1t 2t        ......        jt 1jt +      .......         Nt  

 

Fig.1.1: Equally spaced division of the interval [ 0 , Nt t ]. 
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Finite Differences 

Similarly, this can be done with unequally spaced subintervals also 

 

                     

0t      1t    2t 3t      ......            jt    1jt +   2jt +      .......   Nt  

Fig.1.2: Unequally spaced division of the interval [ 0 , nt t ]. 

 

The set of points { 0 1 2, , ,...., Nt t t t } are called the nodal points. The numerical 

solution at non-nodal points can also be obtained either using the interpolation 

of the data at the nodal points. This concept is true when one is solving an 

ordinary or partial differential equation. Many of the Finite difference operators 

are applicable over equally spaced data points. 

 

In the later part of this lesson, we shall define some of the finite differences 

operators and their utility and their relationships. 

 

1.2 Difference Operators and their Utility 

Let ( )y t be the variable depending on the independent variable t , consider the 

equally spaced ( )1N +  data points, such that 1j jt t h+ − = , h being constant. 

 

Table 1.1. Equally spaced data set 

0t  1t  2t  3t  ... 1jt −  jt  1jt +  …… Nt  

0y  1y  2y  3y  … 1jy −  jy  1jy +  …… Ny  

 

The difference operator acts on the dependent function. Notation: ( )j jy y t=  

 

1.2.1 Shift Operator 
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It is denote by E , when it acts on jy , it shifts the data solution at jt  to the 

solution at 1jt +  (i.e., the data is moved by one spacing forward) i.e., 

 

1j jEy y +=              (1.3) 

 

Similarly,     1
1j jE y y−
−=              (1.4) 

 

For any (positive or negative) integer n , 

 
n

j j nE y y +=              (1.5) 

 

1.2.2 Forward Difference Operator 

It is denoted by∆ , which is defined as  

 

         1i i iy y y+∆ = −             (1.6) 

 

This is called the first forward difference operator. The second forward 

difference operator is 2∆ , its action is defined as: 

 
2

1i i iy y y+∆ = ∆ − ∆             (1.7) 

     2 1 1( ) ( )i i i iy y y y+ + += − − −  

 

Or      2
2 12i i i iy y y y+ +∆ = − +            (1.8) 

 

In a similar way for any positive integer n , the n th forward difference operator 

is defined as: 
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Finite Differences 

     
1 1

1
n n n

i i iy y y− −
+∆ = ∆ − ∆            (1.9) 

 

1.2.3 Backward Difference Operator:  

The first backward difference operator is denoted by ∇ , and this is denoted as  

 

   1i i iy y y −∇ = −           (1.10) 

 

The second order backward difference is 2∇ and this is defined as: 

 
2

1i i iy y y −∇ = −  

            = 1 22i i iy y y− −− +           (1.11) 

 

The n thorder backward difference of iy is  

 
1 1

1
n n n

i i iy y y− −
−∇ = ∇ −∇          (1.12) 

 

Observe that  

 

1 1
n

i i i iy y y y+ +∇ = − =∇ (1.13) 

 

This means their difference operators are related to each other. 

 

1.2.4 The Central Difference Operator 

It is denoted byδ and it is defined as:  

 

1 1
2 2

i i i
y y yδ

+ −
= −

          
(1.14) 
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Finite Differences 

Here,           1
2

( )
2ii

hy y t
+
= + and 1

2

( )
2ii

hy y t
−
= − . 

 

Also,      2
1 1
2 2

i i i
y y yδ δ δ

+ −
= −  

            = 1 1( ) ( )i i i iy y y y+ −− − −  

            = 1 12i i iy y y+ −− +           (1.15) 

 
1 1

1 1
2 2

n n n
i i i

y y yδ δ δ− −

+ −
= −

         
(1.16) 

 

Observe that,    2
1 12i i i iy y y yδ + −= − +  

             = 2
1iy +∆           (1.17) 

 

1.3 Construction of Difference Tables 

Now, let us construct the forward, backward and central difference tables for the 

given data points. 

 

Example 1: Construct the forward difference table for the following set of 

equally spaced data given by: 

 

0t  1t  2t  3t  4t  5t  

0y  1y  2y  3y  4y  5y  

 

Solution:  

 

0t
 

0y
 

∆       2∆  3∆  4∆  5∆  

WhatsApp: +91 7900900676 www.AgriMoon.Com9



Finite Differences 

1t
 

1y
 

1 0 0y y y− = ∆
 

    

2t
 

2y
 

2 1 1y y y− = ∆
 

2
1 0 0y y y∆ − ∆ = ∆

 
   

3t
 

 

3y
 

3 2 2y y y− = ∆
 

2
2 1 1y y y∆ − ∆ = ∆

 

2 2 3
1 0 0y y y∆ − ∆ = ∆

 
  

4t
 

4y
 

4 3 3y y y− = ∆
 

2
3 2 2y y y∆ − ∆ = ∆

 

2 2 3
2 1 1y y y∆ − ∆ = ∆

 

3 3 4
1 0 0y y y∆ − ∆ = ∆

 
 

5t
 

5y
 

5 4 4y y y− = ∆
 

2
4 3 3y y y∆ − ∆ = ∆

 

2 2 3
3 2 2y y y∆ − ∆ = ∆

 

3 3 4
2 1 1y y y∆ − ∆ = ∆

 

4 4 5
1 0 0y y y∆ − ∆ = ∆

 

 

From the forward difference table constructed above it is noted that for a data 

with 6  data points, we have the maximum order forward difference is 5∆  and 

all differences of order 6  and above are zero. The entries with the same 

subscript on y lie on sloping lines downward. 

 

Example 2: Construct the backward difference table for the given data: 

 

it  -1 0 1 2 3 

iy  9.1 8.2 7.3 6.4 5.5 

 

Solution: 

We know 1 1
1

n n n
i i iy y y− −

−∇ = ∇ −∇ . Given 0 9.1y = , 1 8.2y = , 3 7.3y = , 4 6.4y = , 

5 5.5y = . 

 

Now the difference table is: 
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  ∇  2∇  3∇  4∇  

-1 9.1     

0 8.2 -0.9= 1y∇     

1 7.3 -0.9= 2y∇  0= 2
2y∇    

2 6.4 -0.9= 3y∇  0= 2
3y∇  0= 3

3y∇   

3 5.5 -0.9= 4y∇  0= 2
4y∇  0= 3

4y∇  0= 4
4y∇  

 

It is noted that for the given data, upto 4 th order backward differences exist. It is 

also evident that the second order differences onward the values are zero, the 

reason being all the first order differences are same. 

 

Example 3: Compute a table of differences through 3∆ and 3∇ for the function 
2( ) 1y t t= − using the step size 1h = and 0 1t = − . 

 

Solution: For the given function, the data set is constructed as: 

 

t  0 1t = −  1 0t =  2 1t =  3 2t =  

( )y t  0 0y =  1 1y = −  2 0y =  3 3y =  

 

For a second degree polynomial 2 1t − , the third order (forward) difference is 

zero, that is the reason; we considered only 4  data points. 

 

Now the forward difference table is:  

  ∆  2∆  3∆  
-1 0    

0 -1 -1= 0y∆    

1 0 1= 1y∆  2= 2
0y∆   
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2 3 3= 2y∆  2= 2
1y∆  0= 3

0y∆  

 

Similarly the backward difference table is written as: 

  ∇  2∇  3∇  

-1 0= 0y     

0 -1= 1y  -1= 1y∇    

1 0= 2y  1= 2y∇  2= 2
2y∇   

2 3= 3y  3= 3y∇  2= 2
3y∇  0= 3

3y∇  

 

The illustration reveals that the difference table is the same for both forward and 

backward differences, but the entries are labelled differently. 

 

Example 4: Form the central differences for the data given in the example 1. 

 

Solution: 

t y δ  2δ  3δ  4δ  

0t  0y      

1t  1y  1 0 1
2

y y yδ− =     

2t  2y  2 1 3
2

y y yδ− =  2
3 1 1
2 2

y y yδ δ δ− =    

3t  3y  3 2 5
2

y y yδ− =  2
5 3 2
2 2

y y yδ δ δ− =  3
3
2

yδ   

4t  4y  4 3 7
2

y y yδ− =  2
7 5 3
2 2

y y yδ δ δ− =  3
5
2

yδ  4
2yδ  

 

In the central difference table, the entries with the same script lie on the 

horizontal lines. 
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Module 1:  Numerical Analysis  

Lesson 2 

Relation between Difference Operators 

 

2.1 Introduction 

In the previous lecture, we have noticed from the difference table that these 

difference operators are related. In this lecture we establish the relations 

between these operators. 

 

Example 1: Show that the shift operator is related to the forward difference 

operator as 1E∆ = −  [ 1being the identity operator] and to the backward 

difference operator∇  as 11 E−∇ = − . 

 

Solution:  

By definition, the forward difference operator when operating over the function 

data iy , iy∆ , it becomes 

 

 1i i iy y y+∆ = −  

      i iEy y= −  

      ( 1) iE y= −  

1E∴∆ = − . 

 

Similarly,     1i i iy y y −∇ = −  

      
1

i iy E y−= −  

                                                      
1(1 ) iE y−= −  

 

From the above example, one can write that 1E = ∆ +  and 1 1E− = −∇ . 
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Example 2: Establish 
1 1
2 2E Eδ

−
= − . 

 

Solution: We know   1 1
2 2

i i i
y y yδ

+ −
= −  

           
1 1
2 2

i iE y E y
−

= −   
1 1
2 2( ) iE E y

−
= −  

1 1
2 2E Eδ

−
∴ = − . 

 

From these examples, one can establish the relation between∆ ,∇andδ as: 

 
1 1
2 2(1 ) (1 )δ = +∇ − −∇ . 

 

Example 3: Verify 
1
2E E Eδ∇ = ∇ = ∆ =  

 

Solution:  

( )1 1i i i i iEy y y y y+ +∇ = ∇ = − = ∆ . 

 

And      ( )1i i iE y E y y −∇ = −  

            1i iy y+= −  

            iy= ∆  

 

Similarly,    
1
2

1 1
2

i i i ii
E y y y y yδ δ +

+
= = − = ∆ . 

Thus we have 
1
2E E Eδ∇ = ∇ = ∆ = . 
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Relation between Difference Operators 

Example 4: Show that 2µδ =∇ + ∆  whereµ is the averaging operator defined 

as 
1 1
2 21

2
E Eµ

− 
= + 

 
. 

 

Solution:  

1 1
2 2

2 2i i i
y y yµδ µ

+ −

 
= − 

 
 

1 1
2 2

2 2
i i

y yµ µ
+ −

= −  

1 1 1 1
2 2 2 2

1 1
2 2

i i
E E y E E y

− −

+ −

   
= + − +   
   

 

( ) ( )1 1i i i iy y y y+ −= + − +  

1 1i iy y+ −= −  

 

Also    ( ) ( ) ( )1 1i i i i iy y y y y− +∇ + ∆ = − + −  

1 1i iy y+ −= −  

2µδ∴ =∇ + ∆ . 

 

Exercise 1:  Show that  
2 2

1
2 4
δ δδ∆ = + + and

2 2

1
4 2
δ δδ∇ = + − . 

 

In example 3  of previous lesson, we observed that the third order difference for 

a second degree polynomial is zero. This is similar to the third derivative of a 

second degree polynomial is zero. This gives an intuition that the differential 

operator D  is connected with the difference operator. 

 

Let us denote D  by dy
dt

, 2D  by 
2

2

d y
dt  

and so on. 
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Relation between Difference Operators 

Relation between Difference Operators 

Consider the function ( )y t  at a general node 1it + . Now ( )1 ( )iy t y t h+ = +                       

can be expanded in Taylor series about the nodal point it  [assuming the 

continuity of the higher order derivative of ( )y t  at it ],  

 

1( ) ( )i iy t y t h+ = + ( )
2 2

2 .....
2!

i i

i
t t

dy h d yy t h
dt dt

= + + +           (2.1) 

 

Using the operators E  and D , the above equation (2.1) can be written as 

 

2 3
2 31 .....

2! 3!i i
h hEy hD D D y

 
= + + + + 
           

(2.2) 

 

Or       ( )hD
i iEy e y=  

 

Or          hDE e=             (2.3) 

 

Also, we know that 1E = ∆ + ,  using this equation (2.3) we have:  

 
2 2 3 3

1 .....
2! 3!

hD h D h De hD∆ = − = + + +
          

(2.4) 

 

Thus the forward difference operator∆ is connected with the differential 

operator D . We can express D  explicitly in terms of ∆ . 

From equation (2.4), we can write  

 

( )ln 1hD = + ∆  
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Relation between Difference Operators 

2 3

.......
2 3
∆ ∆

= ∆ − + −  

 

Relation between Difference Operators 

 

or      
2 31 .......

2 3
D

h
 ∆ ∆

= ∆ − + − 
            

(2.5) 

 

Now, the second order difference 2∆ can be written as: 

 

      

22 2 3 3
2 .....

2! 3!
h D h DhD

 
∆ = + + + 

            
(2.6) 

 

Or       2 2 2 3 3 4 47 .....
12

h D h D h D∆ = + + +  

 

Exercise 2: Show that 2 2 3 4
2

1 11 .......
12

D
h
 = ∆ − ∆ + ∆ 
 

. 

 

Exercise 3: Establish  

(i)  
1
2 2

hD

E e=  

(ii) 
2 3

2 3 .....
2! 3!
h hhD D D∇ = − + +  

(iii) 2 2 3 4
2

1 11 .....
12

D
h

 = ∇ +∇ + ∇ +  
 

(iv)
4 4 6 6

2 2 2 .....
12 360

h D h Dh Dδ = + + +  
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Relation between Difference Operators 

 

Thus the first and second order derivatives of a function ( )y t  at it  are written 

using ∆  as: 

 

   

2 31 ( .....)
2 3

i i i
i i

dy y yDy y
dt h

∆ ∆
= = ∆ − + −

                  
(2.7) 

 

   

2
2 2 3 4

2 2

1 11( .....)
12

i
i i i i

d y D y y y y
dt h

= = ∆ − ∆ + ∆ −
         

(2.8) 

 

Relation between Difference Operators 

Similarly, in terms of ∇  we can write the differential operator as: 

 
2 31 ( .....)
2 3

i i
i i

y yDy y
h

∇ ∇
= ∇ + + +

          
(2.9) 

 

and         2 2 3 4
2

1 11( .....)
12i i i iD y y y y

h
= ∇ +∇ + ∇ +

        
(2.10) 

 

In terms ofδ : 

 
3 5

( .....)
6 30

i i
i i

y yDy y
h
µ δ δδ= − + −

        
(2.11) 

 

and      
4 6

2 2
2

1 ( .....)
12 90

i i
i i

y yD y y
h

δ δδ= − + −
        

(2.12) 

 

In the next example we illustrate the use of the relations among these operators. 
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Example 5: Consider the function 3 2( ) 2 3y t t t t= + +  in the interval  

with step size 1.0h = . Find the approximate value for (i) dy
dt

at  and 

2

2

d y
dt

at  using the forward differences and (ii) dy
dt

and 
2

2

d y
dt

at  using 

the backward differences. 

 

Solution:  

Step1: Let us construct the data set for the given function: Given ,  

 

Relation between Difference Operators 

0 2t = −  0 6y = −  

1 1t = −  1 2y = −  

2 0t =  2 0y =  

3 1t =  3 6y =  

4 2t =  4 22y =  

 

Step 2: Construct the difference table. Note that for the given cubic, the third 

derivative is constant and the fourth and higher derivatives are zero. Similarly 

the third difference will be constant and all higher order differences will become 

zero. The expressions for dy
dt

and
2

2

d y
dt

are as given in equations (2.7), (2.8), (2.9) 

and (2.10). 

 

Difference Table: 

      

-2 -6     

 -2 -1 0 1 2 

 -6 -2 0 6 22 
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-1 -2 0 4y∆ =     

0 0 1 2y∆ =  2
0 2y∆ = −    

1 6 2 6y∆ =  2
1 4y∆ =  3

0 6y∆ =   

2 22 3 16y∆ =  2
2 10y∆ =  3

1 6y∆ =  4
0 0y∆ =  

 

Note: 3 3
0 1 6y y∆ = ∆ = (constant), 4 5

0 00 .....y y∆ = = ∆  

 

Relation between Difference Operators 

Step 3: Calculations: 

 

(i)
1

2 3
1 1 1

1

1 1 1
2 3t t t

dy dy y y y
dt dt h=− =

 = = ∆ − ∆ + ∆  
 

1 1 12 4 6
1 2 3
 = − ⋅ + ⋅     

2= . 

1

2
2 3

1 12 2

1

t t

d y y y
dt h

=

 = ∆ − ∆ 
 

[ ]1 4 6
1

= −
  

2= −  

 

Thus ( 1) 2y′ − = and ( 1) 2y′′ − = − . 

 

These approximations are coinciding with the exact values.  

 

(ii) From the above table, we know 4 16y∇ = , 2
4 10y∇ = , 3

4 6y∇ = . 

4

2 3
4 4 4

1 1 1
2 3t t

dy y y y
dt h=

 = ∇ + ∇ + ∇  
 

1 1 116 10 6
1 2 3
 = + ⋅ + ⋅    

23= . 
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4

2
2 3

4 42 2

1

t t

d y y y
dt h

=

 = ∇ +∇   

[ ]1 10 6
1

= + 16= . 

 

These values also coincide with the exact values of (2) 23y′ = and (2) 16y′′ = . 

Thus these differences give us a way of evaluating the derivative values from 

the given data set. 

 

Exercise 4: Find dy
dt

and
2

2

d y
dt

at  from the data set. 

 0 1 2 3 4 

 -1 2 -3 4 5 

 

Exercise 5: Find 
2

2

d y
dt

at  from the given data. 

 -1 0 1 2 

 -1 1 3 5 

 

Exercise 6: Write D3 in terms of (i)∆ (ii)∇ (iii)δ andµ . 

 

Keyword: Forward difference operator 
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Module 1: Numerical Analysis 

Lesson 3 

Sources of Error and Propagation of Error in the Difference Table 

 

3.1 Introduction 

In a numerical procedure, many types of errors can occur, among which the 

prominent ones are (i) the truncation error and (ii) round-off error. We briefly 

introduce these two types of errors below. The other types of errors are not 

discussed in this lesson.  

 

We noted that while writing the Taylor series expansion for a function about a 

point in its neighbourhood, the series is truncated after a finite number of terms 

in the series. This induces certain amount of error in the solution and this error 

is called the truncation error. Thus the truncation error is the quantity T (say) 

which must be added to the approximate solution in order to get the exact 

solution. 

 

For example, consider the function
1
2( ) (1 )f x x= + , [0,0.1]x∈ . We now try to 

obtain a second degree polynomial approximation to this function by using the 

Taylor Series expansion about the point 0x = .  

 

We have (0) 1f = , and a certain higher order derivatives of the function and their 

values at 0x = are found as:  

 

( ) ( )
3 5
2 2

1 1 1 1 3( ) , (0) ; ( ) , (0) ; ( )
2 42 1 4 1 8 1

f x f f x f f x
x x x

′ ′ ′′ ′′ ′′′= = = − = − =
+ + +

. 

 

Now the second order approximation with the remainder term is written as:  
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( )
( )

2 33
2

51
2

11 1 ,
2 8 16

1

x x xx
ξ

∴ + = + − +
 +  

for some 0 0.1ξ< < . 

 

Thus the truncation error after 2 nd degree approximation is 
( )

3

5
2

1
16 1

xT
ξ

=
 +  

. 

 

If we compute the value of ( )f x  at 0.05x = , using this approximation we get the 

value as  (0.5) 1.0246875f ≈ . The exact value is 1.0246951077 . 

The upper bound for the Truncation error for [0,0.1]x∈  is given by 

( )

( )33

5
[0,0.1] 2

0.1(0.1)
1616 1

max
x

T
x∈

= ≤
 +  

0.000625= . 

 

Thus the approximate value of ( )f x  at 0.05 is 1.0246875  which is with a 

maximum error of  0.000625. This error can be further lowered by considering a 

higher order approximation for ( )f x .  

 

There is another type of error called the round off error which is due to the 

precision of the computer while doing the arithmetic operations among the 

number. The round off error is the quantity denoted by R  which must be added 

to the finite representation of a computed number in order to make it the true 

representation of that number. This is due to the rounding of numbers after a 

certain decimal place during computation. The present day computers use the 

double precession, because of which the round off error is minimum. 

 

In general, the error is defined as the difference between the True value and the 

Approximate value. 

 

WhatsApp: +91 7900900676 www.AgriMoon.Com25
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. 

. 

The Relative error is defined as 

. 

Also one uses the Percentage Relative error which is given by 

. 

 

While dealing with finite difference operators, usually, the solution is associated 

with a certain amount of Truncation error. This error can be minimized by 

increasing the order of approximation in the Taylor Series expansion. The 

difference operators are magnifiers of the error that occurred in the initial data 

set, in turn affecting the approximate solution. The following example illustrates 

how a small amount of error ∈ induced in the initial data is increasing with 

higher order differences. 

 

Example 1: Tabulate the propagation of initial error ∈ with higher order 

forward difference operators for the data: 

x  3−  2−  1−  0  1 2  3  
( )f x  0  0  0  ∈ 0  0  0  

 

Solution: The forward difference table for the above given data set is: 

x  f  f∆  2 f∆  3 f∆  4 f∆  5 f∆  6 f∆  

 

3−  

 

0  

      

  0       

2−  0   0      
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    ∈    

1−  0   ∈  4− ∈   

  ∈  3− ∈   10∈  

0  ∈  2− ∈  6∈  20− ∈ 

  −∈  3∈  10− ∈  

1 0   ∈  4− ∈   

  0   −∈    

2  0   0      

  0       

3  0        

 

From the above we note that  

i) The magnitude of error increases with the order of the differences 

ii) The error for any order difference is the binomial coefficients with 

alternating signs. 

iii) The algebraic sum of the errors in any column is zero. 

 

Exercises:  

1. Find the approximate value of (2)f  from  ( ) ( )f x ln x= , [1,3]x∈ by considering a 

3 rd order Taylor series approximation. Obtain the local truncation error and the 

percentage relative error in this approximation. 

2. If the number 14 tan (1)π −= is approximated using 5  decimal digit, find the 

percentage relative error due to rounding. 

3. Tabulate the propagation of initial error ∈  in the following data set with 

increasing order differences. 

x  0  1 2  3  4  
( )f x  1−  1 ∈ 2  2  
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Module 1: Numerical Analysis 

Lesson 4 

Solutions of Non-Linear Equation 

 

4.1 Introduction 

In this lesson, we learn to find the roots of a given non-linear equation involving 

a polynomial and Transcendental functions.  

 

For example (i) 3 2 14 0x x
x

− − =  is a polynomial equation while  

(ii) 1sin cos 0x x
x

− =  is a transcendental equation.  

 

Definition: A number ξ  is said to be the root of (or solution of) the equation 

 if ( ) 0f ξ ≡ . It is also called a zero of ( ) 0f x = . A root of ( ) 0f x = is the 

value of  at which the graph of ( )y f x= intersects the x − axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

x  

x ξ=  

( )f x  

O  
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If the equation ( ) 0f x = can be expressed as ( )( ) ( ) 0nf x x g xξ= − = for some 

( )g x such that ( ) 0g ξ ≠ and ( )g x is bounded for all x in the domain of definition of 

the function ( )f x , then x ξ=  is called a multiple root of ( ) 0f x =  with 

multiplicity  .   If  1n = , then it is called a simple root. 

 

The root of ( ) 0f x =  is found using either a direct method, which gives the 

exact value of x ξ=  or by writing ( ) 0f x = as an iterative procedure such as 

1 ( ), 0,1, 2,....n nx g x n+ = = . Root of cubic or higher degree polynomial equations and 

transcendental equations cannot be found using the direct methods whereas the 

iterative methods are quite handy though they provide approximate value to the 

root of ( ) 0f x = . 

 

4.2 Iterative Methods  

These methods are based on the idea of successive approximations.  

Consider  for example  the equation 2( ) 2 4 0f x x x= + − = . This can be written as  

(i) 4
2

x
x

=
+

 or (ii) ( )21 4
2

x x= −  or (iii)  4 2x x= − . 

 

Here we expressed the given  in three different forms as ( )ix xϕ= , 

1, 2,3i = where 1
4( )

2
x

x
ϕ =

+
, ( )2

2
1( ) 4
2

x xϕ = − and 3( ) 4 2x xϕ = − . 

 

Thus any given ( ) 0f x =  is written as  ( )x xϕ= , then the root of ( ) 0f x =  is the 

point of intersection of the function ( )y xϕ=  with then line y x= .  

 

The function ( )xϕ is called the iteration function.  This is obtained by writing an 

iterative method as  1 ( )n nx xϕ+ =  and generate a sequence of iterates { } 1k k
x ∞

=
 by 
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starting with a suitable initial approximation 0x ,  i.e.,  start with 0x , 

generate 1 0( )x xϕ= , using 1x , generate 2x , repeat this finitely many times until we 

notice that the condition 1k kx x+ − <∈ is satisfied,  where kx , 1kx +  are two 

consecutive iterates and ∈is the pre assigned error tolerance. We note that with 

different initial approximations and different initial iterative function, the 

sequence of approximations generated will be different but in all these cases, 

these sequences always give its limit as the root of the equation ( ) 0.f x =     

 

Definition:  A sequence of iterates { }kx is said to converge to the root x ξ= , if 

lim kk
x ξ

→∞
= . The convergence of an iteration method depends on the suitable 

choice of the function ( )xϕ  and also on the initial approximation 0x  to the root.  

Below we state a sufficient condition on ( )xϕ  for the convergence of { }kx  to the 

rootξ . 

 

Result: If ( )xϕ is a continuous function in some closed interval I ⊂   that 

contains the root ξ  of ( )x xϕ=  and ( ) 1,x a x Iϕ′ ≤ < ∀ ∈ , then for any choice of 

0x I∈ , the sequence { }kx  generated from 1 ( ), 0,1, 2,...,k kx x kϕ+ = = converges to the 

root ξ  of ( )x xϕ= . 

 

Example: Find the root of ( ) cos 3 2 0f x x x= + − =  correct to two decimal places.  

 

Solution:   

Given 2 cos 3x x= +   or  ( )1 cos 3
2

x x= +  

Choose ( )1( ) cos 3
2

x xϕ = +  

Write ( )1
1 cos 3
2nx x+ = +  

WhatsApp: +91 7900900676 www.AgriMoon.Com31



Solutions of Non-Linear Equation 

 
 

Since 1( ) sin 1
2

x xϕ′ = < , 

 

we start with 0 2
x π
= , and generate the sequence of iterates as 

1
1 cos 3 1.5
2 2

x π = + = 
 

 

( )2
1 cos(1.5) 3 1.535
2

x = + =  

( )3
1 cos(1.535) 3 1.518
2

x = + =  

( )4
1 cos(1.518) 3 1.526
2

x = + =  

( )5
1 cos(1.526) 3 1.522
2

x = + =  

 

The root of the above equation correct to two decimal places is taken as  

since 5 4 1.522 1.526 0.004x x− = − = . We can improve the accuracy in this 

approximation by considering more iteration. 

 

4.2.1 How to make a good guess: 

Convergence of the successive iterations { }kx obtained for a given iterative 

method 1 ( )k kx xϕ+ =  depends on a good guess for the initial approximation 0x  for 

the root x ξ= . The initial approximation is usually obtained from the physical 

considerations of the problem and also based on the graphical representation of 

the given function  ( )f x . For the solution of algebraic equation ( ) 0f x = , an 

elegant method to choose the initial approximation is by using the intermediate 

value theorem which is stated below: 

 

WhatsApp: +91 7900900676 www.AgriMoon.Com32



Solutions of Non-Linear Equation 

 
 

Intermediate value Theorem: 

If ( )f x is continuous on some interval [ , ]I a b= ⊂   and the product 

( ) ( ) 0f a f b⋅ < , then the equation ( ) 0f x = has at least one real root or an odd 

number of real roots in the interval ( , )a b . 

 

Now it amounts to choosing  two real values a  and b  such that  ( ) ( ) 0f a f b⋅ < , 

and then choose the initial approximation between a  and b . 

 

Example 1: Find an interval in which the root of 3 4 5 0x x+ − = lies in. 

 

Solution:  

Given 3( ) 4 5f x x x= + − . 

Take  0x = , ( ) 5f x = − . 

Again  when  2x = ,  (2) 11f = . 

 

Now (0)f and  (2)f are having opposite signs.  Hence  (0) (2) 0f f⋅ < . 

 

The intermediate value theorem guarantees that a root of 3 4 5 0x x+ − =  will lie in 

the interval (0,2) . 

 

[Exercise: Plot this function – it cuts the x − axis at ]. 

 

Example 2: Find the interval which contains the smallest positive root  

of cos 0xxe x− = . 

 

Solution:  
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Take 0x = , 0(0) 0 cos 0 1f e= ⋅ − = − ,  and  1x = , (1) 2.718 0.54 2.178f = − = . 

Since ( ) ( )0 . 1 0f f < , the root is in (0,1) . 

 

4.3 Bisection Method 

This method is based on the repeated application of the intermediate value 

theorem. Let the root of the equation ( ) 0f x =  be in the interval 0 0 0( , )I a b= . 

Bisect the interval 0I  and let 1m be the midpoint of 0 0( , )a b , i.e., 1 0 0
1 ( )
2

m a b= + . 

 

Check the following conditions: 

i) if 0 1( ) ( ) 0f a f m⋅ < , then  root lies between 0a  and 1m . 

ii) if 1 0( ) ( ) 0f m f b⋅ < , then the root lies between 1m and 0b . 

 

Accordingly take 1I  as either ( )0 1,a m or ( )1 0,m b , as one of these contains the root. 

Bisect 1I  and let  2m   be the midpoint of 1I . The above conditions are checked 

for these bisected intervals to get the new subinterval that contains the root.  

 

Keep bisecting this way until we get a smallest subinterval containing the root. 

Then the midpoint of that smallest interval is taken as the approximation for the 

root of ( ) 0f x = . 

 

The following example illustrates the Bisection method: 

 

Example 3: Find a positive root of the equation ( ) 1xf x xe= −  which lies in (0,1) . 

 

Solution:   

Given 0 00, 1,a b= =   
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 0 0( ) 1, ( ) 1.718, (0) (1) 0f a f b f f= − = ⋅ < . 

 

Step 1: Bisecting ( )0,1  gives ( )0,0.5 and ( )0.5,1  as two subintervals.  

( )f 0.5 0< and ( )f 0 0< , so the interval ( )0,0.5  is discarded as  ( ) ( )f 0 f 0.5 0> . 

Denote 1 (0.5,1)I = . 

 

Step 2: Bisecting 1 (0.5,1)I =   gives (0.5,0.75) and (0.75,1)  as the new 

subintervals. (0.75) 0f > , (0.5) 0f < ⇒ ( ) ( )0.5 0.75 0f f < ,  

also (0.75) 0f > , (1.0) 0f > ⇒ ( ) ( )0.75 1 0f f > .  

 

Discard the interval (0.75,1.0) and denote 2 (0.5,0.75)I = . 

 

Step 3: Bisecting 2I  gives (0.5,0.625) and (0.625,0.75) . Note 

(0.5). (0.625) 0 f f < and (0.625). (0.75) 0f f > so discard the interval (0.625,0.75)  and 

take 3 (0.5,0.625)I = . 

 

Step 4: Bisecting 3I , we get (0.5,0.5625)  and (0.5625,0.625) , we 

see (0.5625) (0.625) 0f f < , take 4 (0.5625,0.625)I =   keep doing this process for 

more steps to get a better approximation to the root. After step 4 , the root lies in 

4I and we take the approximate value of the root as the midpoint of this interval 

4I , i.e.,  0.59375ξ = . 

 

This is a crude approximation to the root. 

 

Note:  Both the iteration method and Bisection method take more steps to give a 

solution with reasonable accuracy. 
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Exercises: 

1. Use bisection method to obtain a real root for the following equations correct 

to three decimal places:  

i) 3 2 1 0x x+ − =  

ii) 10xe x− =  

iii) 4 1 4sinx x− =  

iv) log 2x x+ = . 

 

2. By constructing a proper iterative function for the given equation, find an 

approximation to its root. 

i) sin 1x x= −  

ii) cotxe x=  

iii) 2 3 1x x− = −  

iv) sin
2
xx =  

v) 4 2 80 0x x+ − =  

vi) 2 2sin 1x x= − . 

 

Keywords: Polynomial and Transcendental Functions, Direct Method, Iterative 

Methods, Iterative Procedure  
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Module 1: Numerical Analysis  

Lesson 5 

Secant and Regula-Falsi Methods 

 

5.1 Introduction 

A root of the algebraic equation ( ) 0f x =  can be obtained by using the iteration 

methods based on the first degree equation. We approximate the given ( )f x by a 

first degree equation in the neighborhood of the root of ( ) 0f x = . 

 

We may write the first degree equation as:  

 

1 0( )f x a x a= +       (5.1)  

 

with 1 0a ≠ and 0a  and 1a  are arbitrary parameters to be determined by posing two 

conditions on ( )f x  or its derivative at two different x  locations on the curve. 

 

5.2 Scant Method 

Take two approximations 1kx −  and kx  to the root ξ   of ( ) 0f x = . We determine the 

constants 0a  and 1a  in equation (5.1) by using the conditions  

 

   1 1 1 0k kf a x a− −= +                 (5.2) 

 

and 

     1 0k kf a x a= +          (5.3) 
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Where,       1 1( )k kf x f− −=  and ( )k kf x f= . 

 

Solving equations (5.2) and (5.3), we get, 

 

( )
( )

1 1
0

1

k k k k

k k

x f x f
a

x x
− −

−

−
=

−          
(4) 

 

and          
( )
( )

1
1

1

k k

k k

f f
a

x x
−

−

−
=

−               
(5) 

 

The solution of (5.1) is 

 

0

1

ax
a

= −
          

(6) 

 

Now the new approximation 1kx +  based on two initial approximations 1kx −  and kx is 

written as equation (5.6) as: 

 

( )
( )

1 1
1

1

k k k k
k

k k

x f x f
x

f f
− −

+
−

−
=

−  

 

This may be rewritten as: 

 

( )
( )

1
1

1

, 1, 2,...k k
k k k

k k

x x
x x f k

f f
−

+
−

−
= − =

−         
(7) 
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Here iteration function ( ) ( )
( )

1
1

1

, k k
k k k k

k k

x x
x x x f

f f
ϕ −

−
−

−
= −

−
generates a sequence of 

iterates { }1 1k k
x ∞

+ = . 

 

5.2.1 Algorithm 

1. Start with ( )0 0,x f and ( )1 1,x f . 

2. Generate 2x using (7) and compute 2 2( )f f x= . 

3. Use ( )1 1,x f  and ( )2 2,x f to compute 3x . 

4. Repeat steps (2) & (3) until the difference between two successive 

approximations 1kx + and kx is less than the error tolerance. 

 

The method fails if at any stage of computation ( ) ( )1k kf x f x −= (see equation 5.7). 
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x  
0x  1x  

2x  ξ  

y  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Secant Method – a Graphical Representation. 

 

5.3 Regula-Falsi Method 

The initial approximations 1kx − and kx  taken in the secant method are arbitrary. If 

we impose a condition on these initial approximations such that 1( ). ( ) 0k kf x f x − <  

the method given by equation (5.7) satisfying this condition is called the Regula-

falsi method. Then the root of ( ) 0f x = lies in between these two values kx and 1kx − . 

Now draw a chord joining the points ( )1 1,k kx f− − and ( ),k kx f . This chord intersects 

the x − axis, say at 1kx x += . Now look for 1( ). ( ) 0k kf x f x+ < or 1 1( ). ( ) 0k kf x f x+ − < . 

One of these two will hold. Without loss of generality, say 1( ). ( ) 0k kf x f x+ < , then 
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join the points ( ),k kx f  and ( )1 1,k kx f+ + by a chord, this chord intersects  say 

at 2kx x += . The above procedure is repeated till we reach the root of ( ) 0f x = . In 

this procedure we are sure of convergence of the sequence of iterates generated 

using equation (5.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2. Regula - Falsi Method – a Graphical Representation. 

 

Example 1: Find the real root of 3 2 5 0x x− − =  using the Regula-falsi method. 

 

Solution:  

Given 3( ) 2 5f x x x= − − .  We compute that  (2) 1 0f = − <  and (3) 16 0f = > . 

 

Take 0 0 1 12, 1, 3, 16x f x f= = − = = . 

1x  2x
 

ξ  

 

2 2( , )x f  

x  
0x  

f  

0 0( , )x f  

1 1( , )x f  

3x  

O  
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Using the method given by (7), 

 

2
3 23 16 2.0813
16 1

x −
= − =

+
,   2( ) 0.1472 0f x = − < . 

 

The root lies in the interval (2.083,3),  join the points (2.0813, 0.1472)−  and (3,16)  by 

the chord, which cuts the x − axis at 3 2.08964x = . 

 

Proceeding in this way, we obtain 

 

4 2.09274,x =  5 2.09388,x =  6 2.0943x =   etc. 

 

The approximate value for the root is taken as 2.0943x = . 

 

Now we illustrate this method to find a root of the transcendental equation. 

 

Example 2: Find the root of cos 0xx xe− = using the Regula-falsi method correct 

to four decimal places. 

 

Solution:  

Let ( ) cos xf x x xe= − , (0) 1f = , (1) 2.17798f = − . 

Clearly (0) . (1) 0f f < . 

 

We obtain 1 0
2 0 0

1 0

x xx x f
f f
−

= −
−   

0.31467=   and (0.31467) 0.51987 0f = > . 

WhatsApp: +91 7900900676 www.AgriMoon.Com43



Secant and Regula-Falsi Methods 

7 
 

The root lies between 0.31467  and 1. Repeating the procedure we obtain the 

approximations to the roots as  

3 0.44673x = , 

4 0.49402x = , 

5 0.50995x =  

6 0.51520x = , 7 0.51692x =  

8 90.51748, 0.51767x x= = , 

10 0.51775,...x =  

 

The root correct to 4  decimal places as 0.5177ξ = . 

 

Exercises 

1. Find a real root of the following equations using the Regula-falsi method:  

a) 0log 1.2x x =  

b) 4 32 0x − =  

c) 3 2 5 0x x− − =  

d) 
1sinx
x

=  

 

2. Solve the above problems using the Secant method. 

 

Keywords: Scant Method, Regula-Falsi Method 
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Module 1: Numerical Analysis 

Lesson 6 

Newton-Raphson Method 

 

6.1 Introduction 

Both the Bisection and Regula-fasi methods give a rough estimate for the root 

of the equation , but these methods take many iterations to get a 

reasonably accurate approximation to the root. An elegant method of obtaining 

the root of   is discussed below which is known as Newton-Raphson 

method. 

 

Let 0x  be an approximate root of the equation . Let 1x be a 

neighbouring point of 0x , such that for every small , 1 0x x h= + . Also let 1x    

be the exact root of . 

 

Then 1( ) 0f x = . 

 

Expanding 0( )f x h+  in Taylor Series about 0x , 

weget 1 0 0 0( ) ( ) ( ) ( ) ... 0f x f x h f x hf x′= + = + + = . 

 

Since  is very small, we neglected  and higher powers of  in the above 

Taylor series expansion. 

 

Thus we have 0 0( ) ( ) 0f x hf x′+ =    giving 0

0

( )
( )

f xh
f x

= −
′

. 

 

Then we have 0
1 0 0

0

( )
( )

f xx x h x
f x

= + = −
′

. 
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a closer approximation to the root of the given  is given by 

 

0
1 0

0

( )
( )

f xx x
f x

= −
′

             (6.1) 

 

A better approximation 2x  can be obtained by  

 

1
2 1

1

( )
( )

f xx x
f x

= −
′

             (6.2) 

 

We generalize this procedure and write a general iteration method as 

 

1
( )
( )

n
n n

n

f xx x
f x+ = −
′

,             (6.3) 

 

This is called the Newton-Raphson iteration method. Comparing this method 

with the general iteration method  

 

      ( )1n nx xϕ+ =             (6.4) 

 

the iteration function is given as   ( )( )
( )

f xx x
f x

ϕ = −
′

. 

 

For convergence of this iteration method the sufficient condition is  ( ) 1xϕ′ <  

which becomes  
[ ]22

( ) ( )1 1
( )

f f f f x f x
f f f x
′ ′′ ′′⋅ ⋅

+ + = <
′ ′ ′  

or  [ ]2( ) ( ) ( )f x f x f x′′ ′⋅ < . 

 

If we choose the initial approximation 0x  in the interval  such that for all x I∈ ,  
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[ ]2( ) ( ) ( )f x f x f x′′ ′⋅ <
  

is satisfied, then the sequence of iterations generated by 

iteration method (3) will converge to the root of . 

 

Example 1: Using the Newton-Raphson method, find a real root of 
4( ) 11 8 0f x x x= − + = . 

 

Solution:   

Given 4( ) 11 8 0f x x x= − + =  

3( ) 4 11f x x′ = − . 

 

Choose 0 2x = . This initial approximation can be obtained by using the 

intermediate value theorem. 

0
1 0

0

( )
( )

f xx x
f x

= −
′

22 1.90476
11

= − =  

1
2 1

1

( )
( )

f xx x
f x

= −
′    

( )4

3

1.90476 11(1.90476) 8
1.90476

4(1.90476)
− +

= −
  

1.89209= , 

2
3 2

2

( )
( )

f xx x
f x

= −
′   

1.89188=  

3
4 3

3

( )
( )

f xx x
f x

= −
′   

1.89188= . 

 

We now accept the numerical approximation to the root as 1.89188ξ = , correct 

to 5  decimal places. 

 

Note that this method requires evaluation of ( )f x′ at every stage.  Also if ( )f x′ is 

very large, then ( )
( )

f xh
f x

 
= − ′ 

will be very small. Thus 0x is close to 1x (which is 
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assumed to be the root of  in the derivation of the method) and makes 

the convergence of the successive iterations to the root faster. 

 

Example 2: Evaluate 29   to four decimal places using the Newton-Raphson 

method. 

 

Solution:  

Let 29x = . Then  2 29 0x − =  

Consider 2( ) 29f x x= − , then ( ) 2f x x′ = . 

2

1
29

2
n

n n
n

xx x
x+

−
= − , 0,1,2,n = ….  

 

Take 0 3.3x = , we get 1 5.3858x = , 2 5.3851x =  and 3 5.3851x = . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1. Newton-Raphson method – a schematic representation; ( )nf xξ ≈  

 

2x  1x  x  
0x  

O  ξ  
2( )f x  

1( )f x  

0( )f x  

( )y f x=

 

y  
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Example 3: Find a root of ( ) 3 cos 1 0f x x x= − − = lying between 0and1. 

 

Solution: Given ( ) 3 cos 1 0f x x x= − − =  

( ) 3 sinf x x′ = +     choose 0 0.6x = . 

1
3 cos 1

3 sin
n n

n n
n

x xx x
x+

− −
= −

+
 

1
sin cos 1

3 sin
n n n

n
n

x x xx
x+

+ +
=

+
 

 

This gives 1 0.6071x = ,  2 0.6071x = .  Thus the approximation to the root is . 

Definition: An iterative method 1 ( )n nx xϕ+ =  is said to be of order  or has the 

rate of convergence  if  is the largest positive real number for which there 

exists a finite constant  such that  1
n

k kM+∈ ≤ ∈ , where k kx ξ∈ = −   is the 

error in the th iterate. The constant  is called the asymptotic error constant. 

 

Exercise 4: Determine the order of the Newton-Raphson method. 

 

Solution:  

The Newton-Raphson method is 1
( )
( )

k
k k

k

f xx x
f x+ = −
′

. 

 

Take k kx ξ∈ = −  or k kx ξ= +∈  and expanding ( )kf ξ+∈ and ( )kf ξ′ +∈  in Taylor 

Series about the root ξ , we obtain. 

[ ]

2

1

1( ) ( ) ...
2

( ) ( ) ...

k k

k k
k

f f

f f

ξ ξ

ξ ξ+

 ′ ′′∈ + ∈ +  ∈ =∈ −
′ ′′+∈ +
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1
21 ( ) ( )... 1 ...

2 ( ) ( )k k k k
f f
f f
ξ ξ
ξ ξ

−
′′ ′′   

=∈ − ∈ + ∈ + + ∈ +   ′ ′   
 

or 2 3
1

1 ( ) ( )
2 ( )k k k

f O
f
ξ
ξ+

′′
∈ = ∈ + ∈

′
. 

 

On neglecting 3
k∈  and higher power k∈ , we get 2

1k kC+∈ = ∈   where 1 ( )
2 ( )

fC
f
ξ
ξ

′′
=

′
. 

Thus the Newton-Raphson method is a second order method. 

 

Exercises: 

Solve the following equations  using Newton-Raphson method: 

i) 0xx e−− =  

ii) cos 0xx xe−− =  

iii) 3 5 1 0x x− + =  

iv) cossin 0xx
x

+ =  

v) 3 2 5 0x x− − =  

 

Keywords: Sufficient Condition, Newton-Raphson Iteration Method 
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Module 1: Numerical Analysis 

Lesson 7 

Linear System of Algebraic Equations – Jacobi Method 

 

7.1 Introduction 

In this lesson we discuss an iterative method which gives the solution of a 

system linear algebraic equations.  

 

Consider a system of algebraic equations as: 

11 1 12 2 1 1... n na x a x a x b+ + + =  

21 1 22 2 2 2... n na x a x a x b+ + + =  

...    ...    ...    ... 

1 1 2 2 ...n n nn n na x a x a x b+ + + =            (7.1) 

 

This is a linear system of n -algebraic equations in n unknowns. In general, the 

number of equations is not equal to the number of unknowns. In (7.1), 

, 1, 2,...,ija i n=  ; 1, 2,...,j n=  are the given coefficients, , 1, 2,...,ib i n=  are the known 

numbers and , 1,2,...,ix i n=  are the unknown numbers to be determined. 

 

The system given in (7.1) can also be written in the matrix vector form as: 

 

Ax b=             (7.2) 

 

where 

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

n n nn

a a a
a a a

A

a a a

 
 
 =
 
 
 

, 

1

2

...

n

b
b

b

b

 
 
 =
 
 
 

, 

1

2

...

n

x
x

x

x

 
 
 =
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 is called the coefficient matrix. 

 

The solution of this system can be obtained using direct methods such as Gauss 

Elimination and also by finding the inverse of the matrix   directly. When the 

size of the matrix A  is very large, applicability of these direct methods is 

limited as finding the inverse of a large size matrix is not so easy. Also, Gauss 

elimination demands the diagonal dominant structure for A . These difficulties 

are overcome in the other class of methods called the iterative methods. In what 

follows, we discuss two useful iterative methods namely the Jacobi and Gauss-

Seidel methods. 

 

The iterative methods are based on the idea of successive approximations. 

Initially, the system of equations is written as: 

 

1n nX HX C+ = + , 0,1, 2,...n =            (7.3) 

 

where H  is the Iterative matrix which depends on the matrix A  and C    is a 

column vector which depends on both A  and b . We start with an initial 

approximation to the solution vector 0x x=  and obtain a sequence of 

approximation to x   as 1 2, ,..., ,...nx x x , this sequence, in the limit as n →∞ , 

converge to the exact solution vector x . We stop the iteration process when the 

magnitude of the two successive iterates of x   i.e., 1nx +  and nx   is smaller than 

the pre-assigned error tolerance∈, 1n nx x+ − ≤∈for all elements of x . 

 

The procedure of obtaining the iterative matrix H  is given below.  
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Let the diagonal elements , 1, 2,...,iia i n=   in the linear system (1) do not vanish. 

We now rewrite the system (1) as: 

13 11 12
1 2 3

11 11 11 11

... n
n

a ab ax x x x
a a a a

= − − − −  

23 22 21
2 1 3

22 22 22 22

... n
n

a ab ax x x x
a a a a

= − − − −  

...    ...    ...    ...   …   …   …   …   … 

1 3 1
1 2 1

22

...n n n n n
n n

nn nn nn

b a a ax x x x
a a a a

⋅ −
−= − − − −

          
(7.4) 

 

The system of equations (7.4) is meaningful only if all iia (diagonal elements) 

are non-zero. If some of the diagonal elements in the system of equations given 

in (7.1) are zero, than the equations should be rearranged so that this condition 

satisfied. We now form an iterative mechanism for the equation (7.4) by writing 

 

( 1) ( ) ( ) ( )13 11 12
1 2 3

11 11 11 11

...n n n nn
n

a ab ax x x x
a a a a

+ = − − − −  

( 1) ( ) ( ) ( )23 22 21
2 1 3

22 22 22 22

...n n n nn
n

a ab ax x x x
a a a a

+ = − − − −  

...     ...     ...     ... 

( 1) ( ) ( ) ( )1 2 1
1 2 1... .n n n nn n n n n

n n
nn nn nn nn

b a a ax x x x
a a a a

+ ⋅ −
−= − − − −

         
(7.5) 

 

Choose the set of initial approximations as: ( )(0) (0) (0) (0)
1 2, ,..., nx x x x= and generate a 

sequence of iterates (1) (2) ( ) ( 1), ,..., , ,...,k kx x x x + until the convergence condition 
( 1) ( )k kx x+ − ≤∈   is satisfied.  

 

Equation (7.5) is written in the matrix vector form as   ( 1) ( )n nX HX C+ = +  
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where 

112

11 11

221

22 11

1 1

0 ...

0 ...

... ... ... ...

... 0

n

n

n n

nn nn

aa
a a

aa
a aH

a a
a a

 − − 
 
 
− − =  
 
 
 − −
  

, 

1

11

2

22

...

n

nn

b
a
b
aC

b
a

 
 
 
 
 =  
 
 
 
  

. 

 

In matrix vector form, the Jacobi method is derived as follows: 

 

Given Ax b= , decompose A  as the sum of lower Triangular, Diagonal and 

upper triangular matrices. This decomposition is always possible. 

 

i.e., A L D U= + +  

( )Ax L D U x b= + + =  

or ( )Dx L U x b= − + +  

or  1 1( )x D L U x D b− −= − + +  

or  1 1 1( )k kx D L U x D b+ − −= − + +  

 or  
1k kx Hx C+ = +  

 

where the Iteration matrix H in Jacobi method is 1( )D L U−− + and C  is 1D b− . 

 

Example 1: Solve the following system of equations using Jacobi method 

 

1 2 34 2x x x+ + =  

1 2 35 2 6x x x+ + = −  

1 2 32 3 4x x x+ + = −  
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by taking the initial approximation as  (0) [0.5, 0.5, 0.5]Tx = − − . 

 

Solution:  

Given 
4 1 1
1 5 2
1 2 3

A
 
 =  
  

. 

 

Note that 0iia ≠ for . 

 

First write as , where  

4 0 0
0 5 0
0 0 3

D
 
 =  
  

, 
0 0 0
1 0 0
1 2 0

L
 
 =  
  

and 
0 1 1
0 0 2
0 0 0

U
 
 
 
  

 

 

The iteration matrix  is 

1

1

4 0 0 0 0 0
( ) 0 5 0 1 0 0

0 0 3 1 2 0
H D L U

−

−

   
   = − + = −   
      

 

1 0 0
4 0 1 1

10 0 1 0 2
5

1 2 010 0
3

 
 

  
  = −   
    

 
          

1 10
4 4

1 20
5 5
1 2 0
3 3

 − 
 
 = − −
 
 
 − −
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and the column vector 

1

1 0 0
4 2

10 0 6
5

410 0
3

C D b−

 
 

  
  = = −  
 −   

 
  

1
2
6
5
4
3

 
 
 
 = −
 
 
 −
  

. 

 

We now write the Jacobi iterative method as: 

( 1) ( )
1 1

( 1) ( 1) ( )
2 2
( 1) ( )
3 3

1 1 10
4 4 2

1 2 60 , 0,1,2,...
5 5 5
1 2 40
3 3 3

n n

n n n

n n

x x
x x x n

x x

+

+ +

+

   −   
      
      = = − − + − =      
         

   − − −
      

  ...... (i) 

 

Start with the given initial approximation

(0)
1
(0)
2
(0)
3

0.5
0.5
0.5

x
x
x

   
   = −   
   −  

, we generate from (i) 

(1)
1
(1)
2
(1)
3

0.75
1.1

1.1667

x
x
x

   
   = −   
   −   .

 

Using this, we generate the next approximation as

(2)
1
(2)
2
(2)
3

1.0667
0.8833
0.85

x
x
x

   
   = −   
   −  

, using 

this,

(3)
1
(3)
2
(3)
3

0.9933
1.0733

1.1

x
x
x

   
   = −   
   −  

, ... 
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The exact solution of this system is 1 2 31, 1, 1x x x= = − = − . 

 

Example 2: Solve the following system of linear algebraic equations using the 

Jacobi method by writing the iterative system directly: 

20 2 17x y z+ − = , 3 20 18x z+ − = − , 2 3 20 25x y z− + = . 

 

Solution:  

We can directly write the iterative system as 

( )( 1) ( ) ( )
1

1 17 2
20

n n nx y z+ = − +  

( )( 1) ( ) ( )
1

1 18
20

n n ny x z+ = − − +  

( )( 1) ( ) ( )
1

1 25 2 3
20

n n nz x y+ = − +  

 

Start with (0) (0) (0) 0x y z= = = . 

(1) (1) (1)0.85, 0.9, 1.25x y z= = − = . 

 

Using this, we generate 

(2) (2) (2)1.02, 0.965, 1.1515x y z= = − = . 

 

In the same way, we generate few more successive approximations as 

(3) (3) (3)1.0134, 0.9954, 1.0032x y z= = − =  

(4) (4) (4)1.0009, 1.0018, 0.9993x y z= = − =  

(5) (5) (5)1.0, 1.0002, 0.9996x y z= = − =  
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(6) (6) (6)1.0, 1.0, 1.0x y z= = − =  

 

Thus the solution is: , , . 

 

This is an alternative way of writing the iteration procedure used in the earlier 

example. 

 

Exercises: 

1. Solve the equations 

1 2 3 4 1 2 3 4 1 2 3 410 2 3, 2 10 15, 10 2 27x x x x x x x x x x x x− − − = − + − − = − − + − =

1 2 3 42 10 9x x x x− − − + = − using the Jacobi method by taking 
(0) (0) (0) (0)
1 2 3 40.3, 0x x x x= = = = . 

2. Write  and  for the following system of equations: 

54 110,2 15 6 72, 6 27 85.x y z x y z x y z+ + = + + = − + + =  Solve this system 

using the Jacobi iterative method by taking (0) (0) (0)2, 0, 0x y z= = = . 

 

Keywords: System of Linear Algebraic Equations, Jacobi Iterative Method  
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Module 1: Numerical Analysis 

Lesson 8 

Gauss-Seidel Iteration Method 

 

8.1 Introduction 

This method is applied to the linear system of algebraic equation  for 

which the diagonal elements of  are larger in absolute value than the sum of 

other elements in the each of its row in. 

 

One should arrange, by row and column interchange that larger elements fall 

along the diagonal, to the maximum possible extent. This method may be seen 

as an improvement to the Jacobi method, where the available values for the 

unknowns in a particular iteration are used in the same iteration. Consider the 

system of linear algebraic equations (5) as given in the lesson 7. 

 

(1) (0) (0) (0)13 11 12
1 2 3

11 11 11 11

... n
n

a ab ax x x x
a a a a

= − − − −  

(1) (0) (0) (0)23 22 21
2 1 3

22 22 22 22

... n
n

a ab ax x x x
a a a a

= − − − −  

...     ...     ...     ... 

(1) (0) (0) (0)1 2 1
1 2 1... .n n n n n

n n
nn nn nn nn

b a a ax x x x
a a a a

⋅ −
−= − − − −

 

 

This is the first step of the Jacobi iteration method.   

 

In the first step of the iteration, we make use of the initial approximations 
(0) (0) (0)
2 2, ,..., nx x x  in the first of the above equation to evaluate (1)

1x  using, 
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( )(1) (0) (0) (0)1
1 12 2 13 3 1

11 11

1 ... n n
bx a x a x a x
a a

= − + + + . This approximation for (1)
1x  is used 

in approximating (1)
2x  as shown below: 

 

( )(1) (1) (0) (0)2
2 21 2 23 3 2

22 22

1 ... n n
bx a x a x a x
a a

= − + + +
 

 

Likewise, the other unknown are found as shown below: 

 

( )(1) (1) (1) (0)3
3 31 1 32 2 3

33 33

1 ... n n
bx a x a x a x
a a

= − + + +  

...       ...      ...       ... 

( )(1) (1) (1) (1)
1 1 2 2 1

1 ...n
n n n n n n

nn nn

bx a x a x a x
a a ⋅ −= − + + +  

 

We proceed to find the second approximation for the solution in the same 

manner. The iteration process is terminated using the same criterion that was 

discussed in the case of Jacobi method.  

 

We express the Gauss-Seidel method in the matrix form as follows for .  

Let , where  and  are the lower and upper triangular matrices 

with zeros for the diagonal entries and is the diagonal matrix. 

 

Then,  . 

( )1 ( )( ) k kL D x b Ux++ = −  

( )1 1 1 ( )( ) ( )k kx D L b D L Ux+ − −= + − +  
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or  
( )1 ( )k kx Hx C+ = +  

where 1( )H D L U−= − + ⋅   and 1( )C D L b−= + . 

 

Let us illustrate the use of Gauss-Seidel method below. 

 

Example 1: Solve the system of equations using the Gauss-Seidel method 

correct to three decimal places:  

        ...... (i) 

        ...... (ii) 

        ...... (iii) 

 

Solution:  

In the above equations, note that  

i. 1 2 1> + , i.e., 1 3>  is false.  

ii. 1 3 1> + −  i.e., 1 4>  is false. 

iii. 4 1 1> + −  i.e., 4 2> is true. 

 

Thus in the first two equations, the diagonal dominance is not present. 

We now rearrange the order of the given system as: 

 

 

 
 

Now this system shows diagonal dominance as   3 2,2 2,4 2≥ ≥ > . 
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We now write the iterative process for the above as: 

( 1) ( ) ( )1
3

k k kx y z+  = − +   

( 1) ( 1) ( )1
2

k k ky x z+ + = − −   

( 1) ( 1) ( 1)1 3
4

k k kz x y+ + + = − +  , 0,1,2,...k =  

 

We start with the initial guess values as (0) (0) (0)1, 1, 1x y z= = = . 

 

This gives,   

(1) (0) (0)1 0
3

x z y = − =   

(1) (1) (0)1 0.5
2

y x z = − − = −   

(1) (1) (1)1 3 0.625
4

z x y = − + =  . 

 

The second iteration is given by 

(2) (1) (1)1 0.375
3

x z y = − =   

(2) (2) (1)1 0.5
2

y x z = − − = −   

(2) (2) (2)1 3 0.53125
4

z x y = − + =  . 

 

Proceeding in this way, we generate the sequence of approximations as: 
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(3) (3) (3)0.34375, 0.4375, 0.55469x y z= = − =  

(4) (4) (4)0.33075, 0.44271, 0.55664x y z= = − =  

(5) (5) (5)0.33312, 0.4449, 0.5555x y z= = − = . 

 

The approximate solution correct to 3 decimal places is take as: 

 

, , . 

 

Example 2: Solve the system of equations 

, ,  using the Gauss-Seidel method by 

taking the initial approximations as (0) (0) (0)0, 0, 0x y z= = = . 

 

Solution:   

Given 
2 1 0
1 2 1

0 1 2
A

− 
 = − − 
 − 

, 
7
1
1

b
 
 =  
 
 

,  we find the decomposition of A as  

2 0 0
0 2 0
0 0 2

D
 
 =  
  

, 
0 0 0
1 0 0

0 1 0
L

 
 = − 
 − 

, 
0 1 0
0 0 1
0 0 0

U
− 

 = − 
  

. 

 

Gauss-Seidel method is ( )1 1 ( ) 1( ) ( )k kx D L Ux D L b+ − −= − + ⋅ + + . 

2 0 0
( ) 1 2 0 ,

0 1 2
D L

 
 + = − 
 − 

1

1 0 0
2
1 1( ) 0 ,
4 2
1 1 1
8 4 2

D L −

 
 
 
 + =
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1

10 0
2
1 1( ) 0 ,
4 2
1 10
8 4

D L U−

 − 
 
 + = − −
 
 
 − −
     

1

7
2
9( )
4

13
8

D L b−

 
 
 
 + =
 
 
 
  

. 

 

Applying the above method, 

(1)

(1)

(1)

1 70 0
2 20
1 1 90 0
4 2 4

01 1 130
8 4 8

x
y
z

   
   

      
      = +      
        

   
      

3.5
2.25

1.625

 
 =  
  

 

Using 

(1)

(1)

(1)

x
y
z

 
 
 
 
 

, we generate 

(2)

(2)

(2)

4.625
3.625
2.3125

x
y
z

   
   =   

     

, 

Similarly, 

(3)

(3)

(3)

5.3125
4.3125
2.6563

x
y
z

   
   =   

     

. 

 

Note that these iterates are approaching the exact solution , , . 

 

Exercises: By choosing suitable initial approximations, solve the following 

system of linear algebraic equations using Gauss-Seidel method. 

1. , , . 

2. , , . 

3. , , . 
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4. 1 2 3 4 1 2 3 4 1 2 3 410 2 3, 2 10 15, 10 2 27,x x x x x x x x x x x x− − − = − + − − = − − + − =

1 2 3 42 10 9x x x x− − − + = − . 

 

Keywords: Linear Algebraic Equations, Gauss-Seidel Method, Diagonal 
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Module 1: Numerical Analysis 

Lesson 9 

Decomposition Methods 

 

9.1 Introduction 

LU and Cholesky Decomposition methods: 

Gauss Elimination method, Gauss-Jordan method and LU and Cholesky 

decomposition methods are the direct methods to solve the system of linear 

algebraic equations . Decomposition methods are also known as 

Factorization methods. In this lesson, we discuss theLUand Cholesky 

Decomposition methods. In this, the basic idea is to write the coefficient matrix  

as the product of a Lower triangular matrix  and an upper triangular matrix .  

 

9.2 LU Decomposition Method 

Given the matrix  as ( ), , 1,2,....,ijA a i j n= =                
 

in general or 

 

11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

, in particular,  the decomposition is possible if all the 

principal minors of , i.e., 
11 12 13

11 12
11 21 22 23

21 22
31 32 33

, ,
a a a

a a
a a a a

a a
a a a

 
   
       

 are non-singular. 

Let  

with a choice for 21

31 32

1 0 0
1 0

1
L l

l l

 
 =  
    

and  
11 12 13

22 23

33

0
0 0

u u u
U u u

u

 
 =  
  

. 
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One can also choose ’s along the diagonal elements for  and iil as diagonal 

elements for . We now determine the element of  and  as follows. 

 

Consider  
11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

1 0 0
1 0 0

1 0 0

u u u a a a
LU l u u a a a A

l l u a a a

     
     = = =     
          

. 

 

Equating the corresponding elements on both sides, we get 

11 11 12 12 13 13, , ,u a u a u a= = =  

21
21 11 21 21

11

,al u a l
a

= ⇒ =  

31
31 11 31 31

11

,al u a l
a

= ⇒ =  

21
21 12 22 22 22 22 12

11

,al u u a u a a
a

+ = ⇒ = −  

21
21 13 23 23 23 23 13

11

,al u u a u a a
a

+ = ⇒ = −  

31
32 12

11
31 12 32 22 32 32

21
22 12

11

,

aa a
a

l u l u a l
aa a
a

 
−  
 + = ⇒ =
 

−  
 

 

31 13 32 23 33 33l u l u u a+ + =  

33 33 31 13 32 23u a l u l u⇒ = − − . 

 

Once we compute ijl ’s and iju ’s, we obtain the solution of  as given below. 

Consider LUx b=  
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CallUx z Lz b= ⇒ = . 

i.e., 
1 1

21 2 2

31 32 3 3

1 0 0
1 0

1

z b
l z b
l l z b

     
     =     
          

. 

 

Now Forward substitution gives 

1 1 21 1 2 2 2 2 21 1,z b l z z b z b l b⇒ = + = ⇒ = −  

31 1 32 2 3 3 3 3 31 1 32 2 21 1( )l z l z z b z b l z l b l b+ + = ⇒ = − − − . 

 

This gives z  in terms of the elements of b . Having found ,  gives the 

unknown as 

11 12 13 1 1

22 23 2 2

33 3 3

0
0 0

u u u x z
u u x z

u x z

     
     =     
          

. 

 

Using backward substitution process, 

3
33 3 3 3

33

,zu x z x
u

= ⇒ =  

22 2 23 3 2u x u x z+ =  

3
2 23

33
2

22

,

zz u
u

x
u

 
− 

 ⇒ =  

11 1 12 2 13 3 1,u x u x u x z+ + =  

1 1 13 3 12 2 ,x z u x u x⇒ = − −  

[ ]1 2 3, , Tx x x is the required solution. 
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Example 1: Solve the following equations by LU decomposition 

, , . 

 

Solution:  

Given 
2 1 4 12
8 3 2 , 20
4 11 1 33

A b
   
   = − =   
   −   

. 

Clearly 11

2 1
2 0, 14 0,

8 3
a  

= ≠ = − ≠ − 
0A ≠ . 

We find a decomposition of  as  as follows 

1 0 0
4 1 0

92 1
7

L

 
 
 

=  
 

− 
 

and 
2 1 4
0 7 14
0 0 27

U
 
 = − − 
 − 

. 

Ax LUx b= = . 

Take Ux z= . 

Then
1

2

3

1 0 0 12
4 1 0 20

9 332 1
7

z
Lz b z

z

 
     
     = ⇒ =     
       − − 
 

 

1 212, 20 4 12 28,z z⇒ = = − × = −  

3
933 ( 28) 2(12) 27
7

z = + − − = − . 

Now 
2 1 4 12
0 7 14 28
0 0 27 27

x
Ux z y

z

     
     = ⇒ − − = −     
     − −     
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27 1
27

z −
= =
−

, 

[ ]1 28 14.1 2
7

y = − − + =  

[ ]1 12 2 4.1 3
2

x = − − =  

 

Thus the solution of the given system of equation is ,  and . 

The advantage of direct methods is that we obtain exact solution while the iterative 

methods give an approximate solution. For the generalization of the 

LUdecomposition procedure to a system of  equations in -unknowns, the reader 

is referred to any standard text book on Numerical methods. 

 

Exercise 1: Solve the equations using LU decomposition. 

 

 

 
 

9.3 Cholesky Method 

If the coefficient matrix A is symmetric (i.e., TA A= ) and all leading order 

principal minors are non-singular (as in case of LUdecomposition method), then 

the matrix A can be decomposed as 

 
TA L L= ⋅  

 

where , 0ij ijL l l= = for . 
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Then Ax b=  becomes 
TL L x b⋅ =  

Take TL x z=  

Lz b⇒ = . 

 

The intermediate solution iz ,  is obtained by forward substitution (as 

described earlier) and solution ix ,  is determined by the back 

substitution. 

 

Example 2: Solve the system of equation using the Cholesky decomposition 

method 

 

 
. 

 

Solution:  

Given 
1 2 3 5
2 8 22 , 6
3 22 82 10

A b
   
   = =   
   −   

. 

Write TA L L= ⋅  

or
11 11 21 31

21 22 22 32

31 32 33 33

1 2 3 0 0
2 8 22 0 0
3 22 82 0 0

l l l l
l l l l
l l l l

    
     =     
         

 

2
11 111 1,l l⇒ = ⇒ =  

11 21 212 2,l l l= ⇒ =  
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11 31 313 3,l l l= ⇒ =  
2 2
21 22 228 2,l l l+ = ⇒ =  

31 21 32 22 3222 8,l l l l l+ = ⇒ =  
2 2 2
31 32 33 3382 3.l l l l+ + = ⇒ =  

1 0 0
2 2 0
3 8 3

L
 
 =  
  

. 

 

Now TAx b L L x b= ⇒ ⋅ = . 

Put TL x u= where 
1

2

3

u
u u

u

 
 =  
  

(say) 

1

2

3

1 0 0 5
2 2 0 6
3 8 3 10

u
Lu b u

u

    
    ⇒ = ⇒ =    
    −    

 

1 2 35, 2, 3u u u⇒ = = − = − . 

Solving TL x u= gives
1 2 3 5
0 2 8 2
0 0 3 3

x
y
z

     
     = −     
     −     

 

1, 3z y⇒ = − = and 2x = as the required solution. 

 

Exercises 2: 

1. Solve the system of equations 

, ,  using the (i) LUand 

Cholesky decomposition methods. 
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2. Solve the system of equation 

1

2

3

4

2 1 4 1 4
4 3 5 2 10

1 1 1 1 2
1 3 3 2 1

u
u
u
u

−     
    − − −    =
    − −
    − −    

 

by LUdecomposition method. 

3. Solve , ,  by the Cholesky method. 

 

Keywords: Cholesky Decomposition Method, LUDecomposition Method 
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Module 1: Numerical Analysis 

Lesson 10 

Interpolation 

 

10.1 Introduction 

Let ( )f x be a continuous function defined on some interval [ , ]a b . Consider a 

partition of this interval [ , ]a b  as 0 0 1... ...i i Na x x x x x b−= < < < < < < = , having  

( 1)N +  nodal points. These nodes are either equally spaced ( 1i ix x h−− = a 

constant, 0,1,2,..., 1i N= − ) or unequally spaced. Let ( )i if x f= , 0,1,2,...,i N= . 

The process of approximating the given function ( )f x on [ , ]a b  OR  a set of 

( 1)N +  data points ( ),i ix f , where the function ( )f x is not given explicitly 

using polynomial functions { }0 1 2, , ,..., ,...Nx x x x is known as polynomial 

interpolation. The problem of polynomial approximation is to find a polynomial 

( )nP x of degree n or less than n , which satisfies the condition 

( ) ( )n i iP x f x= ,  0,1,2,...,i N= . 

 

In such a case, the polynomial ( )nP x is called the interpolating polynomial. The 

advantage of polynomial interpolation is of two folds. The first use is in 

reconstructing the approximation to the function ( )f x when it is not given 

explicitly. The second use is to replace the function ( )f x by an interpolating 

polynomial ( )nP x using which differentiation and integration operations can be 

easily performed. In general, if these are 1N + distinct points 

0 0 1... ...i i Na x x x x x b−= < < < < < < = , then the problem of interpolation is to 

obtain ( )nP x satisfying the conditions ( ) ( )n i iP x f x= , 0,1,2,...,i N= . We discuss 

below the methods in which these interpolating polynomials can be obtained. 
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10.2 Linear Interpolation 

Consider two data point ( )0 0,x f and( )1 1,x f . We wish to determine a polynomial    

 

1 1 0( )P x a x a= + ,          (10.1) 

 

where 0a and 1a are arbitrary constants, satisfying the interpolating conditions  

 

1( ) ( ), 0,1i iP x f x i= =          (10.2) 

 

0 1 0 1 0 0( ) ( )f x P x a x a= = + and 1 1 1 1 1 0( ) ( )f x P x a x a= = + . 

 

Eliminating 0a and 1a , we obtain the interpolating polynomial as: 

1

0 0

1 1

( ) 1
( ) 1 0
( ) 1

P x x
f x x
f x x

 
  = 
  

. 

 

 

 

 

 

 

 

 

 

 

 

 0x  1x  

( )0 0,x f  

( )y f x=
 

1( )y p x=
 

( )1 1,x f  

y  
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Linear interpolation 

Expanding the determinant, we obtain 

( ) ( ) ( )1 0 1 0 1 1 0( ) ( ) ( ) 0P x x x f x x x f x x x− − − + − =  

or 1 0
1 0 1

0 1 1 0

( ) ( ) ( )x x x xP x f x f x
x x x x
− −

= +
− −

. 

 

This gives the linear interpolating polynomial. 

 

Write     0 0 1 1( ) ( ) ( ) ( ) ( )P x l x f x l x f x= +              (10.3) 

 

where 1
0

0 1

( ) x xl x
x x
−

=
−

, 0
1

1 0

( ) x xl x
x x
−

=
−

 

 

The functions 0 ( )l x and 1( )l x are linear functions and are called the Lagrange 

fundamental polynomials. They satisfy the conditions (i) 
1

0
( ) 1i

i
l x

=

=∑  and (ii) 

1,  if i j
( )

0,  if i ji j ijl x δ
=

= =  ≠
 . 

 

Equation (10.3) is called the Linear Lagrange interpolating polynomial. 

 

10.3 Quadratic Interpolation 

We now wish to determine a polynomial  

 
2

2 0 1 2( )P x a a x a x= + + ,          (10.4) 

 

where 0 1,a a   and  2a  are arbitrary constants, satisfying the conditions  
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0 2 0 1 2 1( ) ( ), ( ) ( )f x P x f x P x= = and 2 2 2( ) ( )f x P x= .(10.5) 

 

Thus we are determining 2 ( )P x passing through  data points  

 

( ) ( ) ( )0 0 1 1 2 2, , , , ,x f x f x f . 

 

The arbitrary constants 0a , 1a and 2a can be determined from the three 

conditions: 

2
0 0 1 0 2 0( )f x a a x a x= + +  

2
1 0 1 1 2 1( )f x a a x a x= + +  

2
0 0 1 2 2 2( )f x a a x a x= + +  

 

Eliminating 0 1 2, ,a a a  we obtain: 

2
2

2
0 0 0

2
1 1 1

2
2 2 2

( ) 1
( ) 1

0
( ) 1
( ) 1

P x x x
f x x x
f x x x
f x x x

 
 
  =
 
 
 

 

2 2 2 2
0 0

2 2 2 2
2 1 2 0 1 1 1 0 0 2 0 0

2 2 2 2
2 2 2 2 2 2 1 1

1 1 1 1
( ) 1 ( ) 1 ( ) 1 ( ) 1 0

1 1 1 1

x x x x x x x x
P x x x f x x x f x x x f x x x

x x x x x x x x
⇒ − + − =  

 

Expanding the determinants and simplifying, we obtain    

 

2 0 0 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )P x l x f x l x f x l x f x= + +          (10.6) 
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Where,         ( )( )
( )( )

1 2
0

0 1 0 2

( )
x x x x

l x
x x x x
− −

=
− −

, 

( )( )
( )( )

0 2
1

1 0 1 2

( ) ,
x x x x

l x
x x x x
− −

=
− −

 

( )( )
( )( )

0 1
2

2 0 2 1

( )
x x x x

l x
x x x x
− −

=
− −

. 

 

These ( )il x , 0,1,2i = are Lagrange fundamental polynomials of second degree, 

which satisfy (i) 
2

0
( ) 1i

i
l x

=

=∑  and (ii) ( )i j ijl x δ= . 

 

Example 1: Obtain the value of (0.15)f using Lagrange linear interpolating 

polynomial for the data: 

:x  0.1 0.2  

( ) :f x  0.09983 0.19867  

 

Solution:  

Put 0.15x = in (3), we get 

1
0.15 0.2 0.15 0.1(0.15) (0.09983) (0.19867)
0.1 0.2 0.2 0.1

P − −
= +

− −
 

0.14925=  

 

Example 2: Find 2 ( )P x for the following unequally spaced data set: 

:x  0  1 3  

( )f x  1 3  55  

 

Hence find 2 ( )P x . 
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Solution:  

We compute the fundamental polynomial as: 

( )( )
( )( ) ( )2

0

1 3 1( ) 4 3
1 3 3

x x
l x x x

− −
= = − +

− −
 

( )( )
( )( ) ( )2

2

0 3 1( ) 3
1 2 2

x x
l x x x

− −
= = −

−
 

( )( )
( )( ) ( )2

3

0 1 1( )
3 2 6

x x
l x x x

− −
= = −  

 

Now    ( ) ( ) ( )2 2 2
2

1 1 1( ) 4 3 1 3 3 55
3 2 6

P x x x x x x x= − + ⋅ + − ⋅ + − ⋅  

28 6 1x x= − + . 

 

( ) ( )2
2 ( ) 8 2 6 2 1P x∴ = ⋅ − +  

  32 12 1= − +  

  21= . 

 

Example 3: Find 2 ( )P x approximating the given data 

:x  2  2.5  3  

( ) :f x  0.69315  0.91629  1.09861 

 

Hence find (2.7)y . 

 

Solution:  

Let us find the fundamental polynomials 0 1( ), ( )l x l x and 2 ( )l x : 
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( )( )
( )( )

2
0

2.5 3
( ) 2 11 15

0.5 1.0
x x

l x x x
− −

= = − +
− −

 

( )( )
( )( )

2
1

2 3
( ) 4 20 24

0.5 0.5
x x

l x x x
− −

= = − + −
−

 

( )( )
( )( )

2
2

2 2.5
( ) 2 9 10

1.0 0.5
x x

l x x x
− −

= = − +  

 

Hence, 

( ) ( )
( )

2 2
2

2

( ) 2 11 15 (0.69315) 4 20 24 (0.91629)

2 9 10 (1.09861)

P x x x x x

x x

= − + − − +

+ − +
 

 

Simplifying, we get  

2
2 ( ) 0.08164 0.81366 0.60761P x x x= − + − . 

Putting 2.7x = , 2 (2.7) 0.99412P = . 

 

Exercises: 

1. Find the Lagrange quadratic interpolating polynomial 2 ( )P x for the 

data: (0) 1f = , (1) 3f = , (3) 5f = . 

 

2. The function ( )f x sinx cosx= + is represented by the data given by: 

:x  10°  20°  30°  

( ) :f x  1.1585 1.2817  1.366  
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Find 2 ( )P x for this data. Hence find 2 12
P π 
 
 

. Compare it with the exact 

value 
12

f π 
 
 

.  

 

Keywords: Equally Spaced, Nodal Points, Unequally Spaced, Linear 
Interpolation, Quadratic Interpolation. 
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Module 1: Numerical Analysis 

Lesson 11 

Higher Order Lagrange Interpolation 

 

11.1 Introduction 

Consider the data set ( ) ( ) ( ){ }0 0 1 1, , , ,..., ,N Nx f x f x f  corresponding to the 

function ( )f x on the interval 0[ , ]Nx x . Also, the partition of the interval 

0[ , ]Nx x is 0 1 2 ... Nx x x x< < < < , need not be equally spaced. We now derive an 

interpolating polynomial ( )NP x  for the above data, 

satisfying ( )N i iP x f= , 0,1,...,i N= . 

 

11.2 Lagrange Interpolating Polynomial 

Result: Show that the N th degree Lagrange interpolating polynomial for the 

data set  ( ) ( ) ( ){ }0 0 1 1, , , ,..., ,N Nx f x f x f   is given by 

 

( )( ) ( )
( )( ) ( )

( )( ) ( )
( )( ) ( )

1 2 0 2
0 1

0 1 0 2 0 1 0 1 2 1

... ...
( ) ...

... ...
N N

N
N N

x x x x x x x x x x x x
P x f f

x x x x x x x x x x x x
− − − − − −

= + +
− − − − − −

 

( )( ) ( )
( )( ) ( )

0 1 1

0 1 1

...
...

...
N

N
N N N N

x x x x x x
f

x x x x x x
−

−

− − −
+

− − −
 

 

This is written in the compact form as: 

 

0
( ) ( )

N

N i i
i

P x l x f
=

=∑  

 

where ( )( )
( ) ( )i

i i

w xl x
x x w x

=
′−

 

where ( )( ) ( )0 1( ) ... Nw x x x x x x x= − − −  
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2 
 

 

and ( )( ) ( )( ) ( )0 1 1 1( ) ... ...i i i i i i i i Nw x x x x x x x x x x x− +′ = − − − − − . 

 

These ( )il x are the n th degree fundamental polynomials satisfying                       

(i) 
0

( ) 1
N

i
i

l x
=

=∑      and   (ii) ( )i j ijl x δ= . 

 

The Truncation error in Lagrange interpolation is given by 

( )( 1)( )( , )
( 1)!

n
n

w xT f x f
n

ξ+=
+

 

 

where ξ  is some point from the discrete data set { }0 1, ,..., Nx x x such that  

{ } { }0 1 0 1min , ,..., , max , ,..., ,N Nx x x x x x x xξ< < . 

 

The derivatives of this truncation error is not done here, the reader is referred to 

the reference books. 

 

Proof: Let ( )NP x be of the form  

 

0 1 2 1 0 2( ) ( ) ( )( )...( ) ( )( )...( )N N NP x f x a x x x x x x a x x x x x x= = − − − + − − − +  

1 2 1... ( )( )...( )n Na x x x x x x −+ − − −             (11.1) 

 

Use the condition at 0x x= , 0 0( )f x f= in            (11.2) 

0 0 0 1 0 2 0( )( )...( )Nf a x x x x x x= − − −  

0
0

0 1 0 2 0( )( )...( )N

fa
x x x x x x

⇒ =
− − −

 

 

Similarly, use the other N conditions, we get 
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1
1

1 0 1 2 1

,
( )( )...( )N

fa
x x x x x x

=
− − −

 

2
2

2 0 2 1 2

,
( )( )...( )N

fa
x x x x x x

=
− − −

...
0 1 1( )( )...( )

N
N

N N N N

fa
x x x x x x −

=
− − −

. 

 

Substituting ia ’s in (11.2), we get ( )NP x  as given in equation (11.1). 

 

Example 1: For the below given unequally spaced data find the interpolating 

polynomial with highest degree: 

:x  0  1 3  4  
( )f x  20−  12−  20−  24−  

 

Then compute (2)f . 

 

Solution:  

Given 4  data points, we can find utmost a third degree polynomial of the form 
2 3

0 1 2 3( )P x a a x a x a x= + + + , where these ia ’s are determined using the given 

data. 

 

Now let us use the Lagrange Interpolation formula 

 

3 0 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P x l x f x l x f x l x f x l x f x= + + +  

 

where ( )il x are the fundamental polynomials; 

 

3
( 1)( 3)( 4) ( 0)( 3)( 4)( ) ( 20) ( 12)

( 1)( 3)( 4) (1)( 2)( 3)
x x x x x xP x − − − − − −

∴ = − + − +
− − − − −
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( 0)( 1)( 4) ( 0)( 1)( 3)( 20) ( 24)
(3)(2)( 1) (4)(3)(1)

x x x x x x− − − − − −
− + −

−
 

 

or 3 2
3( ) 8 15 20P x x x x= − + −  is the highest degree polynomial that satisfies the 

given data set.  

 

Now  3 2
3(2) (2) (2) 8(2) 15(2) 20f P≈ = − + −  

14= − . 

 

11.3 Inverse Interpolation  

In interpolation, we find the function value of ( )f x  at some non-nodal point 

x in the interval. On the other hand, the process of estimating the value x for a 

value of ( )f x which is not among the tabulated values is called the inverse 

interpolation. The inverse interpolating polynomial is obtained by interchanging 

the roles of ix and ( )if x in the Lagrange interpolating polynomial.  

 

For ( )i iy f x=  and for the given data set ( )( ) ( ){ }0 0 1 1, , ... ,N Nx y x y x y , it is given 

by: 

1 2 0 1
0 1

0 1 0 2 0 1 0 1 2 1

( )( )...( ) ( )( )...( ) ...
( )( )...( ) ( )( )...( )

N N

N N

y y y y y y y y y y y yx x x
y y y y y y y y y y y y

− − − − − −
= + +

− − − − − −
 

0 1 1

0 2 1

( )( )...( )...
( )( )...( )

N
N

N N N N

y y y y y y x
y y y y y y

−

−

− − −
+

− − −
. 

 

Example 2: Find the value of x , if ( ) 7f x =  from the given table. 

x  1 3  4  
( )f x  4  12  19  
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Solution:  

Using the above inverse interpolating polynomial with 2N = , we get  

(7 12)(7 19) (7 4)(7 19) (7 1)(7 3)(1) (3) (4)
(4 12)(4 19) (12 4)(12 19) (19 4)(19 12)

x − − − − − −
= + +

− − − − − −
 

1 27 4
2 14 7

= + −  

1.860= . 

 

Observe that the function representing the above data set is 2( ) 3y x x= + . 

 

Exercises: 

1. Find the value of  from the following data using the Lagrange 

interpolation. 

x  5  6  9  11 
( )f x  380  2−  196  508  

 

2. Find a polynomial which passes through the 

points (0, 12), (1,0), (3,6), (4,12)− . 

 

3. Find x if ( ) 6f x = from the below given table 

:x  0  1 3  4  
( ) :f x  12−  0  12  24  

 

using the inverse interpolating polynomial. 
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4. Find the value of x corresponding to ( ) 12f x = from the following data set 

{(2.8,9.8), (4.1,13.4), (4.9,15.5), (6.2,19.6)} using the inverse interpolating 

polynomial. 
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References  

Jain, M. K., Iyengar. S.R.K., Jain. R.K. (2008). Numerical Methods. Fifth 

Edition, New Age International Publishers, New Delhi. 

Atkinson, E Kendall. (2004). Numerical Analysis. Second Edition, John Wiley 

& Sons, Publishers, Singapore. 

 

Suggested Reading 

Scheid, Francis. (1989). Numerical Analysis. Second Edition, McGraw-Hill 

Publishers, New York. 

Sastry, S.S. (2005). Introductory Methods of Numerical Analysis. Fourth 

Edition, Prentice Hall of India Publishers, New Delhi. 

 

WhatsApp: +91 7900900676 www.AgriMoon.Com90



Module 1: Numerical Analysis 

Lesson 12 

Newton’s Forward Interpolation Formula with Equal Intervals 

 

12.1 Introduction 

Let  be a continuous function defined on the interval . Consider the 

partition of the interval into equally spaced subintervals as: 

 

0 1 2 1 1... ...j j j Na x x x x x x x b− += < < < < < < < =  

 

where 1j jx x h−− = for each 0,1,2,...,j N= . 

 

Thus the nodes 0 1, ,..., Nx x x are such that 0jx x jh= +  for 0,1,2,...,j N= . 

 

We have the data set as:   

( ) ( ) ( ){ }0 0 1 1, , , ,..., ,N Nx f x f x f . 

 

12.2 Gregory-Newton Forward difference Interpolating Polynomial 

Suppose it is required to evaluate  for some 0x x ph= + where  is any real 

number. Newton’s forward difference interpolation makes use of the forward 

difference operator ∆ on the given data set to generate a polynomial. For any real 

number , the shift operator  gives ( )0 0( )pE f x f x ph= + . 

 

Also we know 1E = + ∆ . 

( ) ( ) ( )0 0 01 ( ) 1p pf x ph f x y∴ + = + ∆ = + ∆  
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2 3
0 0 0 0

( 1) ( 1)( 2){ ...
2! 3!

p p p p py p y y y− − −
= + ∆ + ∆ + ∆ +  

0
( 1)( 2)...( 1)... ...}

!
Np p p p N y

N
− − − +

+ ∆ +  

(using Binomial theorem). 

 

For an -data set, the thand higher order forward differences became zero, 

so the infinite series in the above equation becomes a polynomial of degree . 

 

Note that 0x xp
h
−

= is a linear function of . 

 

Thus ( 1)( 2)...( 1)
!

p p p p N
N

− − − + will be a polynomial of degree is . 

 

Thus we have  

2 3
0 0 0 0 0

( 1) ( 1)( 2)( ) ...
2! 3!p

p p p p py f x ph y p y y y− − −
= + = + ∆ + ∆ + ∆ +  

0
( 1)( 2)...( 1)...

!
Np p p p N y

N
− − − +

+ ∆                 (12.1) 

 

as the n th degree polynomial interpolating the given equally spaced data set. This 

is called the Gregory-Newton Forward difference interpolating polynomial. 

 

The local truncation error in (12.1) becomes  

( )
( ) ( )1( 1)( 1)( 2)...( )( ; )

1 !
Nn

N
p p p p NT f x h f

N
ξ++− − −

=
+
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where { } { }0 1 0 1min , ,..., , max , ,..., ,N Nx x x x x x x xξ< < . 

 

Example 1: Find the Newton Forward interpolating polynomial for the equally 

spaced data points 

     

     
 

Compute . 

 

Solution:  

Given 0 01, 1, 1x h f= = = − . 

The difference table for the given data is: 

 

  f∆  
2 f∆  3 f∆  

1 -1    

  -1   

2 -2  2  

  1  0 

3 -1  -2  

  -1   

4 -2    

 

Clearly 21, 2f f∆ = − ∆ = and 3 0f∆ = . 

 

Using the Newton’s forward interpolating polynomial given by (12.1), we have 
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1 ( 1)( 2) ( 1)( 2)( 3)( ) 1 ( 1) ( 2) (0)
1 2! 3!

x x x x x xf x − − − − − − = − + − + − + 
 

 

( 1)( 2)( 2)1 ( 1)( 1)
2

x xx − − −
= − + − − +  

2 4 2x x= − + . 

 

Now
23 3 34 2

2 2 2
f x     = = − +     
     

7 1.75
4

= − = − . 

. 

 

Example 2: Interpolate at  from the data given without writing the 

polynomial. 

 0.1 0.2 0.3 0.4 0.5 

 1.4 1.56 1.76 2.0 2.28 

 

Solution:  

The function value is to be found at  which is nearer to the node .  

So choose 0 0.2, 0.1, 0.25x h x= = = . 

00.25 0.2 (0.1)px x ph p= = + = +  

0.25 0.2 0.5
0.1

p −
⇒ = = . 

 

The forward difference table for the given data is written as 

  f∆
 

2 f∆  3 f∆  4 f∆  
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0.1 1.4     

  0.16    

0.2 1.56  0.04   

  0.2  0.0  

0.3 1.76  0.04  0.0 

  0.24  0.0  

0.4 2.0  0.04   

  0.28    

0.5 2.28     

 

From the above, 0 0.2x = (chosen), 2
0 0 01.56, 0.2, 0.4f f f= ∆ = ∆ = and 

3 4
0 0 0f f∆ = ∆ = . 

 

The Newton’s forward interpolating polynomial becomes  

2
0 0 0

( 1)(0.25)
2!

p pf f p f f−
= + ∆ + ∆ . 

 

Thus  

. 

 

Note: Newton’s forward interpolation formula is used if the function evaluation is 

desired near the beginning of the tabulated values. 

 

Exercises: 

Use Newton’s forward interpolation formula to find 
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1.  and  from 

      

      
 

2.  from 

      

      
 

3. Find the number of persons getting salary below Rs. 300 per day from the 

following data. 

Wages in 

Rs. 
     

Frequency      
 

Keywords: Newton’s Forward Interpolation Formula, Forward Difference 

Operator  
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Module 1: Numerical Analysis 

Lesson 13 

Newton’s Backward Interpolation Polynomial 

 

13.1 Introduction 

Consider the discrete data set for the continuous function  on the interval 

 as (as considered in the lesson 12) 

 

( ) ( ) ( ){ }0 0 1 1, , , ,..., ,N Nx f x f x f  

 

Let us now try to evaluate the function  at some location  near the end 

nodes 1Nx − or Nx . 

 

Write Nx x ph= + ,  is any real number. 

 

Then ( ) ( )( ) p
p N Ny f x f x ph E f x= = + = . 

 

13.2 Gregory-Newton Backward Interpolating Polynomial 

Use the relation between  and the backward difference operator ∇  given as 

( ) 11E −≡ −∇ . 

 

Now ( )1 ppE −≡ −∇ . 

 

Thus ( ) ( )1 p
N Nf x ph y−+ = −∇ . 
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Expanding ( )1 p−−∇ using binomial expansion, we write  

( ) 2 3( 1) ( 1)( 2){ ...
2! 3!N N N N N

p p p p pf x ph y p y y y+ + +
+ = + ∇ + ∇ + ∇ +  

( 1)( 2)...( 1)... ...}
!

N
N

p p p p N y
N

+ + + −
+ ∇ + . 

 

For the given -data set, the thand higher order backward differences 

become zero, so the infinite series above becomes a polynomial of degree . 

 

Note that Nx x ph= +  

Nx xp
h
−

⇒ = is a linear function of , and the product ( 1)...( 1)
!

p p p N
N

+ + − is a 

polynomial of degree  in . 

 

Thus we get the th degree interpolating polynomial in terms of the backward 

differences at  Nx   as: 

( ) 2 3( 1) ( 1)( 2) ...
2! 3!N N N N N

p p p p pf x ph y p y y y+ + +
+ = + ∇ + ∇ + ∇ +  

( 1)( 2)...( 1)...
!

N
N

p p p p N y
N

+ + + −
+ ∇       (13.2) 

 

This is called the Gregory-Newton Backward interpolating polynomial. 

The local truncation error in (13.2) is 

( )
( )1 ( 1)( 1)...( )( ; ) ( )

1 !
N N

N
p p p NT f x h f

N
ξ+ ++ +

=
+
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where { } { }0 1 0 1min , ,..., , max , ,..., ,N Nx x x x x x x xξ< < . 

 

Note: Newton backward interpolating polynomial is more efficient when applied 

to interpolate the data at the end of the data set. 

 

Let us illustrate this method. 

 

Example 1: The following data represents the relation between the distance as a 

function of height: 

height 150 200 250 300 350 400 

distance 13.03 15.04 16.81 18.42 19.90 21.27 

 

Find ( )y 410 . 

 

Solution:  

Let , chose 400Nx = , , 21.27Ny = . 

10 0.2
50

Nx xp
h
−

∴ = = = . 

 

We now find 2 3 4, , ,N N N Ny y y y∇ ∇ ∇ ∇ by constructing the difference table: 

  ∇  2∇  3∇  4∇  

150 13.03     

  2.01    

200 15.04  -0.24   

  1.77  0.08  
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250 16.81  -0.16  -0.05 

  1.61  0.03  

300 18.42  -0.13  -0.01 

  1.48  0.02  

350 19.90  -0.11   

  1.37    

400 21.27     

 

Using (2), we obtain 

2 3( 1) ( 1)( 2)(410)
2! 3!N N N N

p p p p pf y p y y y+ + +
= + ∇ + ∇ + ∇  

( )( ) ( )( )( )0.2 1.2 0.2 1.2 2.2
21.27 (0.2)(1.37) ( 0.11) (0.02)

2 6
= + + − +  

21.53= . 

 

Thus . 

 

Note that, when , 3 4,p p only correct the solution at fourth and fifth 

decimal places. 

 

Example 2: Find the cubic polynomial which takes the following data: 

 0 1 2 3 

 1 2 1 10 

 

Solution:  
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Let us now form the difference table for the given data: 

  f∆  2 f∆  3 f∆  

0 0x =  1 0f=     

  1 0f= ∆    

1 2  -2 2
0f= ∆   

   

-1 

 
12

3
0

3
N

f

f

= ∆

= ∆

 

2 1  10 2
Nf= ∆   

  9 Nf= ∆    

3Nx =  9 Nf=     

 

Case 1: Take 0
0

00,
1

x x xx p x
h
− −

= = = = . 

 

Let us now find the Newton’s forward interpolating polynomial: 

2 3
0 0 0 0

( 1) ( 1)( 2)( )
2 6

p p p p pf x f p f f f− − −
= + ∆ + ∆ + ∆  

( ) ( )( )1 1 2
1 1 ( 2) (12)

2 6
x x x x x

x
− − −

= + ⋅ + − +  

3 22 7 6 1x x x= − + +         …… (i) 

 

Case 2: Let us now find the Newton’s backward interpolating polynomial:  

Take 3, 10, 1N Nx f h= = = . 
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( ) ( )3
3

1
N xx xp x

h
−−

= = = − . 

2 3( 1) ( 1)( 2)( )
2 6N N N N

p p p p pf x f p f f f+ + +
= + ∇ + ∇ + ∇ . 

( ) ( )( ) ( )( )( )3 , ( 1) 3 2 , ( 1)( 2) 3 2 1p x p p x x p p p x x x= − + = − − + + = − − −  

 

Thus ( ) ( )( ) ( )( )( )3 2 3 2 1
( ) 10 3 (9) (10) (12)

2 6
x x x x x

f x x
− − − − −

= + − + +  

3 22 7 6 1x x x= − + + .     …… (ii) 

 

(i) and (ii) clearly indicate that the interpolating polynomial for the given data is 

the same though we use different methods. 

 

Exercises: 

1. Use the Lagrange interpolating polynomial for the data: 

 0 1 2 3 

 1 2 1 10 

 

Show that the interpolating polynomial is 3 2
3( ) 2 7 6 1p x x x x= − + + . 

 

2. Find f(2) from the data 
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3. If , ,  and 

 find . 

 

4. Find the number of men getting wages below Rs. 35 from the data: 

Wages in Rs:     
Frequency     

 

Keywords: Backward Difference Operator, Local Truncation Error, Newton’s 
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Module 1: Numerical Analysis 

Lesson 14 

Gauss Interpolation 

 

14.1 Introduction 

Newton’s Forward and Backward interpolating polynomials are used to interpolate 

the function values at the starting or end of the data respectively. We now see the 

central difference formulas which are most suited for interpolation near the middle 

of a tabulated set. 

 

Consider the data points as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }3 3 2 2 1 1 0 0 1 1 2 2 3 3, , , , , , , , , , , , ,x y x y x y x y x y x y x y− − − − − −  

 

14.2 Gauss-Forward Interpolation Formula 

The difference table for the above data is: 

 

The newton’s Forward interpolation formula is: 

2 3 4
0 0 0 0 0

( 1) ( 1)( 2) ( 1)( 2)( 3) ...
2! 3! 4!p

p p p p p p p p py y p y y y y− − − − − −
= + ∆ + ∆ + ∆ + ∆ +

            (14.1) 

 

We know 3 2 2 2 2 3
1 0 1 0 1 1y y y y y y− − − −∆ = ∆ − ∆ ⇒ ∆ = ∆ + ∆ . 

 

Similarly, 3 3 4
0 1 1y y y− −∆ = ∆ + ∆ , 4 4 5

0 1 1y y y− −∆ = ∆ + ∆ . 

 

Also 3 3 4 3 3 4
1 2 2 1 2 2y y y y y y− − − − − −∆ − ∆ = ∆ ⇒ ∆ = ∆ + ∆ . 
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Similarly, 4 4 5
1 2 2y y y− − −∆ = ∆ + ∆  etc. 

 

Substituting for 2 3 4
0 0 0, , ,...y y y∆ ∆ ∆ in equation (1), and rearranging, we get 

 

2 3 4
0 0 1 1 2

( 1) ( 1)( )( 1) ( 1)( )( 1)( 2) ...
2! 3! 4!p

p p p p p p p p py y p y y y y− − −
− + − + − −

= + ∆ + ∆ + ∆ + ∆ +

            (14.2) 

 

This is called Gauss-Forward interpolation formula. 
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  1st difference 2nd  difference 3rd difference 4th difference 5th difference 

3x−  3y−       

  
3 5

2

y yδ−
−

 
∆ = 

 
 

    

2x−  2y−   ( )2 2
3 2y yδ− −∆ =     

  
2 3

2

y yδ−
−

 
∆ = 

 
 

 
3 3

3 3
2

y yδ−
−

 
∆ = 

 
 

  

1x−  1y−   ( )2 2
2 1y yδ− −∆ =   ( )4 4

3 1y yδ− −∆ =   

  
1 1

2

y yδ−
−

 
∆ = 

 
 

 
3 3

2 1
2

y yδ−
−

 
∆ = 

 
 

 
5 5

3 1
2

y yδ−
−

 
∆ = 

 
 

0x  0y →  Central Line 

… 
( )2 2

1 0y yδ−∆ =   ( )4 4
2 0y yδ−∆ =   

  
0 1

2

y yδ
 

∆ = 
 

 
 

3 3
1 1

2

y yδ−

 
∆ = 

 
 

 
5 5

2 1
2

y yδ−

 
∆ = 

 
 

1x  1y   ( )2 2
0 1y yδ∆ =   ( )4 4

1 1y yδ−∆ =   

  
1 3

2

y yδ
 

∆ = 
 

 
 

3 3
0 3

2

y yδ
 

∆ = 
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2x  2y   ( )2 2
1 2y yδ∆ =     

  
2 5

2

y yδ
 

∆ = 
 

 
    

3x  3y       
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We know 2 2 3 3
0 1 1 0 1 1

2 2

, ,y y y y y yδ δ δ− −∆ = ∆ = ∆ = and 4 4
2 0y yδ−∆ = ;using these in (2),  

 

we write the equation in (2) in terms of the central differences as: 

2 3 4
0 1 0 1 0

2 2

( 1) ( 1)( )( 1) ( 1)( )( 1)( 2) ...
2! 3! 4!p

p p p p p p p p py y p y y y yδ δ δ δ− + − + − −
= + + + + +

              (14.3) 

 

This formula can be used directly to interpolate the function at the centre of the 

data i.e., for values of , . 

 

14.3 Gauss-Backward Interpolation Formula 

We have 2
0 1 1y y y− −∆ − ∆ = ∆  

2
0 1 1y y y− −⇒ ∆ = ∆ + ∆ , 

2 2 3
0 1 1y y y− −∆ = ∆ + ∆ , 3 3 4

0 1 1y y y− −∆ = ∆ + ∆ etc 

Also, 3 3 4
1 2 2y y y− − −∆ = ∆ + ∆ ,  

4 4 5
1 2 2y y y− − −∆ = ∆ + ∆ , etc. 

 

Substituting these in equation (1), we get 

( ) ( ) ( )2 2 3 3 4
0 1 1 1 1 1 1

( 1) ( 1)( 2) ...
2! 3!p

p p p p py y p y y y y y y− − − − − −
− − −

= + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ +

 

( )2 3 4
0 1 1 2 2

( 1) ( 1) ( 1) ...
2! 3!

p p p p py p y y y y− − − −
+ + −

= + ∆ + ∆ + ∆ + ∆ +  
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or

2 3 4
0 1 1 2 2

( 1) ( 1) ( 1) ( 2)( 1) ( 1) ...
2! 3! 4!p

p p p p p p p p py y p y y y y− − − −
+ + − + + −

= + ∆ + ∆ + ∆ + ∆ +

 

             (14.4) 

 

This is called Gauss-Backward interpolation formula. This is written using the 

central differences as: 

 

2 3 4
0 1 0 1 0

2 2

( 1) ( 1) ( 1) ( 2)( 1) ( 1) ...
2! 3! 4!p

p p p p p p p p py y p y y y yδ δ δ δ
− −

+ + − + + −
= + + + + +

 

             (14.5) 

 

Formula given in (2) and (4) or (3) and (5) have limited utility, but are useful in 

deriving the important method known as Stirling’s method. 
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Module 1: Numerical Analysis 

Lesson 15 

Everett’s Central Difference Interpolation 

 

15.1 Introduction 

We have the Gauss forward interpolation formula as 

 

2 3 4
0 0 1 2 2

( 1) ( 1) ( 1) ( 1) ( 1)( 2)
2! 3! 4!p

p p p p p p p p py y p y y y y− − −
+ + − + − −

= + ∆ + ∆ + ∆ + ∆

 

5
2

( 2)( 1) ( 1)( 2) ...
5!

p p p p p y−
+ + − −

+ ∆ +        (15.1) 

 

15.2 Everett’s Formula 

Eliminating odd differences 3 5
0 1 2, ,y y y− −∆ ∆ ∆ etc. by 

3 2 2
0 1 0 1 0 1, ,y y y y y y− −∆ = − ∆ = ∆ − ∆ 5 4 4

2 1 2y y y− − −∆ = ∆ − ∆ etc., then (1) becomes 

( ) ( )2 2 2
0 1 0 1 0 1

( 1) ( 1) ( 1)
2! 3!p

p p p p py y p y y y y y− −
− + −

= + − + ∆ + ∆ − ∆ +  

( )4 4 4
2 1 2

( 1) ( 1)( 2) ( 2)( 1) ( 1)( 2) ...
4! 5!

p p p p p p p p py y y− − −
+ − − + + − −

∆ + ∆ − ∆ +

2 2
0 1 1 0

( 1)( 2) ( 1) ( 1)(1 )
3! 3!

p p p p p pp y py y y−
− − + −

= − + − ∆ + ∆ −  

4 4
2 1

( 1) ( 1)( 2)( 3) ( 2)( 1) ( 1)( 2) ...
5! 5!

p p p p p p p p p py y− −
+ − − − + + − −

∆ + ∆ +  

(15.2) 

 

This is known as Everett’s formula. 

WhatsApp: +91 7900900676 www.AgriMoon.Com112



Everett’s Central Difference Interpolation 
 

2 
 

This formula is extensively used as it involves only even differences in and below 

the central line. 

 

Example 1: Below given data represents the function . Use Everett’s 

formula to find : 

 310 320 330 340 350 360 

 2.49136 2.50515 2.51851 2.53148 2.54407 2.55630 

 

Take the data as: 

2 2310, 2.49136,x f− −= =  

1 1320, 2.50515,x f− −= =  

0 0330, 2.51851,x f= =  

1 1340, 2.53148,x f= =  

2 2350, 2.54407,x f= =  

3 3360, 2.5630,x f= =  

33010,
10

xh p −
= = . 

y  y∆  2 y∆  3 y∆  4 y∆  5 y∆  

2.49136      

 0.01379     

2.50515  -0.00043    

 0.01336  0.00004   

2.51881  -0.00039  -0.00003  
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 0.01297  0.00001  0.00004 

2.53148  -0.00038  0.00001  

 0.01259  0.00002   

2.54407  -0.00036    

 0.01223     

2.55630      

 

Take 337.5 330337.5, 0.75
10

x p −
= = = . 

 

To change the terms with negative sign, putting p 1 q= − in equation (1), we get 

2 2 2 2 2 2
2 4

0 1 2
( 1 ) ( 1 )( 2 ) ...

3! 5!p
q q q q qy qy y y− −

− − −
= + ∆ + ∆ +  

2 2 2 2 2 2
2 4

1 0 1
( 1 ) ( 1 )( 2 ) ...

3! 5!
p p p p ppy y y−

− − −
+ + ∆ + ∆ +  

1 0.25q p= − = . 

0.62963 0.00002 0.0000002 1.89861 0.00002 0.00000001 2.52828py∴ = + − + + + =
 

Exercise: 

1. Find  from the data  

 20 24 28 32 

 854 3162 3544 3992 

 

using Everett’s formula. 
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Module 1: Numerical Analysis 

Lesson 16 

Stirling’s and Bessel’s Formula 

 

16.1 Stirling’s Formula 

This is obtained by taking the mean of the Gauss Forward and Backward 

interpolation formulae. 

 

This is written as: 

( ) ( )2 2 22 3 3
2 40 1 1 2

0 1 2

1 1
...

2 2! 3! 2 4!p

p p p py y p y yy y p y y− − −
− −

− − ∆ + ∆ ∆ + ∆ = + + ∆ + + ∆ +  
   

 

(16.1) 

 

Writing this using central differences, we obtain 

( ) ( )2 2 2 2 22
3 3 4

0 1 1 0 1 1 0
2 2 2 2

1 1
...

2 2! 3! 2 4!p

p p p pp py y y y y y y yδ δ δ δ δ δ
− −

+ −   
= + + + + + + +   ⋅   

 

(16.2) 

 

This is called the Stirling’s formula. 

 

Example 1: Find the value of xe when  from the below given table: 

x  0.61 0.62 0.63 0.64 0.65 
xy e=  1.840431 1.858928 1.87761 1.896481 1.91554 
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2 
 

Solution: 

0 0
0.644 0.640.644, 0.64, 0.4, 1.896481

0.01
x x p y−
= = = = = . 

 

By forming the difference table (left as an exercise!) we note that 

1 0.018871,y−∆ = 2
0 10.01906, 0.000189y y−∆ = ∆ = and all higher order differences 

are approximately zero. Substituting these in the Stirling’s formula given in (1), we 

get 

. 

 

16.2 Bessel’s Formula 

We know 2 2 3
0 1 1y y y− −∆ − ∆ = ∆  

2 2 3
1 0 1y y y− −⇒ ∆ = ∆ − ∆ . 

Similarly 4 4 5
1 2 2y y y− − −∆ − ∆ = ∆  

4 4 5
2 1 2y y y− − −⇒ ∆ = ∆ − ∆  

 

Using these in the Gauss forward interpolation formula, we obtain  

( ) ( )2
2 2 3

0 0 1 1 1

11 1 1
2! 2 2 3!p

p pp p
y y p y y y y− − −

−−  = + ∆ + ∆ + ∆ + ∆ 
 

 

( )( )2
4 4

2 2

1 2 1 1 ...
4! 2 2

p p p
y y− −

− −  + ∆ + ∆ + 
 

 

( ) ( ) ( ) ( )2
2 2 3 3

0 0 1 0 1 1

11 11 1
2 2! 2 2! 3!

p pp p p p
y p y y y y y− − −

−− −
= + ∆ + ∆ + ∆ − ∆ + ∆  
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( )( )2
4

2

1 21
2 4!

p p p
y−

− −
+ ∆ +

( )( ) ( )
2

4 5
1 2

1 21 ...
2 4!

p p p
y y− −

− −
∆ − ∆ +  

or ( ) ( )2 2
31 0

0 0 1

1 11 2
2! 2 3!p

p p pp p y yy y p y y−
−

 − − −  ∆ + ∆  = + ∆ + + ∆ 
 

 

( ) ( )( ) 4 4
2 11 1 2

...
4! 2

p p p p y y− −+ − −  ∆ + ∆
+ + 

 
      (16.3) 

 

This is known as the Bessel’s formula. 

 

Example 2: Using Bessel’s formula, obtain 

given . 

 

Solution:  

Taking 0 024, 4, 3162x h y= = = . 

 

We have ( )1 24
4

p x= − . 

x  y  y∆  2 y∆  3 y∆  

20 2854    

  308   

24 3162  74  

  382  -8 

28 3544  66  

  448   
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32 3992    

 

Taking 125,
4

x p= = . 

 

Bessel’s formula is: 

( ) ( )2 2
31 0

0 0 1

1 11 2 ...
2! 2 3!p

p p pp p y yy y p y y−
−

 − − −  ∆ + ∆  = + ∆ + + ∆ + 
 

 

(0.25)( 0.75) 74 66 ( 0.25)(0.25)( 0.75)(25) 3162 (0.25)(382) ( 8)
2 2 6

y − + − − ∴ = + + + − 
 

3250.87= . 

 

Note:  

1. If the value of p lies between 1
4

− and 1
4

, prefer Stirling’s formula, it gives a 

better approximation. 

2. If p lies between 1
4

and 3
4

, Bessel’s or Everett’s formula gives better 

approximation. 

 

Exercises: 

1. Using Stirling’s formula, find  from the data 

. 

 

2. Find  using Bessel’s formula from 
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 20 25 30 35 40 

 11.47 12.78 13.76 14.49 15.05 

 

3. Tabulate ( ) xf x e−= in with . Find  using (i). 

Bessel’s and (ii) Everett’s formula. 
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Module 1: Numerical Analysis 

Lesson 17 

Newton’s Divided Difference Interpolation 

 

17.1 Introduction 

In Lagrange interpolation, the fundamental polynomials are constructed for writing 

the interpolating polynomial. Suppose we found the fundamental polynomials for 

the given  data point set. If a data point is added to this set, then the fundamental 

polynomials are reconstructed. This makes the process laborious. An easier way of 

finding an interpolating polynomial is given by constructing the divided 

differences. 

 

17.2 Divided Difference 

For the set ( ) ( ){ }0 0 1 1, , ,x f x f , the linear interpolating polynomial 0 1a a x+  is given 

by: 

0 0

1 1

( ) 1
( ) 1 0
( ) 1

p x x
f x x
f x x

= . 

 

Expand the determinant in term of the first row, we get 

( ) [ ]0 1 0 1( ) ( ) ( )p x x x x f x f x− − − + [ ]1 0 0 11 ( ) ( ) 0x f x x f x− =  

 

or it is rewritten as  

1 0
0 0

1 0

( ) ( )( ) ( ) ( ) f x f xp x f x x x
x x
−

= + −
−

 

[ ]0 0 0 1( ) ( ) ,f x x x f x x= + −     (17.1) 
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where [ ]0 1,f x x is defined as the first divided difference of  relative to 0x    and 

1x , given as:  

[ ] 1 0
0 1

1 0

( ) ( ), f x f xf x x
x x
−

=
−

. 

 

Example 1: Given , find the linear interpolating polynomial 

using Newton’s divided difference interpolation. 

 

Solution:  

Given 0 02, 4,x f= = 1 12.5, 5.5.x f= =  

 

Newton’s first divided difference 

[ ] 1 0
0 1

1 0

( ) ( ) 5.5 4 1.5, 3
2.5 2 0.5

f x f xf x x
x x
− −

= = = =
− −

. 

 

The interpolating polynomial is 

[ ]1 0 0 0 1( ) ( ) ( ) ,p x f x x x f x x= + −  

4 ( 2)(3)x= + −  

3 2x= − . 

 

17.3 Generalization to  Data Points 

The second divided difference of  relative to the points 0 1 2, ,x x x is written as:  

[ ] [ ] [ ]1 2 0 1
0 1 2

2 0

, ,
, ,

( )
f x x f x x

f x x x
x x
−

=
−
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where [ ]1 2,f x x is the first divided difference of  relative to 1x and 2x is given 

by: 

[ ] 2 1
1 2

2 1

( ) ( ), f x f xf x x
x x
−

=
−

. 

 

The third divided difference of  relative to 0 1 2 3, , ,x x x x is given by 

[ ] [ ] [ ]1 2 3 0 1 2
0 1 2 3

3 0

, , , ,
, , ,

( )
f x x x f x x x

f x x x x
x x
−

=
−

. 

 

The same way, the th divided difference is written as 

[ ] [ ] [ ]1 2 0 1 2 1
0 1

0

, ,..., , , ,...,
, ,...,

( )
N N

N
N

f x x x f x x x x
f x x x

x x
−−

=
−

. 

 

Let ( ) ( )( ) ( )0 0 1 0 1 1( ) ... ... N Np x a x x a x x x x x x a−= + − + + − − − be the interpolating 

polynomial for the  distinct points ( ) ( ) ( ){ }0 0 1 1, , , ,..., ,N Nx f x f x f . 

 

Substituting 0x x= in the above, we get 

( ) ( ) [ ]0 0 0 0p x a f x f x= = = . 

 

Put 1x x= , we obtain 

( ) ( ) [ ]1 0 0 1 1p x a x x a f x= + − = (say) 

( )
1 0

1 0 1
1 0

( ) ( ) [ , ]f x f xa f x x
x x
−

⇒ = =
−

. 
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Put 2x x= , we get 

( ) ( ) ( )( )2 0 0 0 1 2 0 2 1 2 2( ) [ , ] ( )p x f x x x f x x x x x x a f x= + − + − − = . 

 

On simplifying, we get 

( )
1 2 0 1

2 0 1 2
2 0

[ , ] [ , ][ , , ] f x x f x xa f x x x
x x
−

= =
−

. 

 

Proceeding in this way, we show that  

0 1[ , ,..., ]n Na f x x x= . 

 

Then we obtain the divided difference interpolating polynomial as 

( ) ( ) ( )( ) ( )0 0 0 1 0 1 1 0 1( ) [ , ] ... ... [ , ,..., ]N N Np x f x x x f x x x x x x x x f x x x−= + − + + − − − . 

(17.2) 

 

This formula is easily extended to (say)  data. (i.e., addition of one more 

data point to the previous data set) as 

( ) ( ) ( ) ( )1 0 0 0 1 0 1 0 1( ) [ , ] ... ... [ , ,..., ]N N Np x f x x x f x x x x x x f x x x+ −= + − + + − − +  

( ) ( )0 0 1 1... [ , ,..., , ]N N Nx x x x f x x x x +− −        (17.3) 

 

It amounts to finding the next divided difference and adding it to previously 

obtained interpolating polynomial as shown above. 

 

Example 2: Find the Newton divided difference interpolating polynomial for the 

data. 
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 0 1 3 

 1 3 5.5 

 

Solution:  

0 1 2 0 1 20, 1, 3, 1, 3, 55x x x f f f= = = = = = . 

[ ] (1) (0) 3 10,1 2
1 0 1

f ff − −
= = =

−
, 

[ ] 55 3 521,3 26
3 1 2

f −
= = =

−
, 

[ ] 26 2 240,1,3 8
3 0 3

f −
∴ = = =

−
. 

 

∴Newton’s divided difference interpolating polynomial is 

2 ( ) (0) ( 0) [0,1] ( 0)( 1) [0,1,3]p x f x f x x f= + − + − −  

1 2 ( )( 1)8x x x= + ⋅ + −  

28 6 1x x= − + . 

 

Exercises: 

1. Find  from the following data using the Newton’s divided difference 

interpolation. 

 1.5 3.0 5.0 6.5 8.0 

 5.0 31.0 131.0 282.0 521.0 

 

2. If 2

1( )f x
x

= , find the divided difference 0 1 2[ , , ]f x x x . 
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3. From the data  

 -1 1 4 7 

 -2 0 63 342 

 

(i) Find the Lagrange interpolating polynomial. 

(ii) Find the Newton divided difference interpolating polynomial. 
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Module 1: Numerical Analysis 
 

Lesson 18 

Numerical Differentiation 

 

18.1 Introduction 

Given a continuous function ( )f x on an interval [ , ]a b , it can be differentiated on 

( , )a b . However, when ( )f x is a complicated function or when it is given in a data 

set, we use numerical methods to find its derivatives. There are many ways of 

finding derivatives of a function when given in its data form. Important among 

these methods are methods based on interpolation, method based on finite 

difference operators. We discuss these methods through examples. 

 

18.2 Methods based on Interpolation 

If ( ),i ix f , 0,1, 2...i = , N are the ( )1N + data points representing a function 

( )y f x= . The Lagrange interpolating polynomial for above set of data points is 

given by 

0
( ) ( )

N

N k k
k

P x l x f
=

=∑              (18.1) 

where
( )

( )( )
( )k

k k

xl x
x x x

π
π

=
′−

. 

and ( )( ) ( )0 1( ) ... Nx x x x x x xπ = − − − . 

Differentiating (1) w.r.t. x , we obtain 

0
( ) ( )

N

N k k
k

P x l x f
=

′ ′= ∑ . 

 

Case 1: Linear interpolation: For ( ) ( )0 0 1 1, , ,x f x f : 

We have  1 0 0 1 1( ) ( ) ( )P x l x f l x f= +  

where 1
0

0 1

( ) x xl x
x x
−

=
−  

and  0
1

1 0

( ) x xl x
x x
−

=
−

. 
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01
1 0 1

0 1 1 0

( ) x xx xP x f f
x x x x

−−
= +

− −
. 

The derivative of this is  

1 0
0 1 1 0

1 1( )P x f f
x x x x

′ = +
− −

          (18.2) 

 

Case 2: Quadratic interpolation: For the data ( ) ( ) ( ){ }0 0 1 1 2 2, , , , ,x f x f x f , we have 

the interpolating polynomial as 2 0 0 1 1 2 2( ) ( ) ( ) ( )P x l x f l x f l x f= + + . 

Its derivative is 

2 0 0 1 1 2 2( ) ( ) ( ) ( )P x l x f l x f l x f′ ′ ′′ = + +  

where
( )( )

1 2
0

0 1 0 2

2( ) x x xl x
x x x x

− −′ =
− −

, 
( )( )

0 2
1

1 0 1 2

2( ) x x xl x
x x x x

− −′ =
− −

, 
( )( )

0 1
2

2 0 2 1

2( ) x x xl x
x x x x

− −′ =
− −

. 

( )( ) ( )( ) ( )( )
0 2 0 11 2

2 0 1 2
0 1 0 2 1 0 1 2 2 0 2 1

2 22( ) x x x x x xx x xP x f f f
x x x x x x x x x x x x

 − − − −− −′∴ = + + − − − − − − 
             (18.3) 

At 1x x= ,
( )( ) ( )( ) ( )( )

1 0 2 1 01 2
2 0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

2( ) x x x x xx xP x f f f
x x x x x x x x x x x x

− − −−′ = + +
− − − − − −

. 

 

Similarly we can write 2 ( )P x′ at any nodal point or a non-nodal point. 

In the same manner,
( )( )0

0 1 0 2

2( )l x
x x x x

′′ =
− −

,
( )( )1

1 0 1 2

2( )l x
x x x x

′′ =
− −

 and 

( )( )2
2 0 2 1

2( )l x
x x x x

′′ =
− −

 

and the second derivative of 2 ( )P x i.e.,  

( )( ) ( )( ) ( )( )
0 1 2

2
0 1 0 2 1 0 1 2 2 0 2 1

( ) 2 f f fP x
x x x x x x x x x x x x

 ′′ = + + − − − − − − 
        (18.4) 

 

This gives a way of finding an approximation to ( )f x′ at every [ ]0 , Nx x x∈ by 

finding the interpolating polynomial ( )nP x for the given set of data points. 
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Example 1:  Find (2)f ′ and (2)f ′′ for the below given data set. 

ix  2 2.2 2.6 

if  0.69315 0.78846 0.95551 

 

Solution:  

We have  

( )( )
( )

( )( )
( )

( )( )
0 2 0 10 1 2

0 0 1 2
0 1 0 2 1 0 1 2 2 0 2 1

2( ) (2)
x x x xx x xf x f f f f

x x x x x x x x x x x x
− −− −′ ′= = + +

− − − − − −
 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )4 2.2 2.6 2 2.6 2 2.20.69315 0.78846 0.95551
0.2 0.6 0.2 0.4 0.6 0.4
− − − −

= + +
− − −

 

0.49619= . 

( )( ) ( )( ) ( )( )
0 1 2

0
0 1 0 2 1 0 1 2 2 0 2 1

( ) 2 f f ff x
x x x x x x x x x x x x

 ′′ = + + − − − − − − 
. 

( )( ) ( )( ) ( )( )
0.69315 0.78846 0.95551(2) 2
0.2 0.6 0.2 0.4 0.6 0.4

f
 ′′∴ = + + − − − 

 

0.19642= − . 

Thus (2) 0.49619f ′ =  and (2) 0.19642f ′′ = − . 

 

In the above, we used Lagrange interpolation method. Similarly one can use 

Newton interpolation methods also. 

 

18.3 Methods based on Finite Differences 

For a given equally spaced data set, we have learnt that ( ) ( )hDEf x e f x=  

i.e., loghDe E hD E≡ ⇒ ≡                                 (18.5) 

where E  is the shift operator, D  is the differentiation operator, h being the 

constant step size. Using the relation between E , ∆and ∇ , we write 
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( )

( )

2 3

2 3

1 1log 1 ...
2 3log

1 1log 1 ...
2 3

hD E
+ ∆ ≡ ∆ − ∆ + ∆ −

≡ ≡
− −∇ ≡ ∇+ ∇ + ∇ +

 

Then 
2 3

2 3

1 1 ...
2 3( ) ( )
1 1 ...
2 3

k k k

k k

k k k

f f f
dfh x hDf x
dx f f f

∆ − ∆ + ∆ −
≡ ≡

∇ + ∇ + ∇ +
                                           (18.7)

 

 

In general we can write the higher order derivatives in terms of the higher order 

differences, the thn  derivative operator 
n

n

d
dx

can be written as 

1 2

1 2

(3 5) ...
2 24

(3 5) ...
2 24

n n n

n n

n n n

n n n

h D
n n n

+ +

+ +

+∆ − ∆ + ∆ −≡  +∇ + ∇ + ∇ +
                                                               (18.8)

 

 

In particular, when 2n = and at kx x= , 

2 3 4
2

2
2

2 3 4

11 ...
12( )
11 ...
12

k k k

k

k k k

f f fd fh x
dx f f f

∆ −∆ + ∆ −≡ 
∇ +∇ + ∇ +
                                                            (18.9)

 

 

Example 2: Find dy
dx

 and 
2

2

d y
dx

at 1.2x = using forward differential from the 

following table: 

x : 1 1.2 1.4 1.6 1.8 2.0 

( )y x : 2.7183 3.3201 4.0552 4.953 6.0496 7.3891 

 

Solution:  

Take 0 1.2x = , 0 3.3201y = , 0.2h = . We form the difference table for the given data 

set as: 

 (18.6) 
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2 3

1.2

1 1 1(1.2) (1.2) (1.2) ...
2 3x

dy f f f
dx h=

 = ∆ − ∆ + ∆ −  
 

( )1 1 10.7351 0.1627 (0.0361) ...
0.2 2 3

 = − + −  
 

3.3205≈ . 

x  y  ∆  2∆  3∆  4∆  5∆  

1.2 3.3201      

  0.7351     

1.4 4.0552  0.1627    

  0.8978  0.0361   

1.6 4.9530  0.1988  0.008  

  1.0966  0.0441  0.0001 

1.8 6.0496  0.2429  0.0094  

  1.3395  0.0535   

2.0 7.3891  0.2964    

  1.6359     

2.4 9.025      

2
2 3

2 2
1.2

1 ...k k
x

d y f f
dx h

=

 = ∆ −∆ +   

[ ]1 0.1627 0.0361 3.165
0.04

= − ≈ . 

 

Example 3: Given: ( ),i ix y , 1, 2,3, 4,5,6i = as: 

x  3 4 5 6 7 8 

y  0.205 0.24 0.259 0.262 0.25 0.224 

 

Find the value of x for which y is minimum. 

Solution:  
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The difference table is: 

x  y  ∆  2∆  3∆  
3 0.205    

  0.035   

4 0.24  -0.016  

  0.019  0.0 

5 0.259  -0.016  

  0.003  0.001 

6 0.262  -0.015  

  -0.012  0.001 

7 0.25  -0.014  

  -0.026   

8 0.224    

 

Take 0 3x = , 0 0.205y = , 1.0h = . 

Let us now obtain the interpolating polynomial using Newton’s forward 

difference interpolation. It is  2
0 0 0

( 1)( )
2

p py x y p y y−
= + ∆ + ∆

  
where 0x xp

h
−

=  

or   ( ) ( )0.016
( ) 0.205 0.035 ( 1)

2
y x p p p= + − − . 

 

The minimum value of ( )y x is obtained by solving  0dy
dp

=  

i.e., ( )(2 1)(0.035) 0.016 0
2

p −
− =  

0.035 0.008(2 1) 0p⇒ − − =  

0.035(2 1)
0.008

P⇒ − =  

2.6875p⇒ =  
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Thus 0 3 2.6875 5.6875x x ph= + = + = . 

Hence minimum value of ( )y x is attained at 5.6875x = and the minimum value 

is0.2628. 

 

Exercises 

1. Find the value of cos1.747 using the below table: 

x : 1.7 1.74 1.78 1.82 

sin x : 0.9916 0.9857 0.9781 0.9691 

2. Given sin 0 0,sin10 0.1736,sin 20 0.3420,sin 30 0.5,sin 40 0.6428o o o o o= = = = = . 

Find  

(i) sin 23o  

(ii) cos10o  

(iii) sin 20o− using the method based on the finite differences. 

3. Find the value of x for which y is maximum from the below tabulated values 

for ( )y x . 

x : 1.2 1.3 1.4 1.5 1.6 

y : 0.93 0.96 0.98 0.99 1.0 

 

Keyword: Finite differences, Lagrange interpolation, 
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Lesson 19 

Numerical Integration 

 

19.1 Introduction 

Consider the data set S for a given function ( )y f x=  which is not known 

explicitly where ( ) ( ) ( ){ }0 0 1 1, , , ,... ,N NS x y x y x y= . 

 

It is required to compute the value of the definite integral    

( ) ;
b

a

I y x dx= ∫                                     (19.1) 

 

The Lagrange interpolating polynomial for the above data is given by  

( ) ( )( 1)

0

( )( ) ( )
1 !

N
N

i i
i

xy x l x f f
N
π ξ+

=

= +
+∑  

where ( )( ) ( )0 1( ) ... Nx x x x x x xπ = − − − ; 0 Nx xξ< <  

and ( )il x is the Lagrange fundamental polynomial. 

 

Replace the function ( )y x  by (19.2) in the integral (19.1) we obtain  

 

 

 

 

 

 

 

 

( ) ( )( 1)

0

( )( )
1 !

b bN
N

i i
ia a

xI l x f dx f dx
N
π ξ+

=

  = +    +   
∑∫ ∫       (19.2) 
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0
( )

bN

i i n
i a

l x dx f R
=

 
= + 

 
∑ ∫  

 

or i i nI f Rλ= +                         (19.3) 

where iλ  are ( )
b

i
a

l x dx∫  and nR is the remainder given by 
( ) ( )( 1)1 ( )

1 !

b
N

a

x f dx
N

π ξ+

+ ∫  . 

Equation (3)gives an approximation for the integral value. 

 

19.2 Newton-Cotes Formulae 

Using Newton’s, forward difference interpolation polynomial for the given data 

set S, we now derive a general formula for numerical integration of  

( )
b

a

I y x dx= ∫                 (19.4) 

 

Consider the partition of the integral [a, b] as  

0 1... Na x x x b= < < = such that 0Nx x Nh= +  i.e., b ah
N
−

= . 

 

Using Newton’s forward interpolation formula in the above integral; we obtain 

0

2 3
0 0 0 0

( 1) ( 1)( 2) ...
2! 2!

Nx

x

p p p p pI y p y y y dx− − − = + ∆ + ∆ + ∆ +  ∫          (19.5) 

where 0x xp
h
−

= . 

 

The above integral can be written as 
2 3 2

2 3
0 0 0 0

0

3 2 ...
2! 3!

N p p p p pI h y p y y y dp
 − − +

= + ∆ + ∆ + ∆ + 
 
∫          (19.6) 

or
2 3 2 4 3

2 2 3
0 0 0 0

0

...
2 6 4 24 6

N

p

p p p p pI hy y y p y
=

    
= + ∆ + − ∆ + − + ∆ +    
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( ) ( )2
2 3

0 0 0 0

2 3 2
...

2 12 24
N N N NNNh y y y y

 − −
= + ∆ + ∆ + ∆ + 

  
                           (19.7) 

 

Case 1: With , we have 
1

0

( )
x

x

I y x dx= ∫  

0 0
11
2

h y y = ⋅ + ∆  
 

( )0 12
h y y= +                 (19.8) 

 

Case 2: With , we have 
2

0

( )
x

x

I y x dx= ∫  

2
0 0 0

2 2(1)2
2 12

h y y y = + ∆ + ∆  
 

( ) ( )0 1 0 2 1 0
12 2
6

h y y y y y y = + − + − +  
 

1 2 1 0
1 2 12
3 3 3

h y y y y = + − +  
 

[ ]0 1 2
1 4
3

y y y= + +                (19.9) 

 

Case 3: With N=3, we have 
3

0

( )
x

x

I y x dx= ∫  

2 3
0 0 0 0

3 3 13
2 4 8

h y y y y = + ∆ + ∆ + ∆  
 

( ) ( ) ( )0 1 0 2 1 0 3 2 1 0
3 3 13 2 3 3
2 4 8

h y y y y y y y y y y = + − + − + + − + −  
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[ ]0 1 2 3
3 3 3
8
h y y y y= + + +              (20.1) 

We now discuss the use of the case1 for evaluating the integral, 
0

( )
Nx

x

I y x dx= ∫  . 

We can write 1 2 3
1

...
N

N j
j

I I I I I I
=

= + + + + =∑  

where 
1

( )
j

j

x

j
x

I y x dx
−

= ∫ . 

 

We take two consecutive data points at once and apply the formula given in 

(19.5) for every pair of data points. Equation (19.4) is known as the Newton-

Cotes quadrate (Interpolation) formula. With different values of 1,2,3,...N =  ,we 

derive different integration methods. 

 

 

 

 

 

 

 

 

 

 

We obtain 
1

0

1 0 0
1( )
2

x

x

I y x dx h y y = = + ∆  ∫ [ ]0 12
h y y= +  

[ ]
2

0

2 1 1 1 2
1( )
2 2

x

x

hI y x dx h y y y y = = + ∆ = +  ∫  
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[ ]
3

0

3 2 2 2 3
1( )
2 2

x

x

hI y x dx h y y y y = = + ∆ = +  ∫  

…… 

[ ]
1

1 1 1
1( )
2 2

N

N

x

N N N N N
x

hI y x dx h y y y y
−

− − −
 = = + ∆ = +  ∫ . 

Now  
1 2

0 0 1 1

( ) ( ) ( ) ... ( )
N N

N

x xx x

x x x x

I y x dx y x dx y x dx y x dx
−

= = + + +∫ ∫ ∫ ∫  

1 2 ... NI I I= + + +  

[ ] [ ] [ ]0 1 1 2 1...
2 2 2 N N
h h hy y y y y y−= + + + + + +  

( )1 2 3 12 ...
2 N N
h y y y y y−= + + + + +                                                     (20.2) 

 

This is known as the Trapezoidal rule. Since the method involves finding the 

sum of the areas of these N-trapezoids, this method is named as Trapezoidal 

rule. 

 

Example 1: Evaluate 
1.2

0

2 xe dx∫ using trapezoidal rule by taking h=0.2. 

Solution: 

a=0, b=1.2, h=0.2, we tabulate the function  at the nodal points as: 

 0 0.2 0.4 0.6 0.8 1.0 1.2 

: 1 1.221 1.492 1.822 2.226 2.718 3.32 

 

The trapezoidal rule is given by 

( ) ( )0 6 1 2 3 4 5 2 2
2
hI y y y y y y y = + + + + + +       
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( ) ( )0.2 1 3.32 2 1.221 1.492 1.822 2.226 2.718= + + + + + +   .   

4.656I∴ = . 

 

Example 2: Evaluate , where  is tabulated as: 

   

   

 

Solution:  

The trapezoidal rule gives  

( ) ( )0 4 1 2 32
2
hI y y y y y= + + + +    

0.25[(1 0.5) 2(0.8 0.6667 0.5714)]
2

= + + + +  

0.697= .     

 

Exercises: 

1 A solid of revolution formed by rotating about the axis, the area between 

the axis, the lines  and  and a curve through the points with the 

following coordinates: 

 

 
Find the volume of the solid formed using the Trapezoidal rule. 

 

2. Evaluate  using the Trapezoidal rule by taking . 

 

Keywords: Newton-Cotes Formulae, Numerical Integration, 
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Lesson 20 

Simpson’s one Third and Simpson’s Three Eighth Rules 

 

20.1 Simpson’s One-Third Rule  

It is obtained by taking  in the Newton-Cotes formula (4). We described 

this in case (2) of the lesson (19). We divide the interval  into an even 

number of subintervals of equal length having odd number of abscissas.  

 

We divide the interval  into  subintervals each of length , we 

then get  abscissas as 

 

Now  

. 

 

Now using the Newton-Cotes formula with  for each of the above 

integrals, we get  

 

 
... 

 
Add all these values, we obtain 
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or,  

         (20.1) 

where  = sum of the function values at the end points, = sum of the function 

values at odd numbered abscissas, and   = sum of the function values at even 

numbered abscissas. 

 

This formula is known as the Simpson’s rd  rule of integration. 

 

Example: Evaluate  by Simpson’s rdrule taking . 

 

Solution: 

  

 

        

        

By Simpson’s rd rule: 

 

 
. 

 

20.2 Simpson’s Three-Eighth Rule 
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Take  in the Newton-Cotes formula (4). This is described in Case (3) of 

the lesson (19).To apply this method the number of subintervals should be taken 

as multiples of 3. 

 

The integral  
0

0

( )
Nx x Nh

x

I y x dx
= +

= ∫  

3

0 0

0 0

3 6

3

( ) ( ) ... ( )
N

N

x h x h

x h

x

x x

y x dx y x dx y x dx
−+

+ +

= + + +∫ ∫ ∫  

                                                                                                                      (20.2) 

This is known as the Simpson’s thrule. 

 

Example 2: Evaluate  by Simpson’s thrule. 

 

Solution:  

Take 0 61, 0, 6h x x= = = , 2

1( )
1

f x
x

=
+

. 

The number of subintervals is 6, is a multiple of 3. So we can use the Simpson’s 
th rule. 

 

x : 0 1 2 3 4 5 6 

y : 1 

0y  

0.5 

1y  

0.2 

2y  

0.1 

3y  

0.0588 

4y  

0.0385 

5y  

0.027 

6y  

 

( ) ( ) ( )0 6 1 2 4 5 3
3 3 2 1.3571
8
hI y y y y y y y = + + + + + + =  . 
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Example 3: Using Simpson’s rdrule, find 
2

0.6

0

xe dx−∫  by taking 6 subintervals. 

 

Solution:  

Evaluation of 
2xe− is not a simple function, that cannot be integrated directly. In 

such a situation using numerical integration it can be easily evaluated. Let us 

construct the data: 

 

x : 
0x  

0 

1x  

0.1 

2x  

0.2 

3x  

0.3 

4x  

0.4 

5x  

0.5 

6x  

0.6 
2x : 0 0.01 0.04 0.09 0.16 0.25 0.36 

2xy e−=  1 

0y  

0.99 

1y  

0.9608 

2y  

0.9139 

3y  

0.8521 

4y  

0.7788 

5y  

0.6977 

6y  

 

By Simpson’s rd rule, we have 

( ) ( ) ( )2
0.6

0 6 1 3 5 2 4
0

4 2
3

x he dx y y y y y y y−  = + + + + + + ∫  

( ) ( ) ( )0.1 1 0.6977 4 0.99 0.9139 0.8521 2 0.9608 0.8521
3

= + + + + + +    

[ ]0.1 1.6977 10.7308 3.6258
3

= + +  

0.5351= . 

 

Example 4: A solid of revolution is formed by rotating about the x -axis the 

area bounded by the x -axis, the lines 0x = and 1x = , and the curve through the 

point with the following data: 

x : 0 0.25 0.5 0.75 1.0 

y : 1.0 0.9896 0.9589 0.9089 0.8415 
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0y  1y  2y  3y  4y  

 

Estimate the volume of the solid using Simpson’s rd rule. 

 

Solution:  

Here  0.25h = . 

The volume of the solid of revolution is  
1

2

0

I y dxπ= ∫  

 

Using the Simpson’s rd rule: 

( ) ( ) ( )2 2 2 2 2
0 4 1 3 24 2

3
hI y y y y yπ  = + + + +   

( ) ( ){ } ( ) ( ){ } ( )2 2 2 2 20.25 22 1 0.8415 4 0.9896 0.9089 2 0.9589
3 7

 = + + + +
 

 

[ ]0.2618 10.7687=  

2.8192= . 

 

Exercises: 

1. Evaluate  
5.2

4

log x dx⋅∫  

Using (i) Trapezoidal rule 

(ii) Simpson’s rd rule 

(iii) Simpson’s th rule 

by taking 12 subintervals. Then compare your results. 

2. A curve is given by 
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x  0 1 2 3 4 5 6 
y  0 2 2.5 2.3 2 1.7 1.5 

 

Evaluate (i) the area below the given curve 

(ii) 
6

0

xy dx⋅∫ using Simpson’s rd rule. 

3. Estimate the length of the arc of the curve 33y x=  from (0,0)  to (1,3)  using 

Simpson’s rd rule by taking 8 subintervals. 

4. Evaluate 
2

0

cosI d

π

θ θ= ⋅∫  by using Simpson’s rd rule using 11 ordinates. 

 

Keyword:  Simpson’s one-Third rule, Simpson’s three-eighth rule,  Even 

number of subintervals. 
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Lesson 21  

Boole’s and Weddle’s Rules 

 

21.1 Introduction 

Boole’s and Weddle’s rules are higher order integration methods. These 

methods use higher order differences as explained below. By taking  in 

Newton-Cotes formula, we obtain Boole’s rule as: 
4

0

2 3 4
0 0 0 0 0

5 2 7( ) 4 2
3 3 90

x

x

y x dx h y y y y y = + ∆ + ∆ + ∆ + ∆  ∫  

[ ]0 1 2 3 4
2 7 32 12 32 7
45
h y y y y y= + + + +  

 

Similarly for the next set of data points between and , we write 

the integral as   

[ ]
4

0

4 5 6 7 8
2( ) 7 32 12 32 7
45

x

x

hy x dx y y y y y= + + + +∫  

 

By taking the number of subintervals as a multiple of , we obtain 

0

( )
Nx

x

I y x dx= ∫

( ) ( ) ( )0 1 3 5 7 2 6 10 4 8 12
2 7 32 ... 12 ... 14 ... 7
45 N
h y y y y y y y y y y y y = + + + + + + + + + + + + + +                      

                                                                                           

                                                                                                                       (21.1) 

 

To use this method, the number of subintervals should be taken as a multiple of 

. By taking  in the Newton-Cotes integration formula, we obtain the 

Weddle’s Rule. Here, the number of subintervals should be taken as a multiple 

of . 
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For 
6

0

2 3 4 5 6
0 0 0 0 0 0 0

9 123 11 41( ) 6 3 4
2 60 20 140

x

x

y x dx h y y y y y y y = + ∆ + ∆ + ∆ + ∆ + ∆ + ∆  ∫  

[ ]0 1 2 3 4 5 6
3 5 6 5
10

h y y y y y y y= + + + + + + . 

For [ ]
12

6

6 7 8 9 10 11 12
3( ) 5 6 5
10

x

x

hy x dx y y y y y y y= + + + + + +∫ . 

Proceeding this way, we write 

0

( )
Nx

x

I y x dx= ∫  

( ) ( )0 1 5 7 11 2 4 8 10
3 [ 5 ... ...
10

h y y y y y y y y y= + + + + + + + + +  

( ) ( )3 9 15 3 9 156 ... 2 ... ]Ny y y y y y y+ + + + + + + + +                    (21.2) 

 

Weddle’s rule is found to be more accurate than all the methods discussed 

earlier. This is because higher order approximation is used for the integration. 

The below given table gives the error estimates involved in the integration 

methods. 
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3 
 

Summary of Newton-Cotes Methods 

S.No. Name Integral Formula Error 

1 Trapezoidal Rule 1

0

( )
x

x

y x dx∫  ( )0 12
h y y+  ( )

3

0 1;
12
h y x xξ ξ′′− < <  

2 Simpson’s rd Rule 2

0

( )
x

x

y x dx∫  ( )0 1 24
2
h y y y+ +  ( )

5

0 2;
90

ivh y x xξ ξ− < <  

3 Simpson’s th Rule 3

0

( )
x

x

y x dx∫  ( )0 1 2 3
3 3 3
8
h y y y y+ + +  ( )

5

0 3
3 ;
90

ivh y x xξ ξ− < <  

4 Boole’s Rule 4

0

( )
x

x

y x dx∫  ( )0 1 2 3 4
2 7 32 12 32 7
45
h y y y y y+ + + +  ( )

7

0 4
8 ;
945

vih y x xξ ξ− < <  

5 Weddle’s Rule 4

0

( )
x

x

y x dx∫  ( )0 1 2 3 4 5 6
3 5 6 5
10

h y y y y y y y+ + + + + +  ( )
7

0 6;
140

vih y x xξ ξ− < <  
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Example 1: Evaluate 
1.2

0

xe dx∫ using Boole’s rule by taking . 

 

Solution:  

The function ( ) xy x e= is tabulated at the nodes 0 0x = to 

1.2Nx = with 0 , 1,2,3,4,...ix x ih i= + = as: 

x : 0 0.3 0.6 0.9 1.2 
xe : 1 

0y  

1.34986 

1y  

1.82212 

2y  

2.4596 

3y  

3.32012 

4y  

 

Using this data in Boole’s rule 

( )
1.2

0 1 2 3 4
0

2( ) 7 32 12 32 7
45
hy x dx y y y y y= + + + +∫  

( ) ( ) ( ) ( ) ( ) ( )2 0.3
7 1 32 1.34986 12 1.82212 32 2.4596 7 3.32012

45
= + + + +    

2.31954= . 

 

Example 2: Evaluate 
12

2
0

1
1

dx
x+∫ by using Weddle’s rule with . 

 

Solution:  

The function 2

1( )
1

y x
x

=
+

 is calculated 

at 0 1 2 3 4 50, 2, 4, 6, 8, 10x x x x x x= = = = = =  and 6 12x =  

as 0 1 2 3 4 51, 0.2, 0.05882, 0.02703, 0.01538, 0.0099y y y y y y= = = = = = and

6 0.0069y = . 
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Using this data in the Weddle’s rule, 

( )
12

0 1 2 3 4 5 62
0

1 3 5 6 5
1 10

hdx y y y y y y y
x

= + + + + + +
+∫  

( ) ( ) ( ) ( ) ( ) ( )3(2) 1 5 0.2 0.05882 6 0.02703 0.01538 5 0.0099 0.0069
10

= + + + + + +  

 

1.37567= . 

 

Exercises: 

1. Evaluate 
5.2

4

log x dx⋅∫ using (i) Boole’s rule with ; (ii) Weddle’s rule by 

taking . Compare these two values.  

2. Evaluate 

1
2

2
0

1
1

dx
x−∫  using Weddle’s rule. 

3. Evaluate ( )
1

0

1 sin 4xe x dx−+∫ using Boole’s rule with . 

4. Evaluate 
2

2
0

1
1

dx
x+∫  using Weddle’s rule taking  intervals. 

 

Keyword: Boole’s Rule, Higher order integration methods, Weddle’s rule. 
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Module 1: Numerical Analysis 
 

Lesson 22 

Gaussian Quadrature 

 

22.1 Introduction: The problem of numerical integration is to find an 

approximate value for 

                                            
( ) ( )

b

a
I w x f x dx= ∫                                              (22.1) 

 

where  is a positive valued continuous  function defined on  called 

the weight function. The function  is assumed to be integrable. The 

limits  and  are finite, semi-infinite or infinite. The integral ( ) is 

approximated by a finite linear combination of ( )kf x  in the form 

 

                                            0
( ) ( )

Nb

k ka
k

I w x f x dx fλ
=

= = ∑∫                       (22.2) 

 

where , 0,1,...,kx k N= are called the nodes which are distributed within the 

limits of integration  and  , 0,1,...,k k Nλ =  are called the discrete weights. 

The formula ( ) is also known as the quadrature formula. 

 

The error in this approximation is given as 

                                        0
( ) ( )

Nb

N k ka
k

R w x f x dx fλ
=

= − ∑∫                         (22.3) 

 

An integration method of the form ( ) is said to be order  if it produces 

exact results i.e.; 0NR = for all polynomials of degree less than or equal to .  

In evaluating the integral ( ) using ( ) involves finding  

unknown weights kλ ’s and  unknown nodes kx ’s  leading to computing 
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 unknowns. To compute these unknowns, the method (22.2) is made 

exact for polynomial of degree less than or equal to , for example, by 

considering  2 2 1
0 1 2 2 1( ) ... N

Nf x c c x c x c x +
+= + + + + . 

For example, when , then 
1

1 1 2 2
1

( ) ( ) ( )f x dx w f x w f x
−

= +∫ . 

 

When the nodes kx are known, the corresponding methods are called Newton-

Cotes methods where the nodes are also to be determined, then the methods are 

called the quadrature methods.   

 

The interval of integration  is always transformed to  using the 

transformation 
2 2

b a b ax t− +   = +   
   

. Depending on the weight function  

a variety of methods are developed. We discuss here the Gauss-Legendre 

integration method for which the weight function . 

 

22.2 Gauss-Legendre Integration Methods 

Consider evaluating the integral 

 

                                       

1

01

( ) ( )
N

k k
k

I f x dx f xλ
=−

= = ∑∫  

 

where kx are the nodes and kλ are the weights. 

(I) One Point formula : The formula is 
1

0 0
1

( ) ( )f x dx f xλ
−

=∫  

In the above 0 0, xλ are unknowns, these are obtained by making this integration 

method exact for . 
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i.e., (a)   
1

0 0 0
1

1 ( ) 2dx f xλ λ
−

⋅ = = =∫  

1

0 0 0 0 0
1

(b) 0 0x dx x x xλ λ
−

⋅ = ⇒ = ⇒ =∫ 0( 2)λ = . 

1

1

( ) 2 (0)f x dx f
−

∴ = ⋅∫ . 

(II) The two point formula : The formula is given by  
1

0 0 1 1
1

( ) ( ) ( )f x dx f x f xλ λ
−

= +∫  

 

The unknowns are 0 1 0 1, , ,x xλ λ . These unknowns are determined by making this 

method exact for 2 3( ) 1, , ,f x x x x= ; we get 

0 1( ) 1 2f x λ λ= ⇒ + = . 

0 0 1 1( ) 0f x x x xλ λ= ⇒ + = . 

2 2 2
0 0 1 1

2( )
3

f x x x xλ λ= ⇒ + = . 

3 3 3
0 0 1 0( ) 0f x x x xλ λ= ⇒ + = . 

 

Solving these non-linear equations we obtain 

0 1
1 1,
3 3

x x= ± =  ,  0 1 1λ λ= = . 

 

And the two point Gauss-Legendre method is given by 
1

1

1 1( ) ( ) ( ).
3 3

f x dx f f
−

= − +∫  

 

Exercise: Show that the three point Gauss-Legendre method is given by 
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1

1

1 3 3( ) [5 ( ) 8 (0) 5 ( )].
9 5 5

f x dx f f f
−

= − + +∫  

 

Example 1: Evaluate the integral   
2

4
1

2
1

xI dx
x

=
+∫  

 

using the Gauss-Legendre -point quadrature rule. 

 

Solution:  

The general quadrature formula is written in .  

So define        ( ) ( )
2 2

b a b ax t t− +
= +   1 3 ,

2 2
x t⇒ = +

1
2

dx dt=  

The integral transforms to    
1

4
1

8( 3) .
16 ( 3)

t dt
t−

+
 + + 
∫  

Using then -point rule, we get 

1 3 35 8 (0) 5
9 5 5

I f f f
    

= − + +    
     

 

( ) ( )1 5 0.4393 8(0.2474) 5 0.1379
9

= + +    

0.5406=  

We can directly integrate 
2

4
1

2
1

x dx
x+∫  

and its integral is 1tan (4) 0.5404
4
π− − = . 

 

Example 2: Evaluate the integral 
1

0

1
1

dx
x+∫  using the Gauss-Legendre two point 

formula. 

 

Solution:   
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Define 1 1 1
2 2 2

x t dx dt= + ⇒ = . 

1

1

1 1
3 3 3

dt f f
t−

   ∴ = − +   +    ∫  

0.69231=  

 

Exercises:   Evaluate (a) 
1

0

1
1

dx
x+∫      (b) 

2

1

1dx
x∫      (c)

2

4
1

1
1

dx
x+∫  

using Gauss-Legendre (i) -point (ii) -point quadrature methods.  

 

Keywords: Gaussian Quadrature, One Point formula, Two point formula. 
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Module 1: Numerical Analysis 
 

Lesson 23 

Difference Equations 

 

23.1 Introduction 

Difference equations arise in problems in which sequential relations exist at 

various discrete values of the independent variables say { 0 1 2, , ,...., Nt t t t }. These 

equations are commonly seen in control engineering, radar tracking etc. 

 

Definition: A difference equation is a relation between the differences such as      

of an unknown function at one or more general values of the independent 

variable. 

 

A general difference equation in terms of k unknown function values is written 

as  

1( , ,....., ) 0n n n kF y y y+ + =               (23.1) 

 

For Example,    2
1 0n ny y+∆ + ∆ =                      (23.2) 

is a difference equation written using the forward differences. This can be 

rewritten as  

2 1 0n n ny y y+ +∆ − ∆ + ∆ =  

or     3 2 2 1 1( ) ( ) ( ) 0n n n n n ny y y y y y+ + + + +− − − + − =  

or     3 2 12 2 0n n n ny y y y+ + +− + − =                      (23.3) 

 

If the function  is non-linear in any one of these unknowns, then it is a non-

linear difference equation. If  is a linear function in all these unknown function 

values, then it is a linear difference equation. 
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Definition 2: The order of a difference equation is the difference between the 

largest and the smallest argument occurring in the difference equation divided 

by the unit of increment the equation (3).  

 

The order of the difference equation (3) is  
( 3) 3 3

1 1
n n+ −

= = . 

 

Example 1: Find the order of the difference equation derived from     

1 2 3n ny y+∆ + = . 

 

Solution:  

The difference equation corresponding to  1 2 3n ny y+∆ + =  is 

2 1 2 3 0n n ny y y+ +− + − =                                 (23.4) 

So the order of this equation is: 
( 2) 2

1
n n+ −

= . 

 

23.2 Formation of Difference Equations: 

We now illustrate the formation of difference equations from the given family 

of curves. 

 

Example 2: Form the difference equation corresponding to the two parameter 

family of curves given by 2.y at bt= +  

 

Solution:  

We have 2y a t b t∆ = ∆ + ∆  
2 2( 1 ) [( 1) ]a t t b t t= + − + + −  

(2 1)a b t= + +  
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and 2 2 [( 1) ] 2y b t t b∆ = + − = . 

 

Eliminating the arbitrary constants  and  from y∆  and 2 y∆ , we get   

21
2

b y= ∆ and 21 (2 1)
2

a y y t= ∆ − ∆ + . 

 

Hence the given family of curve become 

2 2 21 1[ (2 1)]
2 2

y y y t t yt= ∆ − ∆ + + ∆  

or 2 2( ) 2 2 0t t y t t y+ ∆ − ⋅∆ + = . 

 

Equivalently, the difference equation is  

( )2 2 2
2 1( ) (2 4 ) 3 2 0t tt t y t t y t t y+ ++ − + + + + =                              (23.5) 

 

Exercise 4: Form the difference equation from  

(i) 2t
ty at b= +      (ii)      2 3t t

ty a b= + . 

 

23.3 Linear Difference Equations: 

Consider the linear difference equation 

0 1 1 2 2 ..... ( )n k n k n k k na y a y a y a y g n+ + − + −+ + + + =                    (23.6) 

where 0 1, ,....., ka a a are constants. 

 

If 0g ≡ then equation (6) is a homogeneous equation otherwise it is non-

homogenous equation. The solution of a difference equation is an expression for 

ny  which satisfies the given difference equation. 
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Definition: The general solution of a difference equation is that in which the 

number of arbitrary constants is equal to the order of the difference equation, 

i.e. ,  1 1 2 2( ) ( ) ...... ( )n r rY c y n c y n c y n= + + +                          (23.7)                                                     

with 1 2, ,......., rc c c are arbitrary constants. 

 

Definition: A particular solution is that solution which is derived from the 

general solution by fixing the arbitrary constants. This is done using the initial 

conditions on the unknown function at the nodal points. 

 

If nV is a particular solution of (6), then the complete solution of (6) is       

n n ny Y V= +                                     (23.8)         

nY is also called as the complementary function.  

 

23.4 Homogenous Equations: 

For finding the complementary solution of the equation (23.6), we assume the 

solution of the form n
ny Aξ=  where  is a constant which is non-zero. 

Substituting this in (23.6), we get 
1

0 1( .... ) 0k k n
kA a a aξ ξ ξ−+ + + =  

or  1
0 1 .... 0k k

ka a aξ ξ −+ + + =                       (23.9) 

 

which is called the characteristic equation of the difference equation (23.6). Let 

the roots of the equation be 1 2, ,...., kξ ξ ξ  are real and distinct. These roots are (i) 

real, distinct (ii) real, repeating (iii) complex roots. 

 

Let us see how the solution looks like in each case. 

Case (i): Here 1 2, ,...., kξ ξ ξ  are real and distinct, then 

1 1 2 2 ....n n n
n k kY α ξ α ξ α ξ= + + +                                        (23.10) 
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where 1 2, ,...., kα α α are arbitrary constants. 

 

Case (ii): Let 1 2 3ξ ξ ξ= = and 4 5, ,...., kξ ξ ξ are all real, then nY  is written as 

( ) ( )2
1 2 3 1 4 4 ....n n n

n k kY n nα α α ξ α ξ α ξ= + + + + +                   (23.11) 

 

As a special case when 1ξ is a real root with multiplicity , then 

( )1 2 1.... k n
n kY n nα α α ξ= + + +                        (23.12) 

 

Case (iii): For the case where two of these roots are complex and rest of them 

are real distinct: say 1 eii r θξ α β= + =  and 2 e ii r θξ α β −= − =  

3 4, ,...., kξ ξ ξ are real and distinct. Then 

( )1 2 1 3 3cos sin .....n n n
n k kY n n c cα θ α θ ξ ξ ξ= + + + +  

with 2 2r α β= +  and 1tan βθ
α

−  =  
 

. 

 

In the same way one can write the solution of the homogeneous difference 

equation when it has several pairs of complex roots. 

 

Example 3: Solve the difference equations  

(i) 3 2 12 5 6 0n n n ny y y y+ + +− − + =  

(ii) 2 1
1 0
4n n ny y y+ +− + =  

 

Solution:  

Note that the above are homogenous difference equations. 

(i) By the replace ny  by nAξ , we obtain the characteristic equation as     
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3 22 5 6 0ξ ξ ξ− − + = , the roots of this are 1, 2,3ξ = − (real, distinct). Hence the 

complete solution is  

1 2 3(1) ( 2) (3)n n n
ny α α α= + − + . 

(ii) The characteristic equation is: 2 1 0
4

ξ ξ− + = and its roots are 1 1,
2 2

ξ =  

(real, repeating). Hence the complete solution is: ( )1 2
1
2

n

ny nα α  = +  
 

. 

 

Example 4: (For complex roots): Find the complete solution of the difference 

equation  2 14 5 0n n ny y y+ +− + = . 

 

Solution:  

The characteristic polynomial is 2 4 5 0ξ ξ− + = and its roots are 1 2 iξ = +  and  

2 2 iξ = − . So 4 1 5r = + =  and 1 1tan
2

θ −  =  
 

, and hence                                                       

( )( )1 2cos sin 5
n

nY n nα θ α θ= + . 

 

Exercises:  

1: Write the difference equation 3 2 0n n ny y y∆ + ∆ + ∆ =  in the subscript form. 

2: Write the difference equation 2
1 1 5n ny y+ −∆ + ∆ =   in the subscript form. 

3: Find the order of the difference equation  

2 12 1n n ny y y+ −− + = . 

5: Find the general solution of 2 2
1

1 0
3n ny y+∆ − ∆ = . 

6: Solve the following difference equations 

(i) 3 116 0n ny y+ −+ =  

(ii) 2 16 9 0n n ny y y+ +− + =  

(iii) 3 13 2 0n n ny y y+ +− + =  
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Module 1: Numerical Analysis 
 

Lesson 24 

Non Homogeneous Difference Equation 

 

24.1 Introduction 

In this lesson we learn how to find the solution of the non-homogeneous 

difference equation. The solution corresponding to the non-homogeneous term 

is called the Particular integral of the difference equation: 

 

Consider the non-homogeneous difference equation in the form  

1 1 ..... ( )n k n k k ky y y f nα α+ + −+ + + =                               (24.1) 

 

Note that equation (24.1) is equivalent to equation (23.6). 

 

Using the shift operator , the above can be put in the operator form as 

( ) n nE y fϕ =                                   (24.2) 

where 1
1( ) .....k k

kE E Eϕ α α−= + + +  . 

 

Then the Particular integral is written as: 

1 ( )
( )nV f n
Eϕ

=  

 

24.2 Finding the Particular Integral: 

( )Eϕ  is an operator involving , 1
( )Eϕ  

is its inverse operator [assuming its 

existence]. The particular solution is obtained for different forms of non-

homogeneous function  as given below. We consider the forms for  as 
na , sin pn , cos pn  and  ( )p nn a G n⋅ where  is a polynomial in  . 
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(A)  When , the particular integral   is  

1 1
( ) ( )

n na a
E aϕ ϕ

= provided ( ) 0aϕ ≠ . If  for  ( ) 0aϕ = ,  is a simple root,  

then 11 n na na
E a

−=
−  

and if  ‘ ’  is a root with multiplicity   then 

( ) 0mE a− = and  the particular integral is  

( )
1 ( 1)....( )

!
n m

m
n n n m a

mE a
−− −

=
−

. 

 

This way one can find the P.I.    for the given non-homogeneous equation 

when .  

 

Example 1: Find the particular integral of 2 14 3 2 5n n
n n ny y y+ +− + = + . 

 

Solution:  

( ) ( )2

1. . 2 5
4 3

n nP I
E E

= +
− +

 

( ) ( )2 2

1 12 5
4 3 4 3

n n

E E E E
= +

− + − +
 

 

Clearly, 2 and 5 are not the roots of  the auxiliary equation of 2 4 3E E− + . 

2 2

1 1. . 2 5
2 4 2 3 5 4 5 3

n nP I = +
− ⋅ + − ⋅ +

 

12 5
8

n n= − +  

 

Example 2: Solve the difference equation 2 16 9 3 ( 1)n n
n n ny y y+ +− + = + − . 
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Non Homogeneous Difference Equation 

 
 

Solution:  

The characteristic equation is 2 6 9 0ξ ξ− + = . 

Roots are  3,3ξ = . 

 

The complementary function is: . . 1 2( )(3 )n
C Fy hα α= + . 

Note that  is a root of the characteristic equation, with multiplicity , the 

particular integral is written as  2( 1) 13 ( 1)
2! 15

n nn n −−
⋅ + − . 

 

Hence the complete solution is . . .n C F P I n ny y y Y V= + = +  

2
1 2

( 1) 1( )3 3 ( 1)
2! 15

n n nn nnα α −−
= + + ⋅ + − . 

(B) When ( ) sinf n pn=  or cos pn : 

1 1. . sin
( ) ( ) 2

ipn ipne eP I pn
E E iϕ ϕ

− −
= =  

 
 

1 1 1
2 ( ) ( )

n na b
i E Eϕ ϕ
 

= − 
 

; 
n ipn

n ipn

a e
b e−

 =


=
 

 

This is in the form discussed for .  

Similarly, 
1 1 1 1cos
( ) 2 ( ) ( )

n npn a b
E E Eϕ ϕ ϕ

 
= + 

 
. 

(C) When ( ) pf n n= , then  

[ ] 11. . ( )
( )

p pP I n E n
E

ϕ
ϕ

−= = . 

Recall 1E = + ∆ . 
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[ ] 1. . ( ) pP I E nϕ −∴ = . 

Expanding [ ] 1(1 )ϕ −+ ∆ in increasing powers of ∆ (using binomial theorem) and 

operating it over pn , we get the particular integral.  

(D) When ( ) ( )nf n a a n= , where  is a polynomial in . 

1 1. . ( ) ( )
( ) ( )

n nP I a a n a a n
E aEϕ ϕ

= = . 

 

This can be solved using the procedure given in (C). 

 

Example 3: Solve 2 12cos cosn n ny y y nα+ +− + = . 

 

Solution:  

It can be readily seen that the characteristic equation as 
2 2cos 1 0ξ αξ− + =   and its roots are cos siniα α± . 

So the C.F. is:( )1 2cos sin (1)nn nα α α α± . 

( )
( )

2 2

1 1. . cos
2 cos 1 22 1

in in

i i

e e
P I

E E E E e eα α
α

α

−

−

+
= =

− + − + +
 

( ) ( )
1 1 1 1 1
2

in in
i ii i i ie e

E e E ee e e eα αα α α α
−

−− −

 
= ⋅ ⋅ + ⋅ ⋅ 

− −− −  
 

1 1 1
4 sin

in in
i ie e

i E e E eα αα
−

−
 = ⋅ − ⋅ − − 

 

1 1 1
4 sin

in in
i i i ie e

i e e e eα αα
−

− −
 = ⋅ − ⋅ − − 

 

. . . .ny C F P I∴ = +  

 

Example 4:   Find the particular integral of 2 12 3n
n n ny y y n+ +− + = ⋅ . 
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Solution:  

( )2
1. . 3

1
nP I n

E
= ⋅ ⋅

−
 

( )2
13

3 1
n n

E
= ⋅ ⋅

−
 

2
2

13
32 1
2

n n= ⋅ ⋅
 + ∆ 
 

 

2

2

3 31
2 2

n

n
−

 = + ∆ ⋅ 
 

 

( )[ ]2

3 1 3 ....
2

n

n= − ∆ +  

[ ]{ }2

3 3 1
2

n

n= − ⋅ ( )2

3 3
2

n

n= − . 

 

Exercises:  

1. Solve 2 4 1n ny y n+ − = − . 

2. Solve the following difference equations: 

(i) 2 5 4 2n
n n ny y y n∆ − ∆ + = +  

(ii) 2 16 8 2 6n
n n ny y y n+ +− + = +  

(iii) 2 1
12cos sin
2 2n n n

ny y y+ +
 − + = 
 

. 

 

Keyword:  Particular integral, Non-homogeneous difference equation,  
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Module 1: Numerical Analysis 
 

Lesson 25 

Numerical Solutions of Ordinary Differential Equations 

 

25.1 Introduction 

Many problems in engineering and science are modelled as ordinary differential 

equations which are either linear or non-linear equations satisfying certain given 

conditions. Only a few of these equations can be solved using the standard 

analytical methods whereas the other alternative is to find their numerical 

solution. Here, we see some of the numerical methods to solve a class of 

problem known as the initial value problems (I.V.P). An initial value problem is 

one where the differential equation is solved subjected to the required number 

of initial of initial conditions. 

 

A general first order initial value problem is given by      (25.1) 

; subjected to          (25.2) 

 

The solution of (25.1) - (25.2) can be found as a series for  in terms of power 

of the independent variable ‘ ’, from which the value of  can be obtained by 

direct substitutionor as a set of tabled values of  and . 

 

The methods due to Picard and Taylor (Series) find the solution of the IVP 

(25.1) -(25.2) as the dependent function  as a function of the independent 

variable ‘ ’. The other methods such as the Euler and Runge-Kutta methods 

give the solution  at some discrete data set for  in the interval . 

 

For an th order differential equation, the general solution has  arbitrary 

constants and in order to compute the numerical solution of such an equation, 
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we need  initial conditions each on the function and its derivatives upto the 
th order at the initial value I.V.P can also be found in the similar manner 

as that of the solution of (25.1)-(25.2), but by using the vector treatment. Let us 

now discuss the Picard’s method of successive approximations. 

 

25.2 Picard’s Method  

In this method, a sequence of approximations is constructed by stating with an 

initial approximation to the solution. The limit of this sequence (if exists) will 

be the approximation for the solution of the I.V.P given by 

equations ,        

        (25.3) 

subjected to               (25.4) 

 

Integrating (1) between the limits, 

0 0

( , )
y t

y t

dy f t y dt=∫ ∫  

or
0

0 ( , )
t

t

y y f t y dt= + ∫               (25.5) 

 

Notice that the unknown that is to be found isalso seen inside the integral, such 

an equation is called an integral equation. Such an equation can be solved by the 

method of successive approximations. To start with the procedure, assume an 

approximation for the unknown function  as  inside the integral. This 

makes the equation (25.3) as 
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0

0 ( , )
t

t

y y f t y dt= + ∫               (25.6) 

 

The r.h.s. of (25.4) can be evaluated and call it as ( )y t′  

i.e.,
0

0 0( ) ( , )
t

t

y t y f t y dt′ = + ∫ . 

 

Here ( )y t′  is the first approximation to the solution. The second approximation 

to the solution is obtained by using ( )y t′ in the integral as 

0

2
0( ) ( , ( ))

t

t

y t y f t y t dt′= + ∫ . 

 

Repeating this process, we obtain 

0

1
0( ) ( , ( ))

t
n n

t

y t y f t y t dt−= + ∫  

with (0)
0( )y t y= , 1,2,3,...n =  

 

By this way we generated a sequence of approximating functions{ }
1

( )n

n
y t

∞

=
. 

It can be proved that if the function ( , )f t y  is bounded in some region about the 

point 0 0( , )t y and if ( , )f t y  satisfies the condition ( , ) ( , *) *f t y f t y k y y− ≤ −  

for the same positive constant , then the sequence { }
1

( )n

n
y t

∞

=
 converges to the 

solution of the I.V.P. given by (25.1)-(25.2) . 

 

Example 1: Find the first three approximate analytical solutions to the 

I.V.P. 23dy t y
dt

= + subjected to (0) 1y = . 
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Solution:  

Integrating 23dy t y
dt

= + in the domain, we get  

2

1 0

(3 )
y t

dy t y dt= +∫ ∫  

2

0

( ) (0) (3 )
t

y t y t y dt⇒ − = +∫  

or 2
0

0

( ) 1 (3 )
t

y t t y dt= + +∫  

or
0

( ) 1 (3 1)
t

y t t dt′ = + +∫  

23 1
2
t t= + +  

is the first approximation.  The second approximation is 

( )22

0

( ) 1 3 ( )
t

y t t y t dt ′= + + ∫  

22

0

31 3 1
2

t tt t dt
  

= + + + +  
   
∫  

5 4 3 29 3 4 5 1
20 4 3 2

t t t t t= + + + + +  

 

Likewise, the third approximation can be found as 

3 11 10 9 8 7 681 27 47 17 1157 68( )
4400 400 240 32 1260 45

y t x x x x x x= + + + + +  

5 4 3 225 23 52 1
12 12 2

x x x x x+ + + + + + . 
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The advantage of this method is that we can compute the solution of the given 

I.V.P. at every point of the domain. The disadvantage of this method is, as also 

seen in the earlier example, that the integration procedure is laborious and at 

times, integration might not be possible for some functions ( , )f t y . The limited 

utility of this method demands for the search of more elegant methods for 

solving I.V.Ps. 

 

Example 2: Solve the equation 2dy t y
dt

= +  subject to the condition ( 0) 1y t = = . 

 

Solution:  

Start with (0)
0 1y y= = . 

This generates ( )(1)

0

( ) 1 1
t

y t t dt= + +∫  

2

1
2
tt= + +  

and
22

(2)

0

( ) 1 1
2

t ty t t t dt
  

= + + + +  
   
∫  

2 3 4 53 2 1 11
2 3 4 20

t t t t t= + + + + +  

and so on. 

 

Note that finding (3) ( )y t itself involves squaring a th degree polynomial and 

integrating it, thus making this method more tedious.  

 

In the next lesson, we learn one other analytical method that gives an 

approximation for the solution in a function form. 
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Exercise:  

1. Use Picard’s method to find the solution y at 0.2,0.4t = and 1.0    correct to 

three decimal places for the I.V.P. 
2

21
dy t
dt y

=
+

 subject to (0) 0y = [Hint: obtain 

(2) ( )y t which results in a th degree polynomial in t as the approximate solution, 

which gives the solution correct to 3 decimal places]. 

2. Use Picard’s method successive approximations to solve the following 

I.V.Ps: 

a) 1dy xy
dx

= + , (0) 1y = . 

b) dy t y
dt

= − , (0) 1y = . 

c) 4dy t t y
dt

= + , (0) 3y = . 

d) 2dy x y
dx

= + , (0) 0y = . 

e) dy x y
dx

= + , (0) 1y = . 

 

Keywords: Approximate analytical solutions, Initial value problems, Picard’s 

Method, 
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Lesson 26 

Taylor Series Method 

 

26.1 Taylor Series Method 

Let ( )y y t= be a continuously differentiable function in the interval[ ]0 ,t b . 

Expanding ( )y t  around 0t t=  in Taylor Series, we obtain 

( ) ( ) ( )2 3
0 0 0

0 0 0 0( ) ( ) ( ) ( ) ( ) ....
1! 2! 3!

t t t t t t
y t y t y t y t y t

− − −
′ ′′ ′′′= + + + +              (26.1) 

 

Taking 1t t= and 1 0t t h− = , a small increment, i.e., [ ]0 1 1 0, ,t h t t t b+ = ∈  we get 

2 3

1 0 0 0 0( ) ( ) ( ) ( ) ( ) ....
1! 2! 3!
h h hy t y t y t y t y t′ ′′ ′′′= + + + +                (26.2) 

 

Now consider the I.V.P. [ ]0( , ), ,dy f t y t t b
dt

= ∈                          (26.4) 

subject to 0 0( )y t y=                              (26.5) 

 

The Taylor Series solution of the given I.V.P. (3)-(4) is to find an approximate 

function ( )y t  as given in (1) which involves the derivatives of the unknown 

function ( )y t at the initial point 0t t= , that satisfies the I.V.P. (3)-(4). 

 

Given ( , )dy f t y
dt

= . 

At 0t t= ; ( )0 0 0( , ( ))dy t t f t y t
dt

= =  

0 0( , )f t y=  
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2 
 

0f= (say) 

 

( ) d dyy t
dt dt
 ′′ =  
 

 

( )( , )d f f dyf t y
dt t y dt

∂ ∂
= = +

∂ ∂
 

( )( , )f f f t y
t y

∂ ∂
= +
∂ ∂

. 

( ) ( ) ( )0 0 0 0 0 0 0( ) , ( ) , ( ) , ( )f fy t t t t y t t t y t f t t y t
t y

∂ ∂′′ = = = + = ⋅ =
∂ ∂

. 

 

In the same manner, we calculate the higher order derivatives of ( )y t  depending on 

the necessity. Before we discuss the order of approximation of the Taylor Series 

method and error associated with a particular order method, let us see its utility for 

finding the solution of the given I.V.P. through a few examples. 

 

Example 1: Find (0.1)y  from the I.V.P.  23dy t y
dt

= + subject to (0) 1y = . 

 

Solution:   

Given 23y t y′ = +  

[ ]2(0) 0 (0) 1y y′⇒ = + =  

3 2 (0) 3 2 (0) (0)y y y y y y′′ ′ ′′ ′= + ⋅ ⇒ = + ⋅  

3 2 1 1 5= + ⋅ ⋅ =  

[ ]222 2 (0) 2 (0) (0) 2 (0)y y y y y y y y′′′ ′′ ′ ′′′ ′′ ′= ⋅ + ⇒ = ⋅ +  

2 1 5 2 1 12= ⋅ ⋅ + ⋅ =  

2 2 4 2 1 5 2 1 12 4 1 5 54ivy y y y y y y′ ′′ ′′′ ′ ′′= ⋅ + ⋅ + ⋅ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = etc. 
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Now the Taylor Series solution is written as 

( ) ( ) ( ) ( )2 3 4
0 0 0

0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ...
2! 3! 4!

ivt t t t t t
y t y t t t y t y t y t y t

− − −
′ ′′ ′′′= + − + + + +  

Taking 00.1, 0t t= =  (given), 

( ) ( ) ( )2 3 40.1 0.1 0.1
(0.1) (0) (0.1) (0) (0) (0) (0) ...

2! 3! 4!
ivy y y y y y′ ′′ ′′′= + + + + +  

( ) ( ) ( )2 3 45 12 541 0.1 0.1 0.1 0.1 ...
2 3! 4!

= + + + + +  

(0) 1.12722y∴ = . 

 

Example 2: Obtain the Taylor Series solution for the I.V.P. given by 

2 3 tdy y e
dt

= + , (0) 0y = . Compare the solution at 0.2t =  with the exact solution given 

by ( )2( ) 3 t ty t e e= − . 

 

Solution:  

Given 2 3 (0) 3ty y e y′ ′= + ⇒ =  

2 3 (0) 9ty y e y′′ ′ ′′= + ⇒ =  

2 3 (0) 21ty y e y′′′ ′′ ′′′= + ⇒ =  

2 3 (0) 45iv t ivy y e y′′′= + ⇒ =  

 

The solution is 2 3 49 21 45( ) 3 ...
2 6 24

y t t t t t= + + + + . 

At 0.2t = , (0.2) 0.811y = . 

From  the exact solution, (0.2) 0.8112y = . 

So the error in the numerical solution is 0.8112 0.811− 0.001= . 
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26.2 Local Truncation Error and Order of the Method 

The Taylor series expansion of ( )y t  about any point jt  is written as 

( ) ( )2
9

9 9 9 9( ) ( ) ( ) ( ) ...
2!

t t
y t y t t t y t y t

−
′ ′′= + − + +  

( ) ( ) ( )( ) ( )1 1( )
0 9 9 9

1 1... ( ) ( )
! 1 !

p p ppt t y t t t y t h
p p

θ+ ++ − + − +
+

                                          (26.6) 

where ( ) ( )py t  is the  th of the ( )y t  and 0 1θ< < ,  a real number. The last term in the 

expansion is called the remainder term.  In general, the local truncation error at any 

location 1jt t +=  of the method is given by  

( )
( ) ( )1 1

1
1 ( )

1 !
p p

j jT h y t h
p

θ+ +
+ = +

+
 

where  1j jh t t+= − . 

 

The order of a method is the largest integer  for which 1
1 ( )p

jT O h
h + = . 

 

The notation ( )pO h  denoting that all terms of the order  onwards are grouped to a 

single term representation. 

 

The method given by equation (26.1) is called the Taylor Series method of order . 

 

Example 3: Determine the first three non-zero terms in the Taylor Series for ( )y t     

from the I.V.P.  2 2y t y′ = + , (0) 0y = . 

 

Solution:  

(0) 0;y′ =  
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2 2 (0) 0y t yy y′′ ′ ′′= + ⇒ =  

( )22 2 2 (0) 2y y yy y′′′ ′ ′′ ′′′= + + ⇒ =  

6 2 (0) 0iv ivy y y yy y′ ′′ ′′′= + ⇒ =  

( )22 8 6 (0) 0v v vy yy y y y y′ ′′′ ′′= + + ⇒ =  

2 10 20 (0) 0vi v iv viy yy y y y y y′ ′′ ′′′= + + ⇒ =  

Similarly (0) 80viiy = , (0) 0 (0) (0)viii ix xy y y= = = , (0) 38400xiy = . 

Thus the three term Taylor Series solution for the given I.V.P. is 

3 7 111 1 2( )
3 63 2079

y t t t t= + + . 

 

Example 4: Given the I.V.P.: 2 3y t y′ = + ; (0) 1y =  whose exact solution is 

( )311 2( ) 3 1
9 9

ty t e t= − + . 

a) Use nd order Taylor Series method to get (0.2)y  with step length 0.1h =     

(note 1j jh t t+= − ). 

b) Find ‘ t ’, if the error in ( )y t  obtained from the first four terms of the Taylor 

series, is to be less than 55 10−× , after rounding. 

c) Determine the number of terms in the Taylor Series required to obtain the 

result correct to 65 10−× for 0.4t ≤ . 

 

Solution:  

a) The second order Taylor Series method is given by ( )
2

3
1 2n n n n

hy y hy y O h+ ′ ′′= + + + . 

0,1; 0.1n h= = . 
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We have  2 3y t y′ = +  

or, ( ) 2 3n n n ny t y t y′ ′= = +  

or, ( ) 2 3 2 6 9n n n n ny t y y t y′′ ′′ ′= = + = + + . 

Take 0 0 00; 0.1; 1; 3; 11n h y y y′ ′′= = = = = . 
2(0.1)(0.1) 1 (0.1) 3 11 1.355

2
y∴ = + ⋅ + ⋅ = . 

Taking 1 1 11; 0.1; 1.355; 4.265; 14.795n h y y y′ ′′= = = = =  
2(0.1)(0.2) 1.355 (0.1) (4.265) (14.795)

2!
y⇒ = + ⋅ + ⋅  

1.8555= . 

b) Given (0) 1, (0) 3y y′= = . 

Compute (0) 11, (0) 33y y′′ ′′′= = , (0) 99ivy = . 

So the Four term Taylor Series solution is 

2 311 11( ) 1 3
2 2

y t t t t= + + + . 

The remainder term is given by  
4

4 ( )
4!

ivtR y ξ= gives the error in the approximation. 

We require 5
4 5 10R −≤ × . 

Given the exact solution, use it to find ( );ivy ξ  

311 2( ) (3 1)
9 9

ty t e t= − + . 

3( ) 99iv ty eξ = . 

3 4 5
4

99 5 10
24

tR e t −∴ = < × . 

Simplifying and solving this non-linear algebraic equation for finding t , we get  
4 3 0.000012tt e <  

0.056t⇒ <  
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Note: In the event, if the exact solution is not known, write one more non-

vanishing term in the Taylor Series than is required and then differentiate this 

series  times: here is . 

Now to determine the number of terms required in the Taylor series solution to 

obtain the solution correct to 45 10−× for 0.4t ≤ , we estimate it as: 

[ ]

max
max ( ) 6

0,0.4
0 0.4

( ) 5 10
!

p
p

t
t

t y
p ξ

ξ −

≤ ≤

⋅ ≤ ×  

Again using the analytical solution, we find the th derivative of ( )y t  at t ξ=  as: 
2 1.2( ) (11)3p py eξ −= ⋅  

or 2 1.2 6(0.4) (11)3 5 10
!

p
p e

p
− −⋅ ≤ ×  

Solving this non-linear algebraic equation using the Newton-Raphson method or 

otherwise, we get a lower bound for  as 

10p ≥  

This indicates that a minimum of th order Taylor Series method gives the 

solution which will be accurate upto the th decimal place for all values of 

[0,0.4]t∈ . 

 

Exercises: 

1. Compute an approximation to (0.1)y up to five decimal places from  

2 1, (0) 1dy t y y
dt

= − = . 

2. Solve 2y y t′ = +  , (0) 1y = using Taylor Series method and compute (0.2)y , 

0.1h = . 
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3. Evaluate (0.1)y correct to six decimal places ( )65 10−× by Taylor Series method if 

( )y t satisfies 1 , (0) 1dy yt y
dt

= + = . 

 

Keywords:  Taylor Series method, Taylor series solution. 
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Lesson 27 

Single Step Methods 

 

27.1 Introduction 

Picard’s and Taylor Series methods give solution of the given I.V.P. in the form 

of a power series. We now describe some numerical methods which give the 

solution in the form of a discrete data at equally spaced points of the interval. 

The discretization of the interval is considered as described in the lesson 1 and 2 

is not repeated here. 

 

Single Step methods: 

Consider the I.V.P. [ ]0

0 0

( , ), ,

subject to ( )

dy f t y t t b
dt

y t y

= ∈ 

= 

                    (27.1) 

 

Consider the partition of the interval as 

0 1 2 1 1... ...j j j Nt t t t t t t b− +< < < < < < < < =                                                              (27.2) 

such that 1 ; 0,1, 2,..., 1j jt t h j N+ − = ∀ = −  where h  is a constant is the step size. 

Also denote ( )j jy y t= and 1 1( )j jy y t+ += . 0 1, ,..., Nt t t are called the nodal points. A 

general single step method may be written as 

( )1 1 1, , , ,j j j j j jy y h t t y y hϕ+ + += +                                                                           (27.3) 

 

Where ϕ  is ( , , )t y hϕ  is called the increment function. Note that in (3), we see 

the dependence of the unknown function on the two nodes jt and 1jt + . In single 

step methods, the solution at only the previous point. 

 

Also, if 1jy + can be obtained by evaluating the right hand side of (27.3), then the 

method is called an explicit method. 
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Then equation (27.3) is written as  1 ( , , )j j j jy y h t y hϕ+ = +                                (27.4) 

 

The method is called an implicit method if increment function ϕ  depends on 

1jy +  also, as seen in equation (27.3). In such a situation, we cannot get the 

solution 1jy +  explicitly, we need to solve the equation (3) to get the solution. 

 

27.2 The Local Truncation Error (L.T.E) 

Denote ( )jy t as the exact solution and jy  as the numerical solution of I.V.P. 

(27.1) at jt t= . The exact solution ( )jy t  satisfies the equation  

( ) ( )( )1 1 1 1( ) ( ) , , , ,j j j j j j jy t y t h t t y t y t h Tϕ+ + + += + +                                                    (27.5) 

where 1jT + is called the L.T.E of the method. 

 

Thus the L.T.E ( ) ( ) ( ) ( )( )1 1 1 1, , , ,j j j j j j jT y t y t h t t y t y t hϕ+ + + += − −                         (27.6) 

By definition, the order of the single step method is  1
1

jT
h +                          (27.7) 

 

27.3 Forward Euler Method for the I.V.P. ( , )dy f x y
dt

= ; 0 0( )y t y= : 

Let jt be any point in the interval [ ]0 ,t b . Then the slope of ( )y t at jt t= is given by   

( , )
j

j j
t t

dy f t y
dt =

=                                                                                               (27.8) 
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Fig.1: Explicit Euler method 

 

 

 

 

Replacing  dy
dt

at  jt t= by the first order forward difference at  jt , we get 

1 ( , )j j
j j

y y
f t y

h
+ −

=
  

or  1 ( , ), 0,1, 2,..., 1j j j jy y h f t y j N+ = + ⋅ = −   at every point of jt  as 

given in (2). By this, we mean  

1 0 0 0( , )y y h f t y= + ⋅ , 

2 1 1 1( , )y y h f t y= + ⋅ , 

… … … 

1 1 1( , )N N N Ny y h f t y− − −= + ⋅ . 

 

1jt +

 

1jy +  

jy  

t  

h  

Slope ( , )j jf t y  

Numerical 
Solution 

Error 

Exact Solution 

( )y x  

y  

jt  

jt  

h  

1jt +  
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For a chosen h  and/with the initial condition 0y , one can find the solution 

explicitly at all the nodal points of the given interval. The local truncation error 

in the method is given by  

( )1 1 1j j jT y t y+ + += −  

( ) ( )1 ( , )j j j jy t y t h f t y+
 = − + ⋅   

 

Now expanding ( )1jy t +  in the Taylor Series about jt t=  and simplifying, we get 

2

1 ( )
2j
hT y ξ+ ′′=  

where 1j jt tξ +< < . Let the maximum value of ( )y t′′ in[ ]0 ,t b be *M , then 

[ ]0

max

1, jt b
T T+ =  (say) [ ]0

2
max

,
( )

2 t b

h y ξ′′=  

2
*

2
h M= . 

Thus 
2

*

2
hT M≤  

i.e., the L.T.E is of 2( )O h  and by definition, the order of this forward Euler 

method is one since  
2

* 1
1

1 1 ( )
2j
hT M O h

h h+ = = . 

 

Example 1: Use Forward Euler method to solve y y′ = −  with the initial 

condition (0) 1y =  in  [ ]0,0.04  by  taking 0.01h = . 

 

Solution:   

Take 0 1 2 3 40, 0.01, 0.02, 0.03, 0.04t t t t t= = = = = ; ( , )f t y y= − . 

Now 1 0 0 0( ) ( ) ( , )y t y t h f t y= + ⋅  

1 (0.1)( 1)= + −   0.99= , 

2 1 1 1( ) ( ) ( , )y t y t h f t y= + ⋅  
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0.99 (0.01)( 0.99)= + −  0.9801= , 

3 2 2 2( ) ( ) ( , )y t y t h f t y= + ⋅  

0.9801 (0.01)( 0.9801)= + −  0.9703= , 

4( ) 0.9703 (0.01)( 0.9703)y t = + −  

0.9606= . 

 

We know the exact solution , (0) 1y y y′ = − =  is ( ) ty t e−=  and gives (0.4) 0.9608y = .      

The error in the Euler method for the solution at 0.4t = is given as 

0.9606 0.9608 0.0002− = . 

 

27.4 Backward Euler Method 

We can also replace the slope of ( )y t at jt t= by the first order backward 

difference approximation which is given by 

1 ( , )j j
j j

y y
f t y

h
−−
=  

or 1 ( , )j j j jy y h f t y−= + ⋅  

or equivalently, 1 1 1( , )j j j jy y h f t y+ + += + ⋅ , 0,1, 2,..., 1j N= − . 

 

Evidently, this is an implicit method. It can be shown (left as an exercise!) that 

the L.T.E. of this method is 
2

1( ),
2 j j
h y t tξ ξ +′′− < < and the order of the method is 

also one. Let us now illustrate this method with an example. 

 

Example 2: Solve the I.V.P. 22 , (0) 1y ty y′ = − =  in [ ]0,0.2 with 0.2h = . 

 

 

Solution:  

Backward Euler method is 

h  

0  0.2  
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1 1 1( , )j j j jy y h f t y+ + += + ⋅ . 

Here  2
0 10, 0.2, 0.2, 2t t h f ty= = = = −  for 0j = . 

1 0 1 1( , )y y h f t y= + ⋅  

⇒ 2
1(0.2) (0) 2 (0.2)y y h t y = + − ⋅ ⋅   

or 2
1 11 2(0.2)(0.2)y y= −  

can be written as a quadratic in 1y  as 
2

1 10.08 1 0y y+ − =  

whose solution is 1 0.9307y = . 

 

Exercises: 

1. Continue this to compute the solution at 0.4t =  if the above I.V.P. is solved in 

the interval [ ]0,0.4 with 0.2h = . 

2. Solve the I.V.P. [ ]2 , (0) 1, 0.1, 0,0.4y t y y h′ = + = =  using the forward Euler 

method. 

3. Solve the I.V.P. 22 ,0 0.5, 0.1, (0) 1y ty t h y′ = − ≤ ≤ = =  using the forward Euler 

method. 

 

Keywords: Backward Euler method, Local truncation error, Forward Euler 

method. 
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Module 1: Numerical Analysis 
 

Lesson 28 

Modified Euler Method 

 

28.1 Introduction 

The first order Explicit Euler method is improved to achieve better accuracy in 

the numerical solution for an initial value problem 0 0( , ), ( )y f t y y t y′ = = . 

In the modified Euler method, the slope of ( )y t  at jt t= is approximated by the 

average of the slopes at jt t=  and 1jt t += . 

i.e., 1j j jy y h y+ ′= + ⋅  

( ) ( )1 1, ,
2j j j j j
hy f t y f t y+ +
 = + ⋅ +   

or ( ) ( )1 1 1, ,
2j j j j j j
hy y f t y f t y+ + +
 = + ⋅ +                                                               (28.1) 

 

This implicit method is used by setting an iterative procedure as follows:  

( ) ( )( 1) ( )
1 1 1, ,

2
s s

j j j j j j
hy y f t y f t y+

+ + +
 = + ⋅ +  , 0,1, 2,...s =                                             (28.2) 

 

Now the initial approximation for (0)
1jy +  is considered as the solution 1jy +  of Euler 

method. The above iteration process is terminated at each step if the condition 
( 1) ( )s s
j jy y ε+ − < ,is satisfied, 

where ε  is a reassigned error tolerance. 

 

Exercise: Show that the modified Euler method has L.T.E. as 3( )O h  and the 

order of the method is 2( )O h .  

 

The exponent of h  in ( )pO h is the order of accuracy of the method. It is a 

measure of accuracy of any numerical scheme. It gives an indication of how 
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rapidly the accuracy can be improved with refinement of the grid spacing h  in 

any given interval. For example, in a first order method such as 

( )1 , ( )j j j jy y h f t y O h+ = + ⋅ +  

 

If we reduce the mesh size h  by 
2
h , the error is reduced by approximately a 

factor .  Similarly in a second order method such as 

( ) ( ) 2
1 1 1, , ( )

2j j j j j j
hy y f t y f t y O h+ + +
 = + ⋅ + +  . 

 

If we refine the mesh size by a factor of , we expect the error to reduce by a 

factor 22 i.e., , which gives a rapid decrease in the error. Thus higher order 

numerical schemes are preferred. 

 

Example 1: Determine the value of (0.1)y from the I.V.P. 2y y t′ = + , 

(0) 1, 0.05y h= = . 

 

Solution:  

0 1 0 2 0 10, 0.05, 2 0.1t t t h t t h t h= = + = = + = + = , 2
0 0, ( , )y f t y t y= = + ; 1 (0.05)y y= , 

2 (0.1)y y= . 

( ) ( )( 1) ( )
1 0 0 0 1 1, ,

2
s shy y f t y f t y+  = + ⋅ +  , 0,1, 2,...s =  

Compute (0)
1y  using the Euler method. 

( )(0)
1 0 0 0,

2
hy y f t y= +  

1 (0.05)(1.0)= +  

1.05= . 

Use modified Euler method now as follows: 
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Compute (0.05)y : 

Take 0s = : calculate ( )(0)
1 1, 1.0262f t y =  

( ) ( )(1) (0)
1 0 0 0 1 1, ,

2
hy y f t y f t y = + ⋅ +   

1.0513=  

Take 1s = ; (2)
1y is computed as: 

( ) ( )(2) (1)
1 0 0 0 1 1, ,

2
hy y f t y f t y = + ⋅ +   

1.0513=  

Note: (2) (1)
1 1 0y y− = , so we can stop the iteration process and conclude that  

(0.05) 1.0513y = . 

Compute (1.0)y : 1 10.05, 1.0513, 0.05t y h= = =  

Euler method gives ( )(0)
2 1 1 1,y y hf t y= +  

(0)
2 1.104y⇒ = . 

Now use the modified Euler method: 

( ) ( )(1) (0)
2 1 1 1 2 20 , ,

2
hs y y f t y f t y = ⇒ = + ⋅ +   

1.1055=  

( ) ( )(2) (1)
2 1 1 1 2 21 , ,

2
hs y y f t y f t y = ⇒ = + ⋅ +   

1.1055=  

Take the solution (1.0) 1.1055y = . 

 

Example 2: Given the I.V.P. 2 , (1) 1dy ty y
dt

= = find (1.4)y using the modified Euler 

method by taking 0.1h = . Compare this solution with the exact solution  
2 1( ) ty t e −= . Calculate the percentage relative error. 

 

Solution: 
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We have the data:  0 1 2 3 4 01, 1.1, 1.2, 1.3, 1.4, 1, 0.1t t t t t y h= = = = = = = . 

Modified Euler method is: 

( ) ( )1 1 1, ,
2j j j j j j
hy y f t y f t y+ + +
 = + ⋅ +  for 0,1,2,3j = . 

Take 0j = : We have the iterative method is written as  

( ) ( )( 1) ( )
1 0 0 0 1 1, ,

2
s shy y f t y f t y+  = + ⋅ +  , 0,1, 2,...s =  

Compute (0)
1y  using the Euler method: 

(0)
1 0 (0.1) 2 (0.1) 1 1.2y y= + ⋅ ⋅ ⋅ = . 

Now (1) (0)
1 0 0 0 1 1

(0.1) 2 2 1.232
2

y y t y t y = + + =  , 

(2) (1)
1 0 0 0 1 1

(0.1) 2 2 1.232
2

y y t y t y = + + =  . 

1j =  to 3j =  are calculated (left as an exercise) and are tabulated below. The 

absolute error and percentage relative errors are calculated as: 

  and 

 . 

 

 

Table 28.1 
j  nt  ny  Exact value 

2 1nty e −=  

Absolute error Percentage relative 

error 

0 1 1 1 0 0 

1 1.1 1.232 1.2337 0.0017 0.14 

2 1.2 1.5479 1.5527 0.0048 0.31 

3 1.3 1.9832 1.9937 0.0106 0.53 

4 1.4 1.5908 2.6117 0.0209 0.80 

 

Exercises:  
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1. Solve the I.V.Ps. using modified Euler method  

(i) 2 , (0) 1, 0.2dy y y h
dt

= − = = , [ ]0,0.6t∈ . 

(ii) [ ], (0) 1, 0.1, 0,0.2dy y t y h t
dt y t

−
= = = ∈

+
. 

(iii) [ ]2 , (1) 1, 0.5, 1,2dy ty y h t
dt

= + = = ∈ . 

(iv) [ ]3(1 ), (0) 3, 0.1, 0,0.4y t t y y h t′ = + = = ∈ . 

 

Keywords:  Absolute error, Explicit Euler method, Percentage relative errors, 

Modified Euler method, 
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Module 1: Numerical Analysis 
 

Lesson 29 

Runge-Kutta Methods 

 

29.1 Introduction 

In single step explicit method, the approximate solution 1jy +  is computed from the 

known solution at the point ( ),j jt y using 

( )1 ,j j j jy y h f t y+ = + ⋅          (29.1) 

or 1j jy y h+ = +  (slope of ( )y t  at jt t= )           (29.2) 

 

In equation (1), we used the slope at jt t=  only. Similarly, in the modified Euler 

method  

( ) ( )1 1 1, ,j j j j j jy y h f t y f t y+ + +
 = + +                                                                         (29.3) 

 

The slope is replaced by the average of slopes at the end points ( ),j jt y and 

( )1 1,j jt y+ + . 

29.2 Runge-Kutta Methods 

Runge-Kutta methods use a weighted average of slopes on the given interval  

1,j jt t +   , instead of a single slope. Thus the general Runge-Kutta method may be 

defined as 

1j jy y h+ = + [Weighted average of slopes at  points on the given interval]       (29.4) 

               

This way one can derive -explicit methods by taking 1,2,...,n N=  . Also, n in 

(29.4) indicates the order of this Runge-Kutta method. The general thorder  
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Runge-Kutta method is written as 

( )1 1 1 2 2 ...j j N Ny y w k w k w k+ = + + + +  

where iw  are the weights and each ik  is defined as 

( )1 ,j jk h f t y= ⋅  

( )2 2 21 1,j jk h f t c h y a k= ⋅ + +  

( )3 3 31 1 32 2,j jk h f t c h y a k a k= ⋅ + + +  

( )1 1 2 2 , 1 1, ...N j N j N N N N Nk h f t c h y a k a k a k− −= ⋅ + + + + +                                                   (29.5) 

 

All iw ’s , ic ’s, ia ’s  are the parameters which are determined by forcing the 

method (29.4) to be of thorder. Deriving a general th order method is out of 

purview of this material, but we demonstrate the derivation of the nd order Runge-

Kutta method below. 

 

29.3 Second Order Runge-Kutta Method 

Consider the general form of the ( nd order) Runge-Kutta method with 2 slopes, 

1 1 1 2 2j jy y w k w k+ = + +                                                                                            (29.6) 

where ( )1 ,j jk h f t y= ⋅  

( )2 2 21 1,j jk h f t c h y a k= ⋅ + +  

 

The parameters 2 21 1 2, , ,c a w w  are chosen to make  1jy +   closer to the exact solution 

1( )jy t + upto the nd order. 

 

Now writing 1( )jy t +  in Taylor series about  jt t= , 
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2

1( ) ( ) ( ) ( ) ...
2!j j j j
hy t y t h y t y t+ ′ ′′= + ⋅ + ⋅ +  

( )
2

( ) , ...
2!

j

j j j
t t

h f fy t h f t y f
t y

=

 ∂ ∂
= + ⋅ + ⋅ + + ∂ ∂ 

                                           (29.7) 

Also, 1 jk h f= ⋅  

( )2 2 21,j j jk h f t c h y a h f= ⋅ + + ⋅  

 

Expanding  f  about  ( ),j jt y  , we get 

( )
2 2 2 2

2
2 2 21 2 2 21 212 22 ...

2!
j j

j
t t t t

f f h f f fk h f t h c a f c c a f a f
t y t y t y

= =

   ∂ ∂ ∂ ∂ ∂ = + + + ⋅ + + +  ∂ ∂ ∂ ∂ ∂ ∂     
 

 

Substituting the expressions for 1k   and  2k   in (1),we get  

( ) 2
1 1 2 2 2 2 21 ...

j

j j j
t t

f fy y w w h f h w c w a f
t y+

=

 ∂ ∂
= + + ⋅ + + + ∂ ∂ 

             (29.8) 

 

Comparing the coefficients of h and 2h   in (27.7) and (27.8) we obtain 

1 2 1w w+ = ; 2 2 2 21
1 1;
2 2

w c w a= = . 

 

The solution of this may be written as 

21 2 2 1
2 2

1 1; ; 1
2 2

a c w w
c c

= = = − , 

2c  is arbitrary non-zero constant. 

 

With the choice of 2
1
2

c =  , we derive the nd order Runge-Kutta method. 
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21 2 1
1 ; 1; 0
2

a w w= = =  

we get ( )1 ,j jk h f t y= ⋅  

2 1
1,

2 2j j
hk h f t y k = ⋅ + + 

 
 

And 1 2j jy y k+ = +                    (29.9) 

 

With the choice of  2 1c =  , we get 

2 1
1 1,
2 2

w w= = and 21 1a =  

and 1 1 2
1 ( )
2j jy y k k+ = + +  

where ( )1 ,j jk h f t y= ⋅  

( )2 1,j jk h f t h y k= ⋅ + + . 

 

This method is also a second order method which is known as the Euler-Cauchy 

method. Clearly, with different choices for 2c  , we get a different second order 

Runge-Kutta method. Let us demonstrate its utility for solving the initial value 

problems. 

 

Example1: Compute  (0.4)y   from the I.V.P.  22 , (0) 1, 0.2y ty y h′ = − = =  

 

Solution: 

1 2j jy y k+ = +  

where ( ) 2 2
1 , (0.2) 2 0.4j j j j j jk h f t y t y t y = ⋅ = − = −   

2 1
1,

2 2j j
hk h f t y k = ⋅ + + 
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( )
2

1
10.4 0.1
2j jt y k = − + + 

 
 

Taking 0j = ; given that 0 00, 1t y= = , 

1 20, 0.04k k⇒ = = − . 

2(0.2) (0) 1 0.04 0.96y y k∴ = + = − = . 

For 1j = , 1 10.2, 0.96t y= =  

1 20.073728, 0.10226k k⇒ = − = −  

and 2(0.4) (0.2) 0.96 0.10226 0.85774y y k= + = − =  
 

Keywords: Weighted average of slopes, 

 

References  

Jain. M. K., Iyengar. S.R.K., Jain. R.K.,(2008).Numerical Methods. Fifth Edition, 

New Age International Publishers, New Delhi. 

Atkinson. E Kendall, (2004). Numerical Analysis. Second Edition, John Wiley & 

Sons, Publishers, Singapore. 

 

Suggested Reading 

Scheid.Francis,(1989). Numerical Analyysis. Second Edition, Mc Graw-Hill 

Publishers, New York. 

Sastry.S.S, (2005). Introductory Methods of Numerical Analysis. Fourth 
Edition,Prentice Hall of India Publishers, New Delhi. 

WhatsApp: +91 7900900676 www.AgriMoon.Com202



Module 1: Numerical Analysis 
 

Lesson 30 

th Order Runge-Kutta Method 

 

30.1  3rd Order Runge-Kutta Method 

The third order Runge-Kutta method is given by 

( )1 1 2 3
1 2 3 3
8j jy y k k k+ = + + +                                                                                    (30.1) 

where ( )1 ,j jk h f t y= ⋅  

2 1
22 ,

3 3j j
hk h f t y k = ⋅ + + 

 
 

and 3 2
22 ,

3 3j j
hk h f t y k = ⋅ + + 

 
. 

 

Derivation of this method involves evaluation of eight unknowns in eight non-

linear algebraic equations, which is very tedious. Similarly the th order Runge-

Kutta method is also. The interested is referred to a standard test book on 

Numerical analysis for the detailed derivation. The Fourth order Runge-Kutta 

method is given as: 

( )1 1 2 3 4
1 2 2
6j jy y k k k k+ = + + + +                                                                               (30.2) 

where ( )1 ,j jk h f t y= ⋅  

1
2 ,

2 2j j
khk h f t y = ⋅ + + 

 
 

2
3 ,

2 2j j
khk h f t y = ⋅ + + 

 
 

and ( )4 3,j jk h f t h y k= ⋅ + +  
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This method is also known as the Classical Runge-Kutta method. The thorder R-T 

method is an efficient method which can be used very easily. Let us now illustrate 

its use for finding the solution of given I.V.P. 

 

Example 1: Use the Classical Runge-Kutta method to find the numerical solution 

at 0.6t = for , (0.4) 0.41, 0.2dy t y y h
dt

= + = = . 

 

Solution:  

Given 0 00.4, 0.41;t y= = ( , )f t y t y= + .  

First let us evaluate ik ’s. 

( )1 0 0,k h f t y= ⋅  

[ ]
1
2(0.2) 0.4 0.41 0.18= + =  

1
2 0 0,

2 2
khk h f t y = ⋅ + + 

 
 

[ ]
1
2(0.2) (0.4 0.1) (0.41 0.09)= + + + 0.2=  

2
3 0 0,

2 2
khk h f t y = ⋅ + + 

 
 

[ ]
1
2(0.2) (0.4 0.1) (0.41 0.01) 0.20099= + + + =  

( )4 0 0 3,k h f t h y k= ⋅ + +  

[ ]
1
2(0.2) 0.6 (0.41 0.20099)= + +  

0.22009= . 

Now ( )1 2 3 4
1(0.6) (0.4) 2 2
6

y y k k k k= + + + +  

0.41 0.20035= +  
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0.61035= . 

Example 2: Find (0.1)y form , (0) 2dy y t y
dt

= − = by taking 0.1h = . 

 

Solution:  

Given 0 0( , ) , 0, 2, 0.1f t y y t t y h= − = = =  

( )1 0 0,k h f t y= ⋅  

[ ](0.1) 2 0 0.2= − =  

1
2 0 0,

2 2
khk h f t y = ⋅ + + 

 
 

[ ](0.1) 2.1 0.05 0.205= − =  

2
3 0 0,

2 2
khk h f t y = ⋅ + + 

 
 

[ ](0.1) 2.1025 0.05 0.20525= − =  

( )4 0 0 3,k h f t h y k= ⋅ + +  

[ ](0.1) 2.20525 0.1 0.21053= − =  

Hence ( )1 2 3 4
1(0.1) (0) 2 2
6

y y k k k k= + + + +  

2 0.2056= +  

(0.1) 2.2056y∴ = . 

 

Example 3: Given 21 , (0.2) 0.2027, 0.2dy y y h
dt

= + = = compute (0.4)y using the th order 

R-K method. 

 

Solution:  

Given 2
0 0( , ) 1 , 0.2, 0.2027, 0.2f t y y t y h= + = = =  
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Evaluating ik ’s, we get 

1 20.2082, 0.2188,k k= =  

3 40.2195, 0.2356k k= = . 

and hence ( )1 2 3 4
1(0.4) (0.2) 2 2
6

y y k k k k= + + + +  

0.4228= . 

 

Exercises: 

1. Use rd order Runge-Kutta method to find 

a) (0.1)y given 3 2 , (0) 0, 0.1tdy e y y h
dt

= + = = . 

b) (0.8)y given , (0.4) 0.41, 0.2dy t y y h
dt

= + = = . 

c) (0.2)y given , (0) 1, 0.1dy y t y h
dt y t

−
= = =

+
. 

d) (0.2)y given 13 , (0) 1, 0.1
2

dy t y y h
dt

= + = = . 

2. Use thorder Runge-Kutta method to solve the problems 1(a)-1(d) and make a 

comparison table. 

3. Solve the non-linear I.V.P. 
2

2

2
2

dy y t
dt y t

−
=

+
subjected to (0) 1y = in the interval [0,1] by taking 0.2h = . 

4. Use the Classical Runge-Kutta method to find (1.4)y insteps of 0.2 given that 

2 2 , (1) 1.5dy t y y
dt

= + = . 

 

Keywords: 3rd order Runge - Kutta method,  th order Runge - Kutta method,  
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Module 1: Numerical Analysis  

Lesson 31 

Methods for Solving Higher Order Initial Value Problems 

 

31.1 Introduction  

From the Theory of ordinary differential equations, it is evident that an thorder 

ordinary differential equation, be a linear or a non-linear one, can be reduced to a 

system of -first order equations. To see this, consider the second order o. d. e. 
24 0y y t y′′ ′− + =  

subject to the initial conditions (1) 1y = , (1) 2y′ = . 

Let ( )u y t= and ( )v y t′= , 

then v y′ ′′=  

and we have u v′ = and 24v v t u′ = − . 

 

Thus the 2-first order equations are  

u v′ = ; (1) 1u =  
24v v t u′ = − ; (1) 2v =  

 

This is known as the initial value problem in the first order system corresponding 

to the given nd order initial value problem. 

 

In general an thorder differential equation  
( ) 1( , , , ,..., )n ny F t y y y y −′ ′′=                                                                                       (31.1) 

is written in the first order system as follows set 1 ( )u y t= . 
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1 2

2 3

1

1 2 1

...

( , , ,..., )
n n

n n

u u
u u

u u
u F t u u u

−

−

′ = 
′ = 

′ = 

′ =                                                                                            

(31.2) 

 

With the transformed initial conditions  

1 0 0 2 0 1 0 1( ) , ( ) ..., ( )n nu t u t u tη η η −= = =                                                                           (31.3) 

 

This system is written in the vector form as 

0

( , )

( )

u f t u

u t η

′ = 
= 

                                                                                                              

(31.4) 

where [ ]1 2, ,..., T
nu u u u= , 

[ ]2 3, ,..., , T
nf u u u F= , 

[ ]0 1 1, ,..., T
nη η η η −= . 

 

Thus the methods of solution of the first order I.V.P 

0 0( , ), ( )dy f t y y t y
dt

= =  

can be used to solve the above system of first order I.V.Ps. 

 

31.2 Taylor Series Method 

In what follows is shown the utility of Taylor series method to the system of 

I.V.Ps. through two examples. 

1. The vector form of the Taylor Series method is  written as  
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2
( )

1 ...
2! !

p
p

j j j j j
h hy y hy y y

p+ ′ ′′= + + + +  

Here 0,1,2,.., 1j N= −  denote the nodal point 

and 

( )
1,

1 1, 2, ,1
( )

2,( )

1
( )

1, 2, ,1,

( , , ,..., )

...
...

( , , ,..., )

k
j

j j j n jk
k

jk
j

k
k

n j j j n jkn j

dy f t y y y
dty

y
d f t y y yy dt

−

−

−

  
  
  

= =   
  
  
    

. 

 

31.3 Euler Method 

The vector form of Euler method  can be written as: 

1j j jy y hy+ ′= + , 0,1, 2,..., 1j N= − . 

 

Example: 1. Reduce the rd order I.V.P. into a system of first order I.V.P.: 

[ ]2 cos , 0,1y y y y t t′′′ ′′ ′+ + − = ∈  

subject to (0) 0, (0) 1, (0) 2y y y′ ′′= = = . 

 

Solution:  

Set 1 1 2 2 3, ,y u u u u u′ ′= = = . 

Now the system of 3 first order equations is  

1 2u u′ =  

2 3u u′ =  

3 3 2 1cos 2u t u u u′ = − − +  

 

The initial conditions are: 1 3 3(0) 0, (0) 1, (0) 2u u u= = = . 
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Example 2. Use the nd order Taylor Series method to compute (1), (1)y y′ and 

(1)y′′ by taking 1.0h = in the above example. 

 

Solution: 

The Second order Taylor Series method is  
2

0 0 0 0( ) ( ) ( ) ( )
2
hu t h u t hu t u t′ ′′+ = + +  

Given 1h =  
1(1) (0) (0) (0)
2

u u u u′ ′′∴ = + + . 

The system of I.V.P. is: 

1 1

2 3

3 3 2 1cos 2

u u
u u u

u t u u u

′   
  ′ = =   
   − − +   

 

subject to 
1

2

3

(0) 0
(0) (0) 1

2(0)

u
u u

u

   
   = =   
     

. 

We now require to compute (0)u′ and (0)u′′ : 

2 1

3 2

33 2 1

(0) (0)1
(0) (0) 2 (0)

4 (0)1 2 (0) (0) (0)

u u
u u u

uu u u

′    
    ′ ′= = =    
     ′−− − +     

 

Also 
2

3

3 2 1

(0) 2
(0) (0) 4

72 (0) (0) (0)

u
u u

u u u

′   
   ′′ ′= = −   
   ′ ′ ′− − +   

 

0 1 2 2 (1)
1(1) 1 2 4 1 (1)
2

2 4 7 3 (1)
2

y
u y

y

 
        
        ′∴ = + + − = =        
  ′′       −        
 

. 
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Exercises:  

1. Solve the system equations 3 2 , (0) 0u u v u′ = − + =  and 13 4 , (0)
2

v u v v′ = − = using 

(i) Forward Euler method and  

(ii) 2nd order Taylor Series method by taking 0.2h = on the interval[0,0.6] .  

 

Keywords: Euler Method, Higher order initial value problems, Taylor Series 

method. 
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Module 1: Numerical Analysis 

Lesson 32 

System of I.V.Ps.- th Order R-K Method 

 

32.1 Introduction 

We now present the vector form of the nd order and th order Runge-Kutta 

methods. 

Given the I.V.P. : 
0 0

0 0

( , , ); ( )

( , , ); ( )

dy f t y z y t y
dt
dz g t y z z t z
dt

= = 

= =


      (32.1) 

 

The Euler-Cauchy method (which belong to the class of nd order Runge-Kutta 

method) when applied to the above system of I.V.P. is written in the vector form as 

( )1 1 2
1
2j ju u k k+ = + +  

where [ ], Tu y z= ; [ ]1 11 21, Tk k k= ; [ ]2 12 22, Tk k k=  

with ( )11 , ,j j jk h f t y z= ⋅  

( )21 , ,j j jk h g t y z= ⋅  

and ( )12 11 21, ,j j jk h f t h y k z k= ⋅ + + +  

( )22 11 21, ,j j jk h f t h y k z k= ⋅ + + +  

 

Example 1 

 Find (0.2)y and (0.2)z from the system of I.V.P. : 

3 2 , (0) 0y y z y′ = − + =  

3 4 , (0) 0.5z y z z′ = − =  

by taking 0.2h = using the Euler-Cauchy method. 
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Solution:  

Given 0 0 00, 0, 0.5,t y z= = =  

( , , ) 3 2 , ( , , ) 3 4f t y z y z g t y z y z= − + = − . 

11 210.2, 0.4k k= = −  

12 220.08, 0.04k k= − =  

( )11 12
1(0.2) (0) 0.06,
2

y y k k∴ = + + =  

( )21 22
1(0.2) (0) 0.32
2

z z k k= + + = . 

 

The th order Runge-Kutta method for the system of equations as given in (1) is 

written as 

( )1 1 2 3 4
1 2 2
6j jy y k k k k+ = + + + +  

( )1 1 2 3 4
1 2 2
6j jz z l l l l+ = + + + + , 0,1, 2,.., 1j N= −  

where ( )1 , ,j j jk h f t y z= ⋅  

( )1 , ,j j jl g f t y z= ⋅  

1 1
2 , ,

2 2 2j j j
k lhk h f t y z = ⋅ + + + 

 
 

1 1
2 , ,

2 2 2j j j
k lhl g f t y z = ⋅ + + + 

 
 

2 2
3 , ,

2 2 2j j j
k lhk h f t y z = ⋅ + + + 

 
 

2 2
3 , ,

2 2 2j j j
k lhl g f t y z = ⋅ + + + 

 
 

3 3
4 , ,

2 2 2j j j
k lhk h f t y z = ⋅ + + + 
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3 3
4 , ,

2 2 2j j j
k lhl g f t y z = ⋅ + + + 

 
 

In the similar manner, the method can be extended to  or more first order 

equations. 

 

Example 2: Solve 
2 2

(0) 1, (0) 0
y xy y
y y
′′ ′ = −

′= = 
 to compute (0.2)y . 

 

Solution:  

The given second order equation with the initial conditions can be written as the 

system of two first order equations as: 

( , , )dy z f t y z
dt

= = , say 

2 2 ( , , )dz tz y g t y z
dt

= − = , say. 

Given 0 0 00, 1, 0, 0.2t y z h= = = = .Compute 1 1 2 2 3 3, , , , ,k l k l k l  and 4 4,k l in this order, we see 

( )1 0 0 0, , 0.2 0 0k h f t y z= ⋅ = × =  

( )1 0 0 0, , 0.2( 1) 0.2l g f t y z= ⋅ = − = −  

1 1
2 0 0 0, , 0.02

2 2 2
k lhk h f t y z = ⋅ + + + = − 

 
 

1 1
2 0 0 0, , 0.1998

2 2 2
k lhl g f t y z = ⋅ + + + = − 

 
 

2 2
3 0 0 0, , 0.02

2 2 2
k lhk h f t y z = ⋅ + + + = − 

 
 

2 2
3 0 0 0, , 0.1958

2 2 2
k lhl g f t y z = ⋅ + + + = − 

 
 

3 3
4 0 0 0, , 0.0392

2 2 2
k lhk h f t y z = ⋅ + + + = − 
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Thus ( )1 2 3 4
1(0.2) (0) 2 2
6

y y k k k k= + + + +  

1 0.0199= −  

0.9801=  

and ( )1 2 3 4
1(0.2) (0.2) (0) 2 2
6

y z z l l l l′ = = + + + +  

0 0.1970= −  

0.197= . 

 

Exercises 

1. Find (0.2)y and (0.2)z using the 4th order Runge-Kutta method to solve  

3 2 , (0) 0y y z y′ = − + =  

3 4 , (0) 0.5z y z z′ = − =  

by taking 0.1h = . 

2. Solve y y ty′′ ′= + , (0) 1y = , (0) 0y′ = to find (0.2)y and (0.2)y′ using the 4th order R-

K method. Take 0.1h = . 

3. Find 3 3 , (0) 1y t y t y y′′ ′= + = , 1(0)
2

y′ =  in [0,1] by taking 0.2h = . 

 

Keywords:  System of I.V.Ps., 
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Module 2: Laplace Transform

Lesson 33

Introduction

In this lesson we will discuss the idea of integral transform, in general, and Laplace trans-

form in particular. Integral transforms turn out to be a veryefficient method to solve

certain ordinary and partial differential equations. In particular, the transform can take

a differential equation and turn it into an algebraic equation. If the algebraic equation

can be solved, applying the inverse transform gives us our desired solution. The idea of

solving differential equations is given in Figure 33.1.

Integral 

Transform Initial and boundary value 

problems / PDE’s 

Algebraic 

Problems/ ODE’s 

Solutions of 

Algebraic Problems 

Solution of initial and boundary 

value problems or PDE’s 

Inverse 

Transform 

Difficult Easy 

Figure 33.1: Idea of Solving Differential/Integral Equations

33.1 Concept of Transformations

An integral of the form
∫ b

a

K(s, t)f(t) dt

is called integral transform off(t). The functionK(s, t) is called kernel of the trans-

form. The parameters belongs to some domain on the real line or in the complex
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plane. Choosing different kernels and different values ofa and b, we get different in-

tegral transforms. Examples include Laplace, Fourier, Hankel and Mellin transforms. For

K(s, t) = e−st, a = 0, b = ∞, the improper integral
∫

∞

0
e−stf(t) dt

is called Laplace transform off(t). If we setK(s, t) = e−ist, a = −∞, b = ∞, then
∫

∞

−∞

eistf(t) dt

wherei =
√
−1 is called the Fourier transform off(t). A common property of integral

transforms is linearity, i.e.,

I.T. [α f(t) + β g(t)] =

∫ b

a

K(s, t) [α f(t) + β g(t)] dt = α I.T.(f(t)) + β I.T. (g(t))

The symbol I.T. stands for integral transforms.

33.2 Laplace Transform

The Laplace transform of a functionf is defined as

L[f(t)] = F (s) =

∫

∞

0
e−stf(t) dt

provided the improper integral converges for somes.

Remark 1: The integral
∫

∞

0 e−stf(t) dt is said to be convergent (absolutely conver-

gent) if

lim
R→∞

∫ R

0
e−stf(t) dt

(

lim
R→∞

∫ R

0
| e−stf(t) | dt

)

exists as a finite number.

33.3 Laplace Transform of Some Elementary Functions

We now give Laplace transform of some elementary functions.Laplace transform of

these elementary functions together with properties of Laplace transform will be used to

evaluate Laplace transform of more complicated functions.
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33.4 Example Problems

33.4.1 Problem 1

Evaluate Laplace transform off(t) = 1, t ≥ 0.

Solution: Using definition of Laplace transform

L[f(t)] =

∫

∞

0
e−st dt =

e−st

−s

∣

∣

∣

∞

0

Assuming thats is real and positive, therefore

L[f(t)] =
1

s
, since lim

R→∞

e−sR = 0

What will happen if we takes to be a complex number, i.e.,s = x + iy. Sincee−iyR =

cos yR− i sin yR, and therefore| e−iyR |= 1, then, we find

lim
R→∞

| exR || e−iyR |= 0 for Re(s) = x > 0

Thus, we have

L[f(t)] = L[1] =
1

s
, Re(s) > 0.

33.4.2 Problem 2

Find the Laplace transform of the functionseat, eiat, e−iat.

Solution: Using the definition of Laplace transform

L[eat] =

∫

∞

0
e−steat dt =

∫

∞

0
e−(s−a)t dt =

e−(s−a)t

−(s− a)

∣

∣

∣

∞

0

=
1

s− a
, provided Re(s) > a (or s > a)

Similarly, we can evaluate

L[eiat] =

∫

∞

0
e−(s−ia)t dt =

e−(s−ia)t

−(s− ia)

∣

∣

∣

∞

0

=
1

s− ia
, provided Re(s) > 0.
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Here we have used the fact that, fors = x+ iy, we have

lim
R→∞

∣

∣

∣

∣

∣

e−(s−ia)R

−(s− ia)

∣

∣

∣

∣

∣

= − 1

s− ia
lim

R→∞

∣

∣

∣
e−xRe−i(y−a)R

∣

∣

∣
= 0

Similarly, we get

L[e−iat] =
1

s+ ia
.

33.4.3 Problem 3

Fins the Laplace transform of the unit step function (commonly known as the Heaviside

function). This function is given as

u(t− a) =







0 if t < a,

1 if t ≥ a.

Solution: Let us find the Laplace transform ofu(t − a), wherea ≥ 0 is some constant.

That is, the function that is 0 fort < a and 1 fort ≥ a.

L{u(t− a)} =

∫

∞

0
e−stu(t− a) dt =

∫

∞

a

e−st dt =

[

e−st

−s

]∞

t=a

=
e−as

s
,

where of courses > 0 anda ≥ 0.

33.4.4 Problem 4

Find the Laplace transform oftn, n = 1, 2, 3, ...

Solution: Using definition of Laplace transform we get

L[tn] =

∫

∞

0
e−sttn dt =

[

tn
e−st

−s

]∞

0

−
∫

∞

0

e−st

−s
ntn−1 dt

= 0 +
n

s

∫

∞

0
e−sttn−1 dt =

n

s
L[tn−1]

Puttingn = 1:

L[t] =
1

s
L[1] =

1

s2
=

1!

s2
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Puttingn = 2:

L[t2] =
2

s3
=

2!

s3

If we assumeL[tn] = n!
sn+1 , then

L[tn+1] =
n+ 1

s
L[tn] =

(n+ 1)!

sn+2
⇒ L[tn] =

n!

sn+1
, Re(s) > 0.

One can also extend this result for non-integer values ofn.

33.4.5 Problem 5

Find L[tγ ] for non-integer values ofγ.

Solution: Using the definition of Laplace transform we get

L[tγ ] =

∫

∞

0
e−sttγ dt, (γ > −1)

Note that the above integral is convergent only forγ > −1. We substituteu = st ⇒ du =

sdt wheres > 0. Thus we get

L[tγ ] =

∫

∞

0
e−u

(u

s

)γ 1

s
du =

1

sγ+1

∫

∞

0
e−uuγ du

We know

Γ(p) =

∫

∞

0
up−1e−u du (p > 0)

Then,

L[tγ ] =
Γ(γ + 1)

sγ+1
, γ > −1, s > 0

Note that forγ = 1, 2, 3, ..., the above formula reduces to the formula we got in previous

example for integer values, i.e.,L[tγ ] =
γ!

sγ+1
.

33.4.6 Problem 6

Let f(t) = a0 + a1t+ a2t
2 + ...+ ant

n. Find L[f(t)].

Solution: Applying the definition of Laplace transform we obtain

L[f(t)] = L

[

n
∑

k=0

akt
k

]
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Using the linearity of the transform we get

L[f(t)] =
n
∑

k=0

L[tk] =
n
∑

k=0

ak
k!

sk+1
.

Remark 2: For an infinite series
∑

∞

n=0 ant
n, it is not possible, in general, to obtain

Laplace transform of the series by taking the transform termby term.
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Module 2: Laplace Transform

Lesson 34

Laplace Transform of Some Elementary Functions

In this lesson we compute the Laplace transform of some elementary functions, before

discussing the restriction that have to be imposed onf(t) so that it has a Laplace transform.

With the help of Laplace transform of elementary function wecan get Laplace transform

of complicated function using properties of the transform that will be discussed later.

Another important aspect of the finding Laplace transform ofelementary function relies

on using them for getting inverse Laplace transform.

34.1 Example Problems

34.1.1 Problem 1

Find Laplace transform of (i) coshωt, (ii) cosωt, (iii) sinhωt (iv) sinωt .

Solution: (i) Using the definition of Laplace transform we get

L[coshωt] = L

[

eωt − e−ωt

2

]

Using linearity of the transform we obtain

L[coshωt] =
1

2

(

L
[

eωt
]

− L
[

e−ωt
]

)

Applying the Laplace transform of exponential function we obtain

L[coshωt] =
1

2

[

1

s− ω
−

1

s+ ω

]

=
s

s2 + ω2

(ii) Following similar steps we obtain

L[cosωt] = L

[

eiωt + e−iωt

2

]

Using linearity, we obtain

L[cosωt] =
1

2
L
[

eiωt
]

+
1

2
L
[

e−iωt
]
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Laplace Transform of Some Elementary Functions

We know the Laplace transform of exponential functions which can be used now to get

L[cosωt] =
1

2

{

1

s− iω
+

1

s+ iω

}

=
1

2

2s

s2 + ω2

Thus we have

L[cosωt] =
s

s2 + ω2

Similarly we get the last two cases (iii) and (iv) as

L[sinhωt] =
ω

s2 − ω2
and L[sinωt] =

ω

s2 + ω2

34.1.2 Problem 2

Find the Laplace transform of (3 + e6t)2.

Solution: We determine the Laplace transform as follows

L(3 + e6t)2 = L(3 + e6t)(3 + e6t) = L(9 + 6e6t + e12t)

Using linearity we get

L(3 + e6t)2 = L(9) + L(6e6t) + L(e12t)

= 9L(1) + 6L(e6t) + L(e12t)

Using the Laplace transform of elementary functions appearing above we obtain

L(3 + e6t)2 =
9

s
+

6

s− 6
+

1

s− 12

34.1.3 Problem 3

Find the Laplace transform of sin3 2t.

Solution: We know that

sin 3t = 3 sin t− 4 sin3 t

This implies that we can write

sin3 2t =
1

4
(3 sin 2t− sin 6t)
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Laplace Transform of Some Elementary Functions

Applying Laplace transform and using its linearity property we get

L[sin3 2t] =
1

4
(3L[sin 2t]− L[sin 6t])

Using the Laplace transforms ofsin at we obtain

L[sin3 2t] =
3

4

2

s2 + 4
−

1

4

6

s2 + 36

Thus we get

L[sin3 2t] =
48

(s2 + 4)(s2 + 36)

34.1.4 Problem 4

Find Laplace transform of the function f(t) = 2t.

Solution: First we rewrite the given function as

f(t) = 2t = eln 2
t

= et ln 2

Now f(t) is function of the formeat and therefore

L[f(t)] =
1

s− ln 2
, for s > ln 2

34.1.5 Problem 5

Find (a) L[t3 − 4t+ 5 + 3 sin 2t] and (b) L[H(t− a)−H(t− b)].

Solution: (a) Using linearity of the transform we get

L[t3 − 4t+ 5 + 3 sin 2t] = L[t3]− 4L[t] + L[5] + 3L[sin 2t]

Using Laplace transform evaluated in previous previous examples, we have

L[t3 − 4t+ 5 + 3 sin 2t] =
6

s4
−

4

s2
+

5

s
+

6

(s2 + 4)

On simplification we find

L[t3 − 4t+ 5 + 3 sin 2t] =
(5s5 + 2s4 + 20s310s2 + 24)

[s4(s2 + 4)]
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Laplace Transform of Some Elementary Functions

(b) Using Linearity property we get

L[H(t− a)−H(t− b)] = L[H(t− a)]− L[H(t− b)]

Applying the definition of Laplace transform we obtain

L[H(t− a)−H(t− b)] =

∫

∞

0

H(t− a)e−st dt−
∫

∞

0

H(t− b)e−st dt

=

∫

∞

a
H(t− a)e−st dt−

∫

∞

b
H(t− b)e−st dt

Integration gives

L[H(t− a)−H(t− b)] =
e−as

s
−

e−bs

s

This implies

L[H(t− a)−H(t− b)] =
e−as

− e−bs

s

34.1.6 Problem 6

Find Laplace transform of the following function

f(t) =

{

t/c, if 0 < t < c ;

1, if t > c.

Here c is some constant.

Solution: Using the definition of Laplace transform we have

L[f(t)] =

∫ c

0

e−st

(

t

c

)

dt+
∫

∞

c
e−st dt

Integrating by parts we find

L[f(t)] =

[

t

c

(

−
e−st

s

)

−
1

c

(

−
e−st

s2

)]c

0

+

[

−
e−st

s

]

∞

c

On simplifications we obtain

L[f(t)] =
1− esc

cs2
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34.1.7 Problem 7

Find Laplace transform of the function f(t) given by

f(t) =















0, if 0 < t < 1 ;

t, if 1 < t < 2;

0, if t > 2.

Solution: By the definition of Laplace transform we have

L[f(t)] =

∫

∞

0

e−stf(t)dt =
∫

2

1

e−sttdt

Integrating by parts we obtain

L[f(t)] =

[

t

(

−
e−st

s

)]2

1

+

∫

2

1

e−st

s
dt

= −

2e−2s
− e−s

s
−

e−2s
− e−s

s2

34.1.8 Problem 8

Find Laplace transform of sin
√

t.

Solution: We have

sin
√

t = t1/2 −
1

3!
t3/2 +

1

5!
t5/2 −

1

7!
t7/2 + ...

Then, taking the Laplace transform of each term in the serieswe get

L[sin
√

t] = L[t1/2]−
1

3!
L[t3/2] +

1

5!
L[t5/2]−

1

7!
L[t7/2] + . . .

=
Γ(3/2)

s3/2
−

1

3!

Γ(5/2)

s5/2
+

1

5!

Γ(7/2)

s7/2
−

1

7!

Γ(9/2)

s9/2
+ . . .

Further simplifications leads to

L[sin
√

t] =
1

2

√

π

s3/2

[

1−
1

3!

3

2

1

s
+

1

5!

5

2

3

2

1

s2
−

1

7!

7

2

5

2

3

2

1

s3
+ . . .

]

=
1

2s

√

π

s

[

1−
1

22s
+

1

2!

1

(22s)2
−

1

3!

1

(22s)3
+ . . .

]

Thus, we have

L[sin
√

t] =
1

2s

√

π

s
e−

1

4s .
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Module 2: Laplace Transform

Lesson 35

Existence of Laplace Transform

In this lesson we shall discuss existence theorem on Laplacetransform. Since every

Laplace integral is not convergent, it is very important to know for which functions

Laplace transform exists.

Consider the functionf(t) = et
2

and try to evaluate its Laplace integral. In this case we

realize that

lim
R→∞

∫ R

0

et
2
−st dt = ∞, for any choice ofs

Naturally question arises in mind that for which class of functions, the Laplace integral

converges? So before answering this question we go through some definition.

35.1 Piecewise Continuity

A functionf is called piecewise continuous on[a, b] if there are finite number of pointsa <

t1 < t2 < . . . < tn < b such thatf is continuous on each open subinterval(a, t1), (t1, t2), . . . , (tn, b)

and all the following limits exists

lim
t→a+

f(t), lim
t→b−

f(t), lim
t→tj+

f(t), and lim
t→tj−

f(t), ∀j.

Note: A functionf is said to be piecewise continuous on[0,∞) if it is piecewise continu-

ous on every finite interval[0, b], b ∈ R+.

35.1.1 Example 1

The function defined by

f(t) =











t2, 0 ≤ t ≤ 1;

3− t, 1 < t ≤ 2;

t+ 1, 2 < t ≤ 3;

is piecewise continuous on[0, 3].
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Existence of Laplace Transform

35.1.2 Example 2

The function defined by

f(t) =

{

1
2−t

, 0 ≤ t < 2;

t+ 1, 2 ≤ t ≤ 3;

is not piecewise continuous on[0, 3].

35.2 Example Problems

35.2.1 Problem 1

Discuss the piecewise continuity of

f(t) =
1

t− 1

.

Solution: f(t) is not piecewise continuous in any interval containing1 since

lim
t→1±

f(t)

do not exists.

35.2.2 Problem 2

Check whether the function

f(t) =

{

1−e−t

t
, t 6= 0;

0, otherwise

is piecewise continuous or not.

Solution: The given function is continuous everywhere other than at0. So we need to

check limits at this point. Since both the left and right limits

lim
t→0−

f(t) = 1 and lim
t→0+

f(t) = 1

exists, the given function is piecewise continuous.
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Existence of Laplace Transform

35.3 Functions of Exponential Orders

A function f is said to be of exponential orderα if there exist constantM andα such that

for somet0 ≥ 0

|f(t)| ≤ Meαt for all t ≥ t0

Equivalently, a functionf(t) is said to be of exponential orderα if

lim
t→∞

e−αt|f(t)| = a finite quantity

Geometrically, it means that the graph of the functionf on the interval(t0,∞) does not

grow faster than the graph of exponential functionMeαt

35.4 Example Problems

35.4.1 Problem 1

Show that the functionf(t) = tn has exponential orderα for any value ofα > 0 and any

natural numbern.

Solution: We check the limit

lim
t→∞

e−αttn

Repeated application of L’hospital rule gives

lim
t→∞

e−αttn = lim
t→∞

n!

αneαt
= 0

Hence the function is of exponential order.

35.4.2 Problem 2

Show that the functionf(t) = et
2

is not of exponential order.

Solution: For given function we have

lim
t→∞

e−αtet
2

= lim
t→∞

et(t−α) = ∞

for all values ofα. Hence the given function is not of exponential order.
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35.4.3 Theorem (Sufficient Conditions for Laplace Transform)

If f is piecewise continuous on[0,∞) and of exponential orderα then the Laplace trans-

form exists forRe(s) > α. Moreover, under these conditions Laplace integral converges

absolutely.

Proof: Sincef is of exponential orderα, then

|f(t)| ≤ M1e
αt, t ≥ t0 (35.1)

Also, f is piecewise continuous on[0,∞) then

|f(t)| ≤ M2, 0 < t < t0 (35.2)

From equation (35.1) and (35.2) we have

|f(t)| ≤ Meαt, t ≥ 0

Then
∫ R

0

|e−stf(t)|dt ≤
∫ R

0

|e−(x+iy)tMeαt|dt

Here we have assumeds to be a complex number so thats = x+ iy. Noting that|e−iy| = 1

we find
∫ R

0

|e−stf(t)|dt ≤ M

∫ R

0

e−(x−α)tdt

On integration we obtain

∫ R

0

|e−stf(t)|dt ≤ M

x− α
− M

x− α
e−(x−α)R

LettingR → ∞ and notingRe(s) = x > α, we get
∫

∞

0

|e−stf(t)|dt ≤ M

x− α

Hence the Laplace integral converges absolutely and thus converges. This implies the

existence of Laplace transform. For piecewise continuous functions of exponential order,

the Laplace transform always exists. Note that it is a sufficient condition, that means if a

function is not of exponential order or piecewise continuous then the Laplace transform

may or may not exist.
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Remark 1: We have observed in the proof of existence theorem that
∣

∣

∣

∣

∫

∞

0

e−stf(t)dt

∣

∣

∣

∣

≤
∫

∞

0

|e−stf(t)|dt ≤ M

Re(s)− α
for Re(s) > α

We now deduce two important conclusions with this observation:

• L[f(t)] =

∫

∞

0

e−stf(t)dt = F (s) → 0 asRe(s) → ∞

• if L[f(t)] 6→ 0 ass → ∞ (or Re(s) → ∞) thenf(t) cannot be piecewise continuous

function of exponential order. For example functions such asF1(s) = 1 andF2(s) =

s/(s+1) are not Laplace transforms of piecewise continuous functions of exponential

order, sinceF1(s) 6→ 0 andF2(s) 6→ 0 ass → ∞.

Remark 2: It should be noted that the conditions stated in existence theorem are suf-

ficient rather than necessary conditions. If these conditions are satisfied then the Laplace

transform must exist. If these conditions are not satisfied then Laplace transform may or

may not exist. We can observe this fact in the following examples:

• Consider, for example,

f(t) = 2tet
2

cos(et
2

)

Note thatf(t) is continuous on[0,∞) but not of exponential order, however the

Laplace transform off(t) exists, since

L[f(t)] =

∫

∞

0

e−st2tet
2

cos(et
2

)dt

Integration by parts leads to

L[f(t)] = e−st sin(et
2

)
∣

∣

∣

∞

0
+ s

∫

∞

0

e−st sin(et
2

)dt

Using the definition of Laplace transform we obtain

L[f(t)] = − sin(1) + sL[sin(et
2

)]

Note thatL[sin(et
2

)] exists because the functionsin(et
2

) satisfies both the conditions

of existence theorem. This example shows that Laplace transform of a function

which is not of exponential order exists.
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• Consider another example of the function

f(t) =
1√
t
,

which is not piecewise continuous sincef(t) → ∞ ast → 0. But we know that

L[f(t)] =
Γ(1/2)√

s
=

√

π

s
, s > 0.

This example shows that Laplace transform of a function which is not piecewise

continuous exists. These two examples clearly shows that the conditions given in

existence theorem are sufficient but not necessary.
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Lesson 36

Properties of Laplace Transform

In this lesson we discuss some properties of Laplace transform. There are several useful

properties of Laplace transform which can extend its applicability. In this lesson we

mainly present shifting and translation properties.

36.1 First Shifting Property

If L[f(t)] = F (s) thenL
[

eatf(t)
]

= F (s− a), wherea is any real or complex constant.

Proof: By the definition of Laplace transform we find

L
[

eatf(t)
]

=

∫

∞

0
eatf(t)e−st dt

=

∫

∞

0
e−(s−a)tf(t) dt

Again by the definition of Laplace transform we get

L
[

eatf(t)
]

= F (s− a).

36.2 Example Problems

36.2.1 Problem 1

Find the Laplace transform ofe−t sin2 t.

Solution: First we get the Laplace transform ofsin2 t as

L
[

sin2 t
]

= L

[

1− cos 2t

2

]

=
1

2

1

s
−

1

2

s

s2 + 4
=

2

s(s2 + 4)
= F (s).

Now using the first shifting property we obtain

L
[

e−t sin2 t
]

= F (s+ 1) =
2

(s+ 1)(s2 + 2s+ 5)
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36.2.2 Problem 2

Find L[e−2t sin 6t].

Solution: Settingf(t) = sin 6t we find

L[f(t)] = F (s) =
6

s2 + 36

Now using the first shifting property we get

L[e−2t sin 6t] =
6

(s + 2)2 + 36

36.2.3 Problem 3

EvaluateL[e2t(t + 3)2].

Solution: By the definition and linearity of Laplace transform we have

L[(t+ 3)2] =L[t2 + 6t+ 9] = L[t2] + 6L[t] + 9L[1]

=
2!

s3
+

6

s2
+

9

s

Further simplifications lead to

L[(t + 3)2] =
2 + 6s+ 9s2

s3
= F (s)

Using the first shifting property we get

L[e2t(t+ 3)2] = F (s− 2) =
2 + 6(s− 2) + 9(s− 2)2

(s− 2)3

=
9s2 − 30s+ 26

(s− 2)3

36.2.4 Problem 4

Using shifting property evaluateL[sinh 2t cos 2t] andL[sinh 2t sin 2t]

Solution: We know that

L[sinh 2t] =
2

s2 − 4
= F (s)
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Using shifting property we can get

L[e2it sinh 2t] = F (s− 2i)

This implies

L[e2it sinh 2t] =
2

(s− 2i)2 − 4
=

2

(s2 − 8)− 4is

Multiplying numerator and denominator by(s2 − 8) + 4is, we find

L[e2it sinh 2t] =
2(s2 − 8) + 8is

(s2 − 8)2 + 16s2
=

2(s2 − 8) + 8is

(s4 + 64)

Replacinge2it by cos 2t+ i sin 2t and using linearity of the transform we obtain

L[cos 2t sinh 2t] + iL[cos 2t sinh 2t] =
2(s2 − 8)

(s4 + 64)
+ i

8s

(s4 + 64)

Equating real and imaginary parts we have

L[cos 2t sinh 2t] =
2(s2 − 8)

(s4 + 64)
and L[cos 2t sinh 2t] =

8s

(s4 + 64)

36.3 Second Shifting Property

If L[f(t)] = F (s) andg(t) =

{

f(t− a) whent > a

0 when0 < t < a

then

L[g(t)] = e−asF (s).

Proof: By the definition of Laplace transform we have

L[g(t)] =

∫

∞

0
e−stg(t) dt

=

∫

∞

a
e−stf(t− a) dt

Substitutingt− a = u so that dt = du, we find

L[g(t)] =

∫

∞

0
e−s(u+a)f(u) du

= e−sa

∫

∞

0
e−suf(u) du
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Again using the definition of Laplace transform we get

L[g(t)] = e−asF (s).

Alternative form: It is sometimes useful to present this property in the following com-

pact form.

If L[f(t)] = F (s) then

L [f(t− a)H(t− a)] = e−asF (s)

where

H(t) =

{

1 whent > 0

0 whent < 0

Note thatf(t− a)H(t− a) is same as the functiong(t) given above.

36.4 Example Problems

36.4.1 Problem 1

Find L[g(t)] whereg(t) =

{

0 when0 ≤ t < 1

(t− 1)2 whent ≥ 1

Solution: On comparison with the functiong(t) given in second shifting theorem we get

f(f) = t2 ⇒ L[f(t)] =
2

s3

Using the second shifting property we find

L[g(t)] = e−s

(

2

s3

)

.

36.4.2 Problem 2

Find the Laplace transform of the functiong(t), where

g(t) =

{

cos(t− π/3), t > π/3;

0, t > π/3.
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Solution: Comparing with the notations used in the second shifting theorem we have

f(t) = cos t. Thus, we find

L[f(t)] = F (s) =
s

s2 + 1
.

Hence by the second shifting theorem we obtain

L[g(t)] = e−π/3F (s) = e−π/3 s

s2 + 1
.

36.5 Change of Scale Property

If L[f(t)] = F (s) thenL[f(at)] =
1

a
F
(s

a

)

Proof: By definition, we have

L[f(at)] =

∫

∞

0
e−stf(at) dt.

Substitutingat = u so thatadt = du we find

L[f(at)] =

∫

∞

0
e−(

s

a
)uf(u)

1

a
du.

Using definition of the Laplace transform we get

L[f(at)] =
1

a
F
(s

a

)

.

36.5.1 Example

If

L[f(t)] =
s2 − s + 1

(2s+ 1)2(s− 1)

then findL[f(2t)].

Solution: Direct application of the second shifting theorem we obtain

L[f(2t)] =
1

2

(

s
2

)2
−

s
2 + 1

(

2 s
2 + 1

)2 ( s
2 − 1

)

On simplifications, we get

L[f(2t)] =
1

4

s2 − 2s+ 4

(s+ 1)2(s− 2)
.
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Lesson 37

Properties of Laplace Transform (Cont.)

In this lesson we continues discussing various properties of Laplace transform. In partic-

ular we shall discuss Laplace transform of derivatives and integrals. These two properties

are very important for solving differential and integral equations.

37.1 Laplace Transform of Derivatives

Before we state the derivative theorem, it should be noted that this results is the key aspect

for its application of solving differential equations.

37.1.1 Derivative Theorem

Supposef is continuous on[0,∞) and is of exponential orderα and thatf
′

is piecewise

continuous on[0,∞). Then

L[f
′

(t)] = sL[f(t)]− f(0), Re(s)> α.

Proof: By the definition of Laplace transform, we have

L[f
′

(t)] =

∫

∞

0

f
′

(t)e−st dt

Integrating by parts, we get

L[f
′

(t)] = f(t)e−st

∣

∣

∣

∞

0
−
∫

∞

0

f(t)e−st(−s) dt

Using the definition of Laplace transform we obtain

L[f
′

(t)] = −f(0) + sL[f(t)], Re(s)> α.

This completes the proof.
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Remark 1: Supposef(t) is not continuous att = 0, then the results of the above

theorem takes the following form

L[f
′

(t)] = −f(0 + 0) + sL[f(t)]

Remark 2: An interesting feature of the derivative theorem is thatL[f
′

(t)] exists

without the requirement off
′

to be of exponential order. Recall the existence of Laplace

transform off(t) = 2tet
2

cos
(

et
2
)

which is obvious now by the derivative theorem because

f(t) =
(

sin
(

et
2
))

′

.

Remark 3: The derivative theorem can be generalized as

L[f
′′

(t)] = −f
′

(0) + sL[f
′

(t)]

= −f
′

(0) + s {−f(0) + sL[f(t)]} = s2L[f(t)]− sf(0)− f
′

(0).

In general, fornth derivative we have

L[fn(t)] = snL[f(t)]− sn−1f(0)− sn−2f
′

(0)− ...− fn−1(0).

37.2 Example Problems

37.2.1 Problem 1

DetermineL[sin2 ωt].

Solution: Let us assume that

f(t) = sin2 ωt

Now we compute the derivative off as

f
′

(t) = 2 sinωt cosωtω = ω sin 2ωt.
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Using the derivative theorem we have

L[f
′

(t)] = −f(0) + sL[f(t)]

Substituting the functionf(t) and its derivative we find

L[ω sin 2ωt] = sL[sin2 ωt]− 0

Therefore, we have

L[sin2 ωt] =
ω

s

(

2ω

s2 + 4ω2

)

37.2.2 Problem 2

Using derivative theorem, findL[tn].

Solution: Let

f(t) = tn.

Then

f
′

(t) = ntn−1, f
′′

(t) = n(n− 1)tn−2, . . . , fn(t) = n!.

From derivative theorem we have

L[fn(t)] = snL[f(t)]− sn−1f(0)− sn−2f
′

(0)− ...− fn−1(0).

Therefore, we find

L[n!] = snL[tn] ⇒ L[tn] =
n!

sn+1
.

37.2.3 Problem 3

Using derivative theorem, findL[sin kt].

Solution: Let f(t) = sin kt and therefore we have

f ′(t) = k cos kt and f ′′(t) = −k2 sin kt

Substituting in the derivative theorem

L[f ′′(t)] = s2L[f(t)]− sf(0)− f ′(0)
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yields

L[−k2 sin kt] = s2L[sin kt]− 0− k

On simplifications we get

L[sin kt] =
k

s2 + k2

37.2.4 Problem 4

UsingL[t2] = 2/s3 and derivative theorem, findL[t5].

Solution: Let f(t) = t5 so thatf ′(t) = 5t4, f ′′(t) = 20t3 f ′′′(t) = 60t2. The derivative

theorem for third derivative reads as

L[f ′′′(t)] = s3L[f(t)]− s2f(0)− sf ′(0)− f ′′(0)

This implies

L[60t2] = s3L[f(t)] ⇒ L[f(t)] =
120

s6
.

37.2.5 Problem 5

Using the Laplace transform ofL
[

sin
√
t
]

and applying the derivative theorem, find the

Laplace transform of the function
cos

√
t√

t

Solution: We know that

L
[

sin
√
t
]

=
1

2s

√

π

s
e−

1

4s

Let f(t) = sin
√
t, then we have

f(0) = 0 and f ′(t) =
cos

√
t

2
√
t

Substitution off(t) in the derivative theorem

L[f ′(t)] = sL[f(t)]− f(0)

yields

L

[

cos
√
t

2
√
t

]

= s
1

2s

√

π

s
e−

1

4s
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Thus, we get

L

[

cos
√
t√

t

]

=

√

π

s
e−

1

4s

37.3 Laplace Transform of Integrals

37.3.1 Theorem

Supposef(t) is piecewise continuous on[0,∞) and the function

g(t) =

∫

t

0

f(u) du

is of exponential order. Then

L[g(t)] =
1

s
F (s).

Proof: Clearlyg(0) = 0 andg
′

(t) = f(t). Note thatg(t) is piecewise continuous and is of

exponential order as well asg
′

(t) = f(t) is piecewise continuous. Then, we get using the

derivative theorem

L[g
′

(t)] = sL[g(t)]− g(0)

Sinceg(0) = 0 we obtain the desired result as

L[g(t)] =
1

s
L[f(t)]

This completes the proof.

37.4 Example Problems

37.4.1 Problem 1

Given that

L

[

sin t

t

]

=

∫

∞

s

1

1 + s2
ds.

Find the Laplace transform of the integral

∫

t

0

sin u

u
du.
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Solution: Direct application of the above result gives

L

[
∫

t

0

sin u

u
du

]

=
1

s
L

[

sin t

t

]

=
1

s

∫

∞

s

1

1 + s2
ds =

1

s

[π

2
− tan−1 s

]

Thus, we have

L

[
∫

t

0

sin u

u
du

]

=
1

s
cot−1 s

37.4.2 Problem 2

Find Laplace transform of the following integral
∫

t

0

une−audu

Solution: With the application of the first shifting theorem we know that

L[tne−at] =
n!

(s+ a)n+1

It follows from the above result on Laplace transform of integrals

L

[
∫

t

0

une−audu

]

=
1

s
L[tne−at] =

n!

s(s+ a)n+1
.
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Properties of Laplace Transform (Cont.)

In this lesson we further continue discussing properties ofLaplace transform. In partic-

ular, this lesson is devoted to Laplace transform of functions which are multiplied and

divide byt.

38.1 Multiplication by tn

38.1.1 Theorem

If F (s) is the Laplace transform of f(t), i.e., L[f(t)] = F (s) then,

L[tf(t)] = −

d

ds
F (s)

and in general the following result holds

L[tnf(t)] = (−1)n
dn

dsn
F (s).

Proof: By definition we know

F (s) =

∫

∞

0

e−stf(t) dt

Using Leibnitz rule for differentiation under integral sign we obtain

dF (s)

ds
=

∫

∞

0

(−t)e−stf(t) dt

Thus we get

dF (s)

ds
= −L[tf(t)]

Repeated differentiation under integral sign gives the general rule.

Applicability of the above result will now be demonstrated by some examples.
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38.2 Example Problems

38.2.1 Problem 1

Find Laplace transform of the function t2 cos at.

Solution: We know from Laplace transform of elementary functions that

L[cos at] =
s

s2 + a2

Direct application of the above rule gives

L
[

t2 cos at
]

=
d2

ds2

(

s

s2 + a2

)

=
d

ds

(

s2 + a2 − 2s2

(s2 + a2)
2

)

=
d

ds

(

a2 − s2

(s2 + a2)
2

)

On simplifications we find

L
[

t2 cos at
]

=
2s
(

s2 − 3a2
)

(s2 + a2)
3

38.2.2 Problem 2

Evaluate (i) L[te−t] (ii) L[t2e−t] (iii) L[tke−t]

Solution: (i) We know that

L[e−t] =
1

s+ 1

Using the above mentioned rule we find

L[te−t] = −

d

ds

1

s+ 1
=

1

(s+ 1)2

(ii) Applying the same idea once again, we obtain

L[t2e−t] = −

d

ds

1

(s+ 1)2
=

2

(s+ 1)3

(iii) Similarly, we can further generalize this result as

L[tke−t] =
k!

(s + 1)k+1
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38.2.3 Problem 3

Find the Laplace transform of f(t) = (t2 − 3t+ 2) sin t

Solution: Using linearity of the Laplace transform we have

L[f(t)] = L[t2 sin t]− 3L[t sin t] + 2L[sin t] (38.1)

Since we know

L[sin t] =
1

1 + s2

then

L[t sin t] = −

d

ds

1

1 + s2
=

2s

(1 + s2)2

and

L[t2 sin t] = −

d

ds

2s

(1 + s2)2
=

2(1 + s2)2 − 8s2(1 + s2)

(1 + s2)4
=

6s2 − 2

(1 + s2)3

Substituting the above values in the equation (38.1), we find

L[f(t)] =
6s2 − 2

(1 + s2)3
−

6s

(1 + s2)2
+

2

1 + s2

Further simplifications lead to

L[f(t)] =
6s2 − 2− 6s(1 + s2) + 2(1 + s2)2

(1 + s2)3

Finally, we obtain

L[f(t)] =
(2s4 − 6s3 + 10s2 − 6s)

(s6 + 3s4 + 3s2 + 1)

38.3 Division by t

38.3.1 Theorem

If f is piecewise continuous on [0,∞) and is of exponential order α such that

lim
t→0+

f(t)

t

exists, then,

L

[

f(t)

t

]

=

∫

∞

s

F (u) du, [s > α]
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Proof: This can easily be proved by lettingg(t) =
f(t)

t
so thatf(t) = tg(t).

Hence,

F (s) = L[f(t) = L[tg(t)] =
d

ds
L[g(t)]

Integrating with respect tos we get,

−L[g(t)]
∣

∣

∣

∞

s

=

∫

∞

s

F (s) ds.

Sinceg(t) is piecewise continuous and of exponential order, it follows that lim
s→∞

L[g(t)] → 0.

Thus we have

L[g(t)] =

∫

∞

0

F (s) ds.

This completes the proof.

Remark: It should be noted that the condition lim
t→0+

[f(t)/t] is very important because

without this condition the function g(t) may not be piecewise continuous on [0,∞). Thus

without this condition we can not use the fact lim
s→∞

L[g(t)] → 0.

38.3.2 Corollary

If L[f(t)] = F (s) then
∫

∞

0

f(t)

t
dt =

∫

∞

0

f(s) ds, provided that the integrals converge.

Proof: We know that

L

[

f(t)

t

]

=

∫

∞

s

F (u) du

Using the definition of Laplace transform we get
∫

∞

0

e−stf(t)

t
dt =

∫

∞

s

F (u) du

Taking limit s → 0 in above two integrals we obtain
∫

∞

0

f(t)

t
dt =

∫

∞

0

F (u) du

This completes the proof.
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38.4 Example Problems

38.4.1 Problem 1

Find the Laplace transform of the function

f(t) =
sin at

t

Solution: We know,

L[sin at] =
a

s2 + a2
and L

[

f(t)

t

]

=

∫

∞

s

F (u) du

On integrating we get,

L

[

sin at

t

]

=

∫

∞

s

a

s2 + a2
ds = tan−1

(s

a

)
∣

∣

∣

∞

s

Thus we have

L

[

sin at

t

]

=
π

2
− tan−1

(s

a

)

38.4.2 Problem 2

Find the Laplace transform of the function

f(t) =
2 sin t sinh t

t

Solution: Using Division byt property of the Laplace transform we get

L[f(t)] =

∫

∞

s

L
[

sin t
(

et − e−t
)]

ds (38.2)

Now we evaluateL
[

sin t
(

et − e−t
)]

using linearity of the Laplace transform as

L
[

sin t
(

et − e−t
)]

= L
[

et sin t
]

− L
[

e−t sin t
]

Applying the first shifting theorem we obtain

L
[

sin t
(

et − e−t
)]

=
1

1 + (s− 1)2
−

1

1 + (s+ 1)2
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Substituting this value in the equation (38.2) we find

L[f(t)] =

∫

∞

s

[

1

1 + (s− 1)2
−

1

1 + (s+ 1)2

]

ds

On integrating, we have

L[f(t)] = tan−1(s− 1)
∣

∣

∣

∞

s

− tan−1(s+ 1)
∣

∣

∣

∞

s

=
π

2
− tan−1(s− 1)−

π

2
+ tan−1(s+ 1)

On cancellation ofπ/2 we get

L[f(t)] = tan−1(s+ 1)− tan−1(s− 1)

This can be further simplified to obtain

L[f(t)] = tan−1

(

2

s2

)
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In this lesson we evaluate Laplace transform of periodic functions. Periodic functions fre-

quently occur in various engineering problems. We shall nowshow that with the help of a

simple integral, we can evaluate Laplace transform of periodic functions. We shall further

continue the discussion for stating initial and final value theorems of Laplace transforms

and their applications with the help of simple examples.

39.1 Laplace Transform of a Periodic Function

Letf be a periodic function with periodT so thatf(t) = f(t+ T ) then,

L[f(t)] =
1

1− e−sT

∫ T

0
e−sTf(t) dt.

Proof: By definition we have,

L[f(t)] =

∫

∞

0
e−sT f(t) dt

We break the integral into two integrals as

L[f(t)] =

∫ T

0
e−sTf(t) dt+

∫

∞

T
e−sT f(t) dt

Substitutingt = τ + T in the second integral

L[f(t)] =

∫ T

0
e−sTf(t) dt+

∫

∞

0
e−(τ+T )f(τ + T ) dτ

Noting f(τ + T ) = f(τ) we find

L[f(t)] =

∫ T

0
e−sTf(t) dt+ e−sTL[f(t)],

On simplifications, we obtain

L[f(t)] =
1

1− e−sT

∫ T

0
e−stf(t) dt.

This completes the proof.
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Remark 1: Just to remind that if a functionf is periodic with periodT > 0 then

f(t) = f(t+ T ), −∞ < t < ∞. The smallest ofT , for which the equalityf(t) = f(t+ T ) is

true, is called fundamental period off(t). However, ifT is the period of a functionf then

nT , n is any natural number, is also a period off . Some familiar periodic functions are

sin x, cosx, tan x etc.

39.2 Example Problems

39.2.1 Problem 1

Find Laplace transform for

f(t) =

{

1 when0 < t ≤ 1

0 when1 < t < 2

with f(t+ 2) = f(t), t > 0.

Solution: Using the above result on periodic function, we have,

L[f(t)] =
1

1− e−2s

∫ 2

0
e−stf(t) dt =

1

1− e−2s

∫ 1

0
e−st dt

On integration we obtain

L[f(t)] =
1

1− e−2s

(

1

−s

)

[

e−s
− 1
]

=
1

s(1 + e−s)

39.2.2 Problem 2

Find Laplace transform for

f(t) =

{

sin t when0 < t < π

0 whenπ < t < 2π

with f(t+ 2π) = f(t), t > 0.

Solution: Sincef(t) is periodic with period2π we have

L[f(t)] =
1

1− e−2sπ

∫ 2π

0
e−stf(t) dt
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We now evaluate the above integral as

∫ 2π

0
e−stf(t) dt =

∫ π

0
e−stf(t) dt+

∫ 2π

π
e−stf(t) dt

Substituting the given value off(t) we obtain

∫ 2π

0
e−stf(t) dt =

∫ π

0
e−st sin t dt+ 0 =

1 + e−sπ

1 + s2

This implies

L[f(t)] =
1

1− e−2sπ

1 + e−sπ

1 + s2
=

1

(1 + s2)(1− e−sπ)

39.2.3 Problem 3

Find the Laplace transform of the square wave with period T:

f(t) =

{

h when0 < t < T/2

−h whenT/2 < t < T

Solution: Using Laplace transform of periodic function we find

L[f(t)] =
1

1− e−sT

∫ T

0
e−stf(t) dt

Substitutingf(t) we obtain

L[f(t)] =
1

1− e−sT

(

∫ T/2

0
he−st dt−

∫ T

T/2
he−st dt

)

Evaluating integrals we get

L[f(t)] =
1

(1− e−sT )

h

s

(

1− 2esT/2 + e−sT
)

=
h(1− esT/2)

s(1− esT/2)

39.3 Limiting Theorems

These theorems allow the limiting behavior of the function to be directly calculated by

taking a limit of the transformed function.
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39.3.1 Theorem (Initial Value Theorem)

Suppose thatf is continuous on[0,∞) and of exponential orderα and f
′

is piecewise

continuous on[0,∞) and of exponential order. Let

F (s) = L[f(t)],

then

f(0+) = lim
t→0+

f(t) = lim
s→∞

sF (s), [ assumings is real ]

Proof: By the derivative theorem,

L[f
′

(t)] = sL[f(t)]− f(0+)

Note that lim
s→∞

L[f
′

(t)] = 0, sincef
′

is piecewise continuous on[0,∞) and of exponential

order. Therefore we have

0 = lim
s→∞

sF (s)− f(0+)

Hence we get

lim
t→0+

f(t) = lim
s→∞

sF (s)

This completes the proof.

39.3.2 Theorem (Final Value Theorem)

Suppose thatf is continuous on[0,∞) and is of exponential orderα andf
′

is piecewise

continuous on[0,∞) and furthermorelimt→∞ f(t) exists then

lim
t→∞

f(t) = lim
s→0

sL[f(t)] = lim
s→0

sF (s)

Proof: Note thatf has exponential orderα = 0 since it is bounded, sincelimt→0+ f(t) and

limt→∞ f(t) exist andf(t) is continuous in[0,∞). By the derivative theorem, we have

L[f
′

(t)] = sF (s)− f(0+), s > 0,

4WhatsApp: +91 7900900676 www.AgriMoon.Com257
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Taking limit ass → 0, we obtain

lim
s→0

∫

∞

0
e−stf

′

(t) dt = lim
s→0

sF (s)− f(0)

Taking the limit inside the integral
∫

∞

0
f

′

(t) dt = lim
s→0

sF (s)− f(0)

On integrating we obtain

lim
t→∞

f(t)− f(0) = lim
s→0

sF (s)− f(0)

Cancellation off(0) gives the desired results.

Remark 2: In the final value theorem, existence oflimt→∞ f(t) is very important.

Considerf(t) = sin t. Thenlims→0 sF (s) = lims→0
s

1+s2
= 0. But limt→∞ f(t) does not

exist. Thus we may say that iflims→0 sF (s) = L exists then eitherlimt→∞ f(t) = L or this

limit does not exist.

39.3.3 Example

Without determiningf(t) and assuming thatf(t) satisfies the hypothesis of the limiting

theorems, compute

lim
t→0+

f(t) and lim
t→∞

f(t) if L[f(t)] =
1

s
+ tan−1

(a

s

)

.

Solution: By initial value theorem, we get

lim
t→0+

f(t) = lim
s→∞

sF (s) = lim
s→∞

[

1 + s tan−1
(a

s

)]

Application of L’hospital rule gives

lim
t→0+

f(t) = 1 + lim
s→∞

s2

s2+a2

(

−a
s2

)

−
1
s2

= 1 + a

Using the final value theorem we find

lim
t→∞

f(t) = lim
s→0

sF (s) = lim
s→0

[

1 + s tan−1 a

s

]

= 1.
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Remark 3: Final value theorem sayslimt→∞ f(t) = lims→0 sF (s), if limt→∞ f(t) exists.

If F (s) is finite ass → 0 then trivially limt→∞ f(t) = 0. However, there are several func-

tions whose Laplace transform is not finite ass → 0, for example,f(t) = 1 and its Laplace

transformF (s) is equal to1
s , s > 0. In this case we havelims→0 sF (s) = lims→0 1 = 1 =

limt→∞ f(t).

Suggested Readings

Arfken, G.B., Weber, H.J. and Harris, F.E. (2012). Mathematical Methods for Physicists

(A comprehensive guide), Seventh Edition, Elsevier Academic Press, New Delhi.

Debnath, L. and Bhatta, D. (2007). Integral Transforms and Their Applications. Second

Edition. Chapman and Hall/CRC (Taylor and Francis Group). New York.

Grewal, B.S. (2007). Higher Engineering Mathematics. Fourteenth Edition. Khanna

Publishers, New Delhi.

Dyke, P.P.G. (2001). An Introduction to Laplace Transformsand Fourier Series. Springer-

Verlag London Ltd.

Jain, R.K. and Iyengar, S.R.K. (2002). Advanced Engineering Mathematics. Third Edi-

tion. Narosa Publishing House. New Delhi.

Jeffrey, A. (2002). Advanced Engineering Mathematics. Elsevier Academic Press. New

Delhi.

Kreyszig, E. (2006). Advanced Engineering Mathematics, Ninth Edition, Wiley India

Pvt. Ltd, New Delhi.

McQuarrie, D.A. (2009). Mathematical Methods for Scientist and Engineers. First Indian

Edition. Viva Books Pvt. Ltd. New Delhi.

Schiff, J.L. (1999). The Laplace Transform: Theory and Applications. Springer-Verlag,

New York Inc.

Raisinghania, M.D. (2009). Advanced Differential Equations. Twelfth Edition. S. Chand

& Company Ltd., New Delhi.

6WhatsApp: +91 7900900676 www.AgriMoon.Com259



Module 2: Laplace Transform

Lesson 40

Inverse Laplace Transform

In this lesson we introduce the concept of inverse Laplace transform and discuss some of

its important properties that will be helpful to evaluate inverse Transform of some com-

plicated functions. As mention in the beginning of this module that the Laplace transform

will allow us to convert a differential equation into an algebraic equation. Once we solve

the algebraic equation in the transformed domain we will like to get back to the time

domain and therefore we need to introduce the concept of inverse Laplace transform.

40.1 Inverse Laplace Transform

If F (s) = L[f(t)] for some functionf(t). We define theinverse Laplace transformas

L−1[F (s)] = f(t).

There is an integral formula for the inverse, but it is not as simple as the transform itself as

it requires complex numbers and path integrals. The easiestway of computing the inverse

is using table of Laplace transform. For example,

L[sinwt] =
w

s2 + w2

This implies

L−1

[

w

s2 + w2

]

= sinwt, t ≥ 0

and similarly

L[coswt] =
s

s2 + w2
⇒ L−1

[

s

s2 + w2

]

= coswt, t ≥ 0

40.2 Uniqueness of Inverse Laplace Transform

If we have a functionF (s), to be able to findf(t) such thatL[f(t)] = F (s), we need to first

know if such a function is unique.
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Consider

g(t) =

{

1 whent = 1

sin(t) when otherwise

L[g(t)] =
1

s2 + 1
= L[sin t]

Thus we have two different functionsg(t) and sin t whose Laplace transform are same.

However note that the given two functions are different at a point of discontinuity. Thanks

to the following theorem where we have uniqueness for continuous functions:

40.2.1 Theorem (Lerch’s Theorem)

If f andg are continuous and are of exponential order, and ifF (s) = G(s) for all s > s0

thenf(t) = g(t) for all t > 0.

Proof: If F (s) = G(s) for all s > s0 then,
∫

∞

0
e−stf(t)dt =

∫

∞

0
e−stg(t)dt, ∀s > s0

⇒

∫

∞

0
e−st[f(t)− g(t)]dt = 0, ∀s > s0

⇒ f(t)− g(t) ≡ 0, ∀t > t0.

⇒ f(t) = g(t), ∀t > t0.

This completes the proof.

Remark: The uniqueness theorem holds for piecewise continuous functions as well.

Recall that piecewise continuous means that the function iscontinuous except perhaps at

a discrete set of points where it has jump discontinuities like the Heaviside function or the

functiong(t) defined above. Since the Laplace integral however does not ”see” values

at the discontinuities. So in this case we can only conclude that f(t) = g(t) outside of

discontinuities.

We now state some important properties of the inverse Laplace transform. Though, these

properties are the same as we have listed for the Laplace transform, we repeat them with-

out proof for the sake of completeness and apply them to evaluate inverse Laplace trans-

form of some functions.
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40.3 Linearity of Inverse Laplace Transform

If F1(s) andF2(s) are the Laplace transforms of the functionf1(t) andf2(t) respectively,

then

L−1[a1F1(s) + a2F2(s)] = a1L
−1[F1(s)] + L−1[F2(s)] = a1f1(t) + a2f2(t)

wherea1 anda2 are constants.

40.4 Example Problems

40.4.1 Problem 1

Find the inverse Laplace transform of

F (s) =
6

2s− 3
+

8− 6s

16s2 + 9

Solution: Using linearity of the inverse Laplace transform we have

f(t) = 6L−1

[

1

2s− 3

]

+ 8L−1

[

1

16s2 + 9

]

− 6L−1

[

s

16s2 + 9

]

Rewriting the above expression as

f(t) = 3L−1

[

1

s− (3/2)

]

+
1

2
L−1

[

1

s2 + (9/16)

]

−
3

8
L−1

[

s

s2 + (9/16)

]

Using the result

L

[

1

s− a

]

= eas

and taking the inverse transform we obtain

f(t) = 3e3t/2 +
2

3
sin

3t

4
−

3

8
cos

3t

4
.

40.4.2 Problem 2

Find the inverse Laplace transform of

F (s) =
s2 + s+ 1

s3 + s
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Solution: We use the method of partial fractions to writeF in a form where we can use

the table of Laplace transform. We factor the denominator ass(s2 + 1) and write

s2 + s+ 1

s3 + s
=

A

s
+

Bs + C

s2 + 1
.

Putting the right hand side over a common denominator and equating the numerators we

getA(s2 + 1) + s(Bs + C) = s2 + s + 1. Expanding and equating coefficients we obtain

A+B = 1, C = 1, A = 1, and thusB = 0. In other words,

F (s) =
s2 + s + 1

s3 + s
=

1

s
+

1

s2 + 1
.

By linearity of the inverse Laplace transform we get

L−1

[

s2 + s+ 1

s3 + s

]

= L−1

[

1

s

]

+ L−1

[

1

s2 + 1

]

= 1 + sin t.

40.5 First Shifting Property of Inverse Laplace Transform

If L−1[F (s)] = f(t), thenL−1[F (s− a)] = eatf(t)

40.6 Example Problems

40.6.1 Problem 1

EvaluateL−1

[

1

(s+ 1)2

]

Solution: Rewriting the given expression as

L−1

[

1

(s+ 1)2

]

= L−1

[

1

(s− (−1))2

]

Applying the first shifting property of the inverse Laplace transform

L−1

[

1

(s+ 1)2

]

= e−tL−1

[

1

s2

]

Thus we obtain

L−1

[

1

(s+ 1)2

]

= te−t.
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40.6.2 Problem 2

Find L−1

[

1

s2 + 4s+ 8

]

.

Solution: First we complete the square to make the denominator(s+ 2)2 + 4. Next we

find

L−1

[

1

s2 + 4

]

=
1

2
sin(2t).

Putting it all together with the shifting property, we find

L−1

[

1

s2 + 4s+ 8

]

= L−1

[

1

(s+ 2)2 + 4

]

=
1

2
e−2t sin(2t).

40.7 Second Shifting Property of Inverse Laplace Transform

If L−1[F (s)] = f(t), thenL−1
[

e−asf(s)
]

= f(t− a)H(t− a)

40.8 Example Problems

40.8.1 Problem 1

Find the inverse Laplace transform of

F (s) =
e−s

s(s2 + 1)

Solution: First we compute the inverse Laplace transform

L−1

[

1

s(s2 + 1)

]

= L−1

[

1

s
−

s

(s2 + 1)

]

Using linearity of the inverse transform we get

L−1

[

1

s(s2 + 1)

]

= L−1

[

1

s

]

− L−1

[

s

(s2 + 1)

]

= 1− cos t

We now find

L−1

[

e−s

s(s2 + 1)

]

= L−1
[

e−sL[1− cos t]
]
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Using the second shifting theorem we obtain

L−1

[

e−s

s(s2 + 1)

]

=
[

1− cos(t− 1)
]

H(t− 1).

40.8.2 Problem 2

Find the inverse Laplace transformf(t) of

F (s) =
e−s

s2 + 4
+

e−2s

s2 + 4
+

e−3s

(s+ 2)2

Solution: First we find that

L−1

[

1

s2 + 4

]

=
1

2
sin 2t

and using the first shifting property

L−1

[

1

(s+ 2)2

]

= e−2t

By linearity we have

f(t) = L−1

[

e−s

s2 + 4

]

+ L−1

[

e−2s

s2 + 4

]

+ L−1

[

e−3s

(s+ 2)2

]

Putting it all together and using the second shifting theorem we get

f(t) =
1

2
sin 2(t− 1)H(t− 1) +

1

2
sin 2(t− 2)H(t− 2) + e−2(t−3)H(t− 3)

Suggested Readings

Debnath, L. and Bhatta, D. (2007). Integral Transforms and Their Applications. Second

Edition. Chapman and Hall/CRC (Taylor and Francis Group). New York.

Grewal, B.S. (2007). Higher Engineering Mathematics. Fourteenth Edition. Khanna

Publishers, New Delhi.

Dyke, P.P.G. (2001). An Introduction to Laplace Transformsand Fourier Series. Springer-

Verlag London Ltd.

Schiff, J.L. (1999). The Laplace Transform: Theory and Applications. Springer-Verlag,

New York Inc.
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Module 2: Laplace Transform

Lesson 41

Properties of Inverse Laplace Transform

We shall continue discussing various properties of inverseLaplace transform. We mainly

cover change of scale property, inverse Laplace transform of integrals and derivatives etc.

41.1 Change of Scale Property

If L−1[F (s)] = f(t) then L−1[F (as)] =
1

a
F

(

t

a

)

41.1.1 Example

If

L−1

[

s

s2 − 16

]

= cosh 4t,

then find

L−1

[

s

2s2 − 8

]

Solution: Given that

L−1

[

s

s2 − 16

]

= cosh 4t

Replacings by 2s and using scaling property we find

L−1

[

2s

4s2 − 16

]

=
1

2
cosh 2t

Thus, we obtain

L−1

[

s

2s2 − 8

]

=
1

2
cosh 2t

41.2 Inverse Laplace Transform of Derivatives (Derivative Theorem)

If L−1[F (s)] = f(t) then L−1

[

dn

dsn
f(s)

]

= (−1)ntnf(t), n = 1, 2 . . .
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41.2.1 Example

Find the Laplace transform of

(i)
2as

(s2 + a2)2
(ii)

s2 − a2

(s2 + a2)2

Solution: Note that

d

ds

(

a

s2 + a2

)

=
−2as

(s2 + a2)2
and

d

ds

(

s

s2 + a2

)

=
a2 − s2

(s2 + a2)2

Direct application of the derivative theorem we obtain

(i) L−1

[

2as

(s2 + a2)2

]

= (−1) t L−1

[

−
a

s2 + a2

]

= t sin at

and

(ii) L−1

[

s2 − a2

(s2 + a2)2

]

= (−1) t L−1

[

−
s

s2 + a2

]

= t cos at

41.3 Inverse Laplace Transform of Integrals

If L−1[F (s)] = f(t) then L−1

[
∫

∞

s

f(s)ds
]

=
f(t)

t

41.3.1 Example

Find the inverse Laplace transformf(t) of the function
∫

∞

s

1

s(s+ 1)
ds

Solution: By the method of partial fraction we obtain

L−1

[

1

s(s+ 1)

]

= L−1

[

1

s
−

1

s+ 1

]

= L−1

[

1

s

]

− L−1

[

1

s+ 1

]

= 1− e−t.

Using the inverse Laplace transform of integrals we get

L−1

[
∫

∞

s

1

s(s+ 1)

]

=
1− e−t

t
.
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41.4 Multiplication by Powers of s

If L−1[F (s)] = f(t) and f(0) = 0, then L−1 [sF (s)] = f ′(t)

41.4.1 Example

UsingL−1

[

1

s2 + 1

]

= sin t, and with the application of above result computeL−1

[

s

s2 + 1

]

.

Solution: Direct application of the above result leads to

L−1

[

s

s2 + 1

]

=
d

dt
sin t = cos t.

41.5 Division by Powers of s

LetL−1[F (s)] = f(t). if f(t) is piecewise continuous and of exponential orderα such that

lim
t→0

f(t)

t
exists, then

L−1

[

F (s)

s

]

=

∫

t

0

f(u)du.

41.6 Example Problems

41.6.1 Problem 1

Compute

L−1

[

1

s(s2 + 1)

]

Solution: we could proceed by applying this integration rule.

L−1

[

1

s

1

s2 + 1

]

=

∫

t

0

L−1

[

1

s2 + 1

]

du =

∫

t

0

sin τ du = 1− cos t.
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41.6.2 Problem 2

Find inverse Laplace transform of
1

(s2 + 1)2

Solution: We know that

L−1

[

s

(1 + s2)2

]

=
1

2
t sin t.

We now apply the above result as

L−1

[

1

(1 + s2)2

]

= L−1

[

1

s

s

(1 + s2)2

]

=
1

2

∫

t

0

t sin tdt.

Evaluating the above integral we get

L−1

[

1

(1 + s2)2

]

=
1

2
(−t cos t + sin t).

41.6.3 Problem 3

Find inverse Laplace transform of
s− 1

s2(s2 + 1)
.

Solution: It is easy to compute

L−1

[

s− 1

(s2 + 1)

]

= L−1

[

s

(s2 + 1)

]

− L−1

[

1

(s2 + 1)

]

= cos t− sin t.

Now repeated application of the above result we get

L−1

[

s− 1

s(s2 + 1)

]

=

∫

t

0

(cos t− sin t)dt = sin t + cos t− 1.

Finally, we obtain the desired transform as

L−1

[

s− 1

s2(s2 + 1)

]

=

∫

t

0

(sin t+ cos t− 1)dt = 1− t+ sin t− cos t.

41.7 Evaluation of Integrals

With the application of Laplace and inverse Laplace transform we can also compute some

complicated integrals.
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41.8 Example Problems

41.8.1 Problem 1

Evaluate
∫

∞

0

cos tx

x2 + 1
dx, t > 0.

Solution: Let

f(t) =

∫

∞

0

cos tx

x2 + 1
dx.

Taking Laplace transform on both sides,

L[f(t)] =

∫

∞

0

s

(x2 + 1)(s2 + x2)
dx

=
s

s2 + 1

∫

∞

0

(

1

x2 + 1
−

1

s2 + x2

)

dx

=
s

s2 − 1

[

tan−1 x−
1

s
tan−1

(

1

s

)]

∞

0

=
s

s2 − 1

(π

2
−

π

2s

)

=
π

2

1

s+ 1
.

Taking inverse Laplace transform on both sides,

f(t) =
π

2
e−t.

41.8.2 Problem 2

Evaluate
∫

∞

0

e−x
2

dx.

Solution: Let

g(t) =

∫

∞

0

e−tx
2

dx

Now taking Laplace on both sides,

L[g(t)] =

∫

∞

0

1

s+ x2
dx =

1
√

s
arctan

(

x
√

s

)

∣

∣

∣

∞

0

=
1
√

s

π

2

Taking inverse Laplace transform we obtain

g(t) =
π

2
L−1

[

1
√

s

]

=
π

2

1
√

π
√

t
.

Hence fort = 1 we get
∫

∞

0

e−x
2

dx =

√

π

2
.
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Remark: Theoretical results on applicability of Laplace transformfor evaluating of

integrals and evaluation of some more integrals will be further elaborated in one of the

next lessons.

Suggested Readings
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Lesson 42

Convolution for Laplace Transform

In this lesson we introduce the convolution property of the Laplace transform. We shall

start with the definition of convolution followed by an important theorem on Laplace

transform of convolution. Convolution theorem plays an important role for finding in-

verse Laplace transform of complicated functions and therefore very useful for solving

differential equations.

42.1 Convolution

The convolution of two given functionsf(t) andg(t) is written asf ∗ g and is defined by

the integral

(f ∗ g)(t) :=
∫

t

0
f(τ)g(t− τ) dτ. (42.1)

As you can see, the convolution of two functions oft is another function oft.

42.2 Example Problems

42.2.1 Problem 1

Find the convolution off(t) = et andg(t) = t for t ≥ 0.

Solution: By the definition we have

(f ∗ g)(t) =
∫

t

0
eτ (t− τ) dτ

Integrating by parts, we obtain

(f ∗ g)(t) = et − t− 1.

42.2.2 Problem 2

Find the convolution off(t) = sin(ωt) andg(t) = cos(ωt) for t ≥ 0.
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Solution: By the definition of convolution we have

(f ∗ g)(t) =
∫

t

0
sin(ωτ) cos

(

ω(t− τ)
)

dτ.

We apply the identitycos(θ) sin(ψ) =
1

2

(

sin(θ + ψ)− sin(θ − ψ)
)

to get

(f ∗ g)(t) =
∫

t

0

1

2

(

sin(ωt)− sin(ωt− 2ωτ)
)

dτ

On integration we obtain

(f ∗ g)(t) =
[

1

2
τ sin(ωt) +

1

4ω
cos(2ωτ − ωt)

]t

τ=0

=
1

2
t sin(ωt).

The formula holds only fort ≥ 0. We assumed thatf and g are zero (or simply not

defined) for negativet.

42.3 Properties of Convolution

The convolution has many properties that make it behave likea product. Letc be a con-

stant andf , g, andh be functions, then

(i) f ∗ g = g ∗ f, [symmetry]

(ii) c(f ∗ g) = cf ∗ g = f ∗ cg, [c=constant]

(iii) f ∗ (g ∗ h) = (f ∗ g) ∗ h, [associative property]

(iv) f ∗ (g + h) = f ∗ g + f ∗ h, [distributive property]

Proof: We give proof of (i) and all others can be done similarly. By the definition of

convolution we have

f ∗ g =
∫

t

0
f(τ)g(t− τ)dτ

Substitutingt− τ = u⇒ −dτ = du we get

f ∗ g = −
∫ 0

t

f(t− u)g(u)du =

∫

t

0
f(t− u)g(u)du = g ∗ f

This completes the proof.

The most interesting property for us, and the main result of this lesson is the following

theorem.

2WhatsApp: +91 7900900676 www.AgriMoon.Com273



Convolution for Laplace Transform

42.4 Convolution Theorem

If f andg are piecewise continuous on[0,∞) and of exponential orderα, then

L[(f ∗ g)(t)] = L[f(t)]L[g(t)].

Proof: From the definition,

L[(f ∗ g)(t)] =
∫ ∞

0
e−st

∫

t

0
f(τ)g(t− τ)dτdt, [Re(s)> α ]

Changing the order of integration,

L[(f ∗ g)(t)] =
∫ ∞

0

∫

t

0
e−stf(τ)g(t− τ)dtdτ,

We now putt− τ = u⇒ −dτ = du and get,

L[(f ∗ g)(t)] =
∫ ∞

0

∫ ∞

0
e−s(u+τ )f(τ)g(u)dudτ

=

∫ ∞

0
e−sτ )f(τ)dτ

∫ ∞

0
e−sug(u)du

= L[f(t)]L[g(t)]

This completes the proof.

In other words, the Laplace transform of a convolution is theproduct of the Laplace

transforms. The simplest way to use this result is in reverse, i.e., to find inverse Laplace

transform.

42.5 Example Problems

42.5.1 Problem 1

Find the inverse Laplace transform of the function ofs defined by

1

(s+ 1)s2
=

1

s+ 1

1

s2
.
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Solution: We recognize the two elementary entries

L−1

[

1

s+ 1

]

= e−t and L−1

[

1

s2

]

= t.

Therefore,

L−1

[

1

s+ 1

1

s2

]

=

∫

t

0
τe−(t−τ ) dτ

On integration by parts we obtain

L−1

[

1

s+ 1

1

s2

]

= e−t + t− 1.

42.5.2 Problem 2

Use the convolution theorem to evaluate

L−1

[

s

(s2 + 1)2

]

.

Solution: Note that

L[sin t] =
1

s2 + 1
and L[cos t] =

s

s2 + 1

Using convolution theorem,

L[sin t ∗ cos t] = L[sin t]L[cos t] =
s

(s2 + 1)2
.

Therefore, we have

L−1

[

s

(s2 + 1)2

]

=

∫

t

0
sin τ cos(t− τ)dτ.

Using the trigonometric equality2 sinA cosB = sin(A+B) + sin(A− B) we get

L−1

[

s

(s2 + 1)2

]

=
1

2

∫

t

0
[sin t + sin(2τ − t)]dτ.

On integration we find

L−1

[

s

(s2 + 1)2

]

=
1

2
t sin t +

1

2

[

−
cos(2τ − t)

2

]t

0

=
1

2
t sin t

1

4
[cos t− cos t].
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Finally we have the following result

L−1

[

s

(s2 + 1)2

]

=
1

2
t sin t.

42.5.3 Problem 3

Use convolution theorem to evaluate

L−1

[

1
√
s(s− 1)

]

Solution: We know the following elementary transforms

L

[

1
√
t

]

=
Γ
(

1
2

)

√
s

⇒ L−1

[

1
√
s

]

=
1

√
tπ

and

L−1

[

1

s− 1

]

= et.

Then by the convolution theorem, we find

L−1

[

1
√
s(s− 1)

]

=
1

√
tπ

∗ et =
∫

t

0

1
√
tπ
et−τdτ.

Substitutionu =
√
τ ⇒ du =

1

2
√
τ
dτ gives

L−1

[

1
√
s(s− 1)

]

=
et
√
π

∫

t

0

e−τ

√
τ
dτ = 2

et
√
π

∫

√
t

0
e−u

2

du.

Thus, we have

L−1

[

1
√
s(s− 1)

]

= eterf(
√
t).

42.5.4 Problem 4

Use convolution theorem to evaluate

L−1

[

1

s3(s2 + 1)

]

.
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Solution: We know

L−1

[

1

s3

]

=
t2

2
and L−1

[

1

s2 + 1

]

= sin t.

By the convolution theorem we have

L−1

[

1

s3(s2 + 1)

]

=
1

2
t2 ∗ sin t =

1

2

∫

t

0
sin τ (t− τ)2 dτ

=
1

2

[

(

− cos τ(t− τ)2
)

∣

∣

∣

t

0
− 2

∫

t

0
(t− τ) cos τdτ

]

=
1

2

[

t2 − 2 ((t− τ) sin τ)
∣

∣

∣

t

0
+

∫

t

0
sin τdτ

]

.

Finally we get the desired inverse Laplace transform as

L−1

[

1

s3(s2 + 1)

]

=
t2

2
+ cos t− 1.

Suggested Readings
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Edition. Chapman and Hall/CRC (Taylor and Francis Group). New York.

Grewal, B.S. (2007). Higher Engineering Mathematics. Fourteenth Edition. Khanna

Publishers, New Delhi.

Dyke, P.P.G. (2001). An Introduction to Laplace Transformsand Fourier Series. Springer-
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Module 2: Laplace Transform

Lesson 43

Laplace Transform of Some Special Functions

In this lesson we discuss Laplace transform of some special functions like error functions,

Dirac delta functions, etc. There functions appears in various applications of science and

engineering to some of them we shall encounter while solvingdifferential equations using

Laplace transform.

43.1 Error Function

The error appears in probability, statistics and solutionsof some partial differential equa-

tions. It is defined as

erf(t) =
2√
π

∫

t

0
e−u

2

du

Its complement, known as complementary error function, is defined as

erfc(t) = 1− erf(t) =
2√
π

∫ ∞

t

e−u
2

du

We find Laplace transform of different forms of error function in the following examples.

43.2 Example Problems

43.2.1 Problem 1

Find L[erf(
√
t)].

Solution: From definition of the error function and the Laplace transform we have,

L[erf(
√
t)] =

2√
π

∫ ∞

0

∫

√
t

0
e−ste−x

2

dxdt

By changing the order of integration we get,

L[erf(
√
t)] =

2√
π

∫ ∞

x=0

∫ ∞

t=x2

e−ste−x
2

dtdx
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Evaluating the inner integral we obtain

L[erf(
√
t)] =

2√
π

∫ ∞

x=0
e−x

2 e−sx
2

s
dx =

2√
π

1

s

∫ ∞

x=0
e−(1+s)x2dx

Substituting
√

(1 + s)x = u ⇒ dx =
1√
1 + s

du

L[erf(
√
t)] =

2√
π

1

s
√
1 + s

∫ ∞

x=0
e−u

2

du =
1

s
√
s+ 1

Note that we have used the value of Gaussian integral
∫ ∞

x=0
e−u

2

du =

√
π

2
.

43.2.2 Problem 2

Find L

[

erf
(

k√
t

)]

. and show thatL−1

[

e−2k
√
s

s

]

= erfc
(

k√
t

)

Solution: By the definition of Laplace transform we have

L

[

erf
(

k√
t

)]

=

∫ ∞

0
e−st 2√

π

∫
k
√

t

0
e−u

2

du dt

Changing the order of integration we get

L

[

erf
(

k√
t

)]

=
2√
π

∫ ∞

0

∫
k
2

u2

0
e−ste−u

2

dt du

Evaluation of the inner integral leads to

L

[

erf
(

k√
t

)]

=
2√
π

1

s

∫ ∞

0
e−u

2

(

1− e
−s

k
2

u2

)

du

Using the value of Gaussian integral we have

L

[

erf
(

k√
t

)]

=
2√
π

1

s

[√
π

2
−
∫ ∞

0

(

e
−u

2−s
k
2

u2

)

du

]

(43.1)

Let us assume

I(s) =

∫ ∞

0
e
−u

2−s
k
2

u2 du

By differentiation under integral sign

dI

ds
=

∫ ∞

0
e
−u

2−s
k
2

u2

(

−k2

u2

)

du
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Substitution
√
sk

u
= x ⇒ −

√
sk

u2
du = dx leads to

dI

ds
= − k√

s

∫ ∞

0
e
−x

2−s
k
2

x2 dx = − k√
s
I

Solving the above differential equation we get

ln I(s) = −2k
√
s+ ln c ⇒ I(s) = ce−2k

√
s

Further note that

I(0) =

∫ ∞

0
e−u

2

du =

√
π

2
⇒ c =

√
π

2

Therefore, we get

I(s) =

√
π

2
e−2k

√
s

Substituting this value in the equation (43.1), we obtain

L

[

erf
(

k√
t

)]

=
2

s
√
π

[√
π

2
−

√
π

2
e−2k

√
s

]

=
1− e−2k

√
s

s

Taking inverse Laplace transform on both sides we get

erf
(

k√
t

)

= L−1

[

1

s

]

− L−1

[

e−2k
√
s

s

]

= 1− L−1

[

e−2k
√
s

s

]

This leads to the desired result as

L−1

[

e−2k
√
s

s

]

= 1− erf
(

k√
t

)

= erfc

(

k√
t

)

43.3 Dirac-Delta Function

Often in applications we study a physical system by putting in a short pulse and then

seeing what the system does. The resulting behaviour is often calledimpulse response.

Let us see what we mean by a pulse. The simplest kind of a pulse is a simple rectangular

pulse defined by

ϕa

ǫ (t) =



















0 if t < a,

1/ǫ if a ≤ t < a+ ǫ,

0 if a+ ǫ ≤ t.
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Let us take the Laplace transform of a square pulse,

L [ϕa

ǫ (t)] =

∫ ∞

0
e−stϕǫ(t)dt

Substituting the value of the function we obatin

L [ϕa
ǫ (t)] =

1

ǫ

∫ a+ǫ

a

e−st dt

On integration we get

L [ϕa

ǫ (t)] =
e−sa

sǫ

[

1− e−sǫ
]

We generally wantǫ to be very small. That is, we wish to have the pulse be very short

and very tall. By lettingǫ go to zero we arrive at the concept of theDirac delta function,

δ(t− a). Thus, the Dirac-Delta can be thought as the limiting case ofϕǫ(t) asǫ → 0

δ(t− a) = lim
ǫ→0

ϕa

ǫ (t)

So δ(t) is a ”function” with all its ”mass” at the single pointt = 0. In other words, the

Dirac-delta function is defined as having the following properties:

(i) δ(t− a) = 0, ∀t, t 6= a

(ii) for any interval[c, d]

∫ d

c

δ(t− a) dt =







1 if the interval[c, d] containsa, i.e.c ≤ a ≤ d,

0 otherwise.

(iii) for any interval [c, d]

∫ d

c

δ(t− a)f(x) dt =







f(a) if the interval[c, d] containsa, i.e.c ≤ a ≤ d,

0 otherwise.

Unfortunately there is no such function in the classical sense. You could informally think

thatδ(t) is zero fort 6= 0 and somehow infinite att = 0.

As we can integrateδ(t), let us compute its Laplace transform.

L [δ(t− a)] =

∫ ∞

0
e−stδ(t− a) dt = e−as

In particular,

L [δ(t)] = 1.
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Remark: Notice that the Laplace transform ofδ(t − a) looks like the Laplace trans-

form of the derivative of the Heaviside functionu(t − a), if we could differentiate the

Heaviside function. First notice

L
[

u(t− a)
]

=
e−as

s
.

To obtain what the Laplace transform of the derivative wouldbe we multiply bys, to

obtain e−as, which is the Laplace transform ofδ(t − a). We see the same thing using

integration,
∫ t

0
δ(s− a) ds = u(t− a).

So in a certain sense

”
d

dt

[

u(t− a)
]

= δ(t− a) ”

This line of reasoning allows us to talk about derivatives offunctions with jump disconti-

nuities. We can think of the derivative of the Heaviside function u(t−a) as being somehow

infinite ata, which is precisely our intuitive understanding of the delta function.

43.3.1 Example

ComputeL−1
[

s+1
s

]

.

Solution: We write,

L−1

[

s+ 1

s

]

= L−1

[

1 +
1

s

]

= L−1 [1] + L−1

[

1

s

]

= δ(t) + 1.

The resulting object is a generalized function which makes sense only when put under an

integral.

Suggested Readings

Debnath, L. and Bhatta, D. (2007). Integral Transforms and Their Applications. Second

Edition. Chapman and Hall/CRC (Taylor and Francis Group). New York.

Dyke, P.P.G. (2001). An Introduction to Laplace Transformsand Fourier Series. Springer-

Verlag London Ltd.

Schiff, J.L. (1999). The Laplace Transform: Theory and Applications. Springer-Verlag,

New York Inc.
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Lesson 44

Laplace and Inverse Laplace Transform: Miscellaneous Examples

In this lesson we evaluate Laplace and inverse Laplace transforms of some useful func-

tions. Some important special functions include Bessel’s functions and Laguerre poly-

nomial. Additionally, some examples demonstrating potential of Laplace and inverse

Laplace transform for evaluating special integrals will bepresented.

44.1 Bessel’s Functions

The Bessel’s functions of ordern (of first kind) is defined as

Jn(t) =

∞
∑

r=0

(−1)r

r!(n+ r)!

(

t

2

)n+2r

.

This Bessel’s function is a solution of the Bessel’s equation of ordern

yn +
1

t
y′ +

(

1−
n2

t2

)

y = 0

The Bessel’s functions of order0 and1 are given as

J0(t) = 1−
t2

22
+

t4

2242
−

t6

224262
+ . . .

and

J1(t) =
t

2
−

t3

224
+

t5

22426
+ . . .

Note thatJ ′

0(t) = −J1(t).

44.1.1 Example

Find the Laplace transform of J0(t) and J1(t).

Solution: Taking Laplace transform of theJ0(t) we have

L[J0(t)] = L

[

1−
t2

22
+

t4

2242
−

t6

224262
+ . . .

]
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Using linearity of the Laplace transform we get

L[J0(t)] =
1

s
−

1

22
2!

s3
+

1

2242
4!

s5
−

1

224262
6!

s7
+ . . .

This can be rewritten as

L[J0(t)] =
1

s

[

1−
1

2

1

s2
+

1

2

3

4

1

s4
−

1

2

3

4

5

6

1

s6
+ . . .

]

With Binomial expansion we can write

L[J0(t)] =
1

s

[

1 +
1

s2

]

−1/2

=
1

√
1 + s2

Further note thatL[J1(t)] = −L[J ′

0(t)] and therefore using the derivative theorem we find

L[J1(t)] = −sL[J0(t)] + J0(0)] = 1− sL[J0(t)], sinceJ0(0) = 1

Hence, we obtain

L[J1(t)] = 1−
s

√
1 + s2

44.2 Laguerre Polynomials

Laguerre polynomials are defined as

Ln(t) =
et

n!

dn

dtn

(

e−ttn
)

, n = 0, 1, 2, . . .

The Laguerre polynomials are solutions of Laguerre’s differential equation

x
d2y

dx2
+ (1− x)

dy

dx
+ ny = 0, n = 0, 1, 2, . . .

44.2.1 Example

Show that L[Ln(t)] =
(s− 1)n

sn+1

Solution: By definition of the Laplace transform we have

L[Ln(t)] =

∫

∞

0
e−st e

t

n!

dn

dtn

(

e−ttn
)

dt

=
1

n!

∫

∞

0
e−(s−1)t d

n

dtn

(

e−ttn
)

dt
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Integrating by parts, we find

L[Ln(t)] =
1

n!

[

e−(s−1)t d
n−1

dtn−1

(

e−ttn
)

∣

∣

∣

∞

0
+ (s− 1)

∫

∞

0
e−(s−1)t d

n−1

dtn−1

(

e−ttn
)

dt
]

Noting that each term ind
n−1

dtn−1 contains some integral power oft so that it vanishes as

t → 0 ande−(s−1)t vanishes fort → ∞ provideds > 1. Thus, we have

L[Ln(t)] =
s− 1

n!

[
∫

∞

0
e−(s−1)t d

n−1

dtn−1

(

e−ttn
)

dt
]

Repeated use of integration by parts leads to

L[Ln(t)] =
(s− 1)n

n!

[
∫

∞

0
e−(s−1)te−ttn dt

]

=
(s− 1)n

n!
L[tn]

Hence, we get

L[Ln(t)] =
(s− 1)n

n!

n!

sn+1
=

(s− 1)n

sn+1

44.3 Miscellaneous Example Problems

44.3.1 Problem 1

Using the convolution theorem prove that

B(m,n) =

∫ 1

0
um−1(1− u)n−1du =

Γ(m)Γ(n)

Γ(m+ n)
, [m,n > 0].

Solution: Let f(t) = tm−1, g(t) = tn−1, then

(f ∗ g)(t) =
∫ t

0
τm−1(t− τ)n−1dτ,

Substitutingτ = ut so that dτ = tdu we obtain

(f ∗ g)(t) =
∫ 1

0
tm−1um−1tn−1(1− u)n−1tdu

We simplify the above expression to get

(f ∗ g)(t) = tm+n−1

∫ 1

0
um−1(1− u)n−1du = tm+n−1B(m,n)
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Taking Laplace transform and using convolution property, we find

L[tm+n−1B(m,n)] = L[f(t)] ∗ L[g(t)] = L[tm−1] ∗ L[tn−1] =
Γ(m)Γ(n)

sm+n

Taking inverse Laplace transform,

tm+n−1B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
tm+n−1

Hence, we get the desired result as

B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)

44.3.2 Problem 2

Show that
∫

∞

0

sin t

t
dt =

π

2
.

Solution: We know

L[sin t] =
1

s2 + 1

Therefore, we get

L

[

sin t

t

]

=

∫

∞

s

1

s2 + 1
ds =

π

2
− tan−1 s.

Taking limit ass → 0 (see remarks below for details) we find
∫

∞

0

sin t

t
dt =

π

2
− tan−1(0) =

π

2
.

Remark 1: Suppose that f is piecewise continuous on [0,∞) and L[f(t)] = F (s) exists

for all s > 0, and
∫

∞

0 f(t) dt converges. Then lims→0+ F (s) = lims→0+

∫

∞

0 e−stf(t) dt =
∫

∞

0 f(t) dt.

Remark 2: If f is a piecewise continuous function ans
∫

∞

0 e−stf(t) dt = F (s) con-

verges uniformly for all s ∈ E, then F (s) is a continuous function on E, that is, for

s → s0 ∈ E,

lim
s→s0

∫

∞

0
e−stf(t) dt = F (s0) =

∫

∞

0
lim
s→s0

e−stf(t) dt.
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Remark 3: Recall that the integral
∫

∞

0 e−stf(t) dt is said to converge uniformly for s

in some domain Ω if for any ǫ > 0 there exists some number τ0 such that if τ ≥ τ0 then
∣

∣

∣

∣

∫

∞

τ
e−stf(t) dt

∣

∣

∣

∣

< ǫ

for all s in Ω.

44.3.3 Problem 3

Using Laplace transform, evaluate the following integral
∫

∞

−∞

x sin xt

x2 + a2
dx

Solution: Let

f(t) =

∫

∞

0

x sin xt

x2 + a2
dx

Taking Laplace transform, we get

F (s) =

∫

∞

0

x

x2 + a2
x

x2 + s2
dx

Using the method of partial fractions we obtain

F (s) =

∫

∞

0

1

x2 + s2
dx−

a2

s2 − a2

∫

∞

0

(

1

x2 + a2
−

1

x2 + s2

)

dx

Evaluating the above integrals we have

F (s) =
1

s
tan−1

(x

s

)
∣

∣

∣

∞

0
−

a2

s2 − a2

[

1

a
tan−1

(x

a

)

−
1

s
tan−1

(x

s

)

]

∞

0

On simplification we obtain

F (s) =
1

2

π

s+ a

Taking inverse Laplace transform we find

f(t) =
1

2
πe−at

Hence the value of the given integral
∫

∞

−∞

x sin xt

x2 + a2
dx = 2

∫

∞

0

x sin xt

x2 + a2
dx = πe−at.
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Module 2: Laplace Transform

Lesson 45

Application of Laplace Transform

In previous lessons we have evaluated Laplace transforms and inverse Laplace transform

of various functions that will be used in this and following lessons to solve ordinary

differential equations. In this lesson we mainly solve initial value problems.

45.1 Solving Differential/Integral Equations

We perform the following steps to obtain the solution of a differential equation.

(i) Take the Laplace transform on both sides of the given differential/integral equations.

(ii) Obtain the equationL[y] = F (s) from the transformed equation.

(iii) Apply the inverse transform to get the solution asy = L−1[F (s)].

In the process we assume that the solution is continuous and is of exponential order so

that Laplace transform exists. For linear differential equations with constant coefficients

one can easily prove that under certain assumption that the solution is continuous and is

of exponential order. But for the ordinary differential equations with variable coefficients

we should be more careful. The whole procedure of solving differential equations will be

clear with the following examples.

45.2 Example Problems

45.2.1 Problem 1

Solve the following initial value problem

d2y

dt2
+ y = 1, y(0) = y

′

(0) = 0.

Solution: Take the Laplace transform on both sides, we get

L[y
′′

] + L[y] = L[1]
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Using derivative theorems we find

s2L[y]− sy(0)y
′

(0) + L[y] = L[1]

We plug in the initial conditions now to obtain

L[y]
(

1 + s2
)

=
1

s
=

1

s (1 + s2)

Using partial fractions we obtain

L[y] =
1

s
−

s

1 + s2

Taking inverse Laplace transform we get

y(t) = L−1

[

1

s

]

− L−1

[

s

1 + s2

]

= 1− cos t

45.2.2 Problem 2

Solve the initial value problem

x′′(t) + x(t) = cos(2t), x(0) = 0, x′(0) = 1.

Solution: We will take the Laplace transform on both sides. ByX(s) we will, as usual,

denote the Laplace transform ofx(t).

L[x′′(t) + x(t)] = L[cos(2t)],

s2X(s)− sx(0)− x′(0) +X(s) =
s

s2 + 4
.

Plugging the initial conditions, we obtain

s2X(s)− 1 +X(s) =
s

s2 + 4

We now solve forX(s) as

X(s) =
s

(s2 + 1)(s2 + 4)
+

1

s2 + 1

We use partial fractions to write

X(s) =
1

3

s

s2 + 1
−

1

3

s

s2 + 4
+

1

s2 + 1

Now take the inverse Laplace transform to obtain

x(t) =
1

3
cos(t)−

1

3
cos(2t) + sin(t).
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45.2.3 Problem 3

Solve the following initial value problem

d2y

dt2
− 6

dy

dt
+ 9y = t2e3t, y(0) = 2, y

′

(0) = 6.

Solution: Taking the Laplace transform on both sides, we get

s2Y (s)− sy(0)− y
′

(0)− 6 [sY (s)− y(0)] + 9Y (s) =
2

(s− 3)3

Using initial values we obtain

s2Y (s)2s− 6− 6 [sY (s)− 2] + 9Y (s) =
2

(s− 3)3

We solve forY (s) to get

Y (s) =
2

(s− 3)5
+

2(s− 3)

(s− 3)2

Taking inverse Laplace transform, we find

y(t) =
2

4!
t4et3t + 2e3t =

1

12
t4et3t + 2e3t.

45.2.4 Problem 4

Solve

y′′ + y = CH(t− a), y(0) = 0, y
′

(0) = 1.

Solution: Taking Laplace transform on both sides, we get

s2Y (s)− sy(0)− y
′

(0) + Y (s) = C

∫

∞

a

e−st dt

We substitute the given initial values to obtain

(s2 + 1)Y (s) = 1 + C
−as

s

Solve forY (s) as

Y (s) =
1

s2 + 1
+ C

−as

s(s2 + 1)
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Method of partial fractions leads to

y(t) = sin t + CL−1

[(

1

s
−

s

s2 + 1

)

e−as

]

By inverse Laplace transform we obtain

y(t) = sin t + CH(t− a)[1− cos(t− a)].

45.2.5 Problem 5

Solve the following initial value problem

x′′(t) + x(t) = H(t− 1)−H(t− 5), x(0) = 0, x′(0) = 0,

Solution: We transform the equation and we plug in the initial conditions as before to

obtain

s2X(s) +X(s) =
e−s

s
−

e−5s

s
.

We solve forX(s) to obtain

X(s) =
e−s

s(s2 + 1)
−

e−5s

s(s2 + 1)
.

We can easily show that

L−1

[

1

s(s2 + 1)

]

= 1− cos t.

In other wordsL[1 − cos t] =
1

s(s2 + 1)
. So using the shifting theorem we find

L−1

[

e−s

s(s2 + 1)

]

= L−1
[

e−sL[1 − cos t]
]

=
[

1− cos(t− 1)
]

H(t− 1).

Similarly, we have

L−1

[

e−5s

s(s2 + 1)

]

= L−1
[

e−5sL[1 − cos t]
]

=
[

1− cos(t− 5)
]

H(t− 5).

Hence, the solution is

x(t) =
[

1− cos(t− 1)
]

H(t− 1)−
[

1− cos(t− 5)
]

H(t− 5).
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45.2.6 Problem 6

Solve the initial value problem

x′′ + ω2
0x = δ(t), x(0) = 0, x′(0) = 0.

Solution: We first apply the Laplace transform to the equation

s2X(s) + ω2
0X(s) = 1

Solving forX(s) we find

X(s) =
1

s2 + ω2
0

Taking the inverse Laplace transform we obtain

x(t) =
sin(ω0t)

ω0
.

45.2.7 Problem 7

Solve the initial value problem

y′′ + 2y′ + 2y = δ(t− 3)H(t− 3), x(0) = 0, x′(0) = 0.

Solution: Recall the second shifting theorem

L [f(t− a)H(t− a)] = e−asF (s)

We now apply the Laplace transform to the differential equation to get

s2Y (s)− sy(0)− y
′

(0) + 2 [sY (s)− y(0)] + 2Y (s) = e−3s

Plugging the initial values we find
[

s2 + 2s+ 2
]

Y (s) = e−3s

Solving forY (s) we get

Y (s) =
1

[(s+ 1)2 + 1]
e−3s

Taking inverse Laplace transform with the use of first and second shifting properties we

obtain

y(t) = L−1

[

1

[(s+ 1)2 + 1]
e−3s

]

= H(t− 3)e−(t−3) sin(t− 3).
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Module 2: Laplace Transform

Lesson 46

Application of Laplace Transform (Cont.)

In this lesson we continue the application of Laplace transform for solving initial and

boundary value problems. In this lesson we will also look fordifferential equations with

variable coefficients and some boundary value problems.

46.1 Example Problems

46.1.1 Problem 1

Find the solution to

x′′ + ω2
0x = f(t), x(0) = 0, x′(0) = 0,

for an arbitrary function f(t).

Solution: We first apply the Laplace transform to the equation. Denoting the transform

of x(t) by X(s) and the transform off(t) by F (s) as usual, we have

s2X(s) + ω2
0X(s) = F (s),

or in other words

X(s) = F (s)
1

s2 + ω2
0

.

We know

L−1

[

1

s2 + ω2
0

]

=
sin(ω0t)

ω0

.

Therefore, using the convolution theorem, we find

x(t) =

∫

t

0

f(τ)
sin

(

ω0(t− τ)
)

ω0

dτ,

or if we reverse the order

x(t) =

∫

t

0

sin(ω0t)

ω0

f(t− τ) dτ.
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46.1.2 Problem 2

Find the general solution of

y′′ + y = e−t.

Solution: Taking Laplace transform on both sides

s2Y (s)− sy(0)− y′(0) + Y (s) =
1

s+ 1

Denotingy(0) by y0 andy′(0) by y1 we find

(s2 + 1)Y (s)− sy0 − y1 =
1

s+ 1

Now we solve forY (s) to obtain

Y (s) =
1

(s+ 1)(s2 + 1)
+

sy0

s2 + 1
+

y1

s2 + 1

Method of partial fractions leads to

Y (s) =
1

2

[

1

s+ 1
− s− 1

s2 + 1

]

+
sy0

s2 + 1
+

y1

s2 + 1

Taking the inverse transform we get

y(t) =
1

2
e−t − 1

2
cos t+

1

2
sin t+ y0 cos t+ y1 sin t

This can be rewritten as

y(t) =
1

2
e−t +

(

y0 −
1

2

)

cos t) +

(

y1 +
1

2

)

sin t

Note thaty0 andy1 are arbitrary, so the general solution is given by

y(t) =
1

2
e−t + C0 cos t+ C1 sin t.

46.1.3 Problem 3

Solve the following boundary value problem

y′′ + y = cos t, y(0) = 1, y
(π

2

)

= 1.
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Solution: Taking Laplace transform on both sides we get,

s2Y (s)− sy(0)− y
′

(0) + Y (s) =
s

s2 + 1

We solve forY (s) to get

Y (s) =
s

(s2 + 1)2
+

s

s2 + 1
+

y
′

(0)

s2 + 1

Taking inverse Laplace transform on both sides we get,

y(t) =
1

2
t sin t+ cos t+ y

′

(0) sin t.

Giveny(π
2
) = 1, therefore

1 =
1

2

π

2
+ 0 + y

′

(0) ⇒ y
′

(0) =
(

1− π

4

)

.

Hence, we obtain the solution as

y(t) =
1

2
t sin t + cos t+

(

1− π

4

)

sin t.

46.1.4 Problem 4

Solve the following fourth order initial value problem

d4y

dx4
= −δ(x− 1),

with the initial conditions

y(0) = 0, y′′(0) = 0, y(2) = 0, y′′(2) = 0.

Solution: We apply the transform and get

s4Y (s)− s3y(0)− s2y′(0)− sy′′(0)− y′′′(0) = −e−s.

We notice thaty(0) = 0 andy′′(0) = 0. Let us callC1 = y′(0) andC2 = y′′′(0). We solve

for Y (s),

Y (s) =
−e−s

s4
+

C1

s2
+

C2

s4
.
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We take the inverse Laplace transform utilizing the second shifting property to take the

inverse of the first term.

y(x) =
−(x− 1)3

6
u(x− 1) + C1x+

C2

6
x3.

We still need to apply two of the endpoint conditions. As the conditions are atx = 2 we

can simply replaceu(x− 1) = 1 when taking the derivatives. Therefore,

0 = y(2) =
−(2− 1)3

6
+ C1(2) +

C2

6
23 =

−1

6
+ 2C1 +

4

3
C2,

and

0 = y′′(2) =
−3 · 2 · (2− 1)

6
+

C2

6
3 · 2 · 2 = −1 + 2C2.

HenceC2 =
1

2
and solving forC1 using the first equation we obtainC1 =

−1

4
. Our solution

for the beam deflection is

y(x) =
−(x− 1)3

6
u(x− 1)− x

4
+

x3

12
.

We now demonstrate the potential of Laplace transform for solving ordinary differential

equations with variable coefficients.

46.1.5 Problem 5

Solve the initial value problem

y
′′

+ ty
′ − 2y = 4; y(0) = −1, y

′

(0) = 0.

Solution: Taking Laplace transform on both sides we get,

s2Y (s)− sy(0)− y
′

(0) +

(

− d

ds
L[y

′

]

)

− 2Y (s) = 4L[1]

Using the given initial values and applying derivative theorem once again, we get

s2Y (s) + s− d

ds
(sY (s)− y(0))− 2Y (s) =

4

s

On simplification we find the following differential equation

dY

ds
+

(

3

s
− s

)

Y (s) = − 4

s2
+ 1
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Integrating factor of the above differential equation is given as

e
∫
( 3
s
−s)ds = s3e−

s
2

2

Hence, the solution of the differential equation can be written as

Y (s)s3e−
s
2

2 =

∫
(

− 4

s2
− s

)

s3e−
s
2

2 ds + c

On integration we find

Y (s)s3e−
s
2

2 = 4e−
s
2

2 −
(

S2e−
s
2

2

)

+

∫

2se−
s
2

2 ds+ c

We can simplify the above expression to get

Y (s) =
2

s3
− 1

s
+
( c

s3

)

e
s
2

2

Since,Y (s) → 0 ass → ∞, c must be zero. Puttingc = 0 and taking inverse Laplace

transform we get the desired solution as

y(t) = t2 − 1

46.1.6 Problem 6

Solve the initial value problem

ty
′′

+ y
′

+ ty = 0; y(0) = 1, y
′

(0) = 0

Solution: Taking Laplace transform on both sides we get,

− d

ds
L[y

′′

] + L[y
′

] +

(

− d

ds
L[y]

)

= 0

Application of derivative theorem leads to

− d

ds

{

s2Y (s)− sy(0)y
′

(0)
}

+ {sY (s)− y(0)} − d

ds
Y (s) = 0

Plugging initial values, we find

(

s2 + 1
)

Y
′

(s) + sY (s) = 0
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On integration we get

Y (s) =
c√

1 + s2

Taking inverse Laplace transform we find

y(t) = cJ0(t)

Noting y(0) = 1, J0(0) = 1 , we findc = 1. Thus, the required solution is

y(t) = J0(t).
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Lesson 47

Application of Laplace Transform (Cont.)

In this lesson we discuss application of Laplace transform for solving integral equations,

integro-differential equations and simultaneous differential equations.

47.1 Integral Equation

An equation of the form

f(t) = g(t) +

∫

t

0

K(t, u)f(u) du,

or

g(t) =

∫

t

0

K(t, u)f(u) du

are known as the integral equations, wheref(t) is the unknown function. When the kernel

K(t, u) is of the particular formK(t, u) = K(t− u) then the equations can be solved using

Laplace transforms. We apply the Laplace transform to the first equation to obtain

F (s) = G(s) +K(s)F (s),

whereF (s), G(s), andK(s) are the Laplace transforms off(t), g(t), andK(t) respectively.

Solving forF (s), we find

F (s) =
G(s)

1−K(s)
.

To find f(t) we now need to find the inverse Laplace transform ofF (s). Similar steps can

be followed to solve the integral equation of second type mentioned above.

47.2 Example Problems

47.2.1 Problem 1

Solve the following integral equation

f(t) = e−t +

∫

t

0

sin(t− u)f(u) du.
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Solution: Applying Laplace transform on both sides and using convolution theorem we

get,

L[f(t)] =
1

s+ 1
+ L[sin t]L[f(t)]

On simplifications, we obtain

L[f(t)]

[

1−
1

s2 + 1

]

=
1

s+ 1

This further implies

L[f(t)] =
s2 + 1

s2(s+ 1)

Partial fractions leads to

L[f(t)] =
2

s+ 1
+

1

s2
−

1

s

Taking inverse Laplace transform we obtain the desired solution as

f(t) = 2e−t + t− 1

47.2.2 Problem 2

Solve the differential equation

x(t) = e−t +

∫

t

0

sinh(t− τ)x(τ) dτ.

Solution: We apply Laplace transform to obtain

X(s) =
1

s+ 1
+

1

s2 − 1
X(s),

or

X(s) =
1

s+1

1− 1

s2−1

=
s− 1

s2 − 2
=

s

s2 − 2
−

1

s2 − 2
.

It is not difficult to take inverse Laplace transform to find

x(t) = cosh(
√

2 t)−
1
√

2
sinh(

√

2 t).
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47.2.3 Problem 3

Solve the following integral equation for x(t)

t2 =

∫

t

0

eτx(τ) dτ,

Solution: We apply the Laplace transform and the shifting property to get

2

s3
=

1

s
L[etx(t)] =

1

s
X(s− 1),

whereX(s) = L[x(t)]. Thus, we have

X(s− 1) =
2

s2
or X(s) =

2

(s+ 1)2
.

We use the shifting property again to obtain

x(t) = 2e−tt.

47.3 Integro-Differential Equations

In addition to the integral we have a differential term in theintegro differential equa-

tions. The idea of solving ordinary differential equationsand integral equations are now

combined. We demonstrate the procedure with the help of the following example.

47.3.1 Example

Solve
dy

dt
+ 4y + 13

∫

t

0

y(u) du = 3e−2t sin 3t, y(0) = 3.

Solution: Taking Laplace transform and using its appropriate properties we obtain,

sY (s)− y(0) + 4Y (s) + 13
Y (s)

s
= 3

3

(s+ 2)2 + 9
.

Collecting terms ofY (s) we get

s2 + 4s+ 13

s
Y (s) =

9

(s+ 2)2 + 9
+ 3
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On simplification we have

Y (s) =
9s

[(s+ 2)2 + 9]
2
+

3s

(s+ 2)2 + 9

Taking inverse Laplace transform and using shifting theorem we get

y(t) = e−2tL−1

[

9(s− 2)

(s2 + 9)
2
+

3(s− 2)

s2 + 9

]

.

We now break the functions into the known forms as

y(t) =e−2tL−1

[

9s

(s2 + 9)
2
−

18

(s2 + 9)
2
+

1

(s2 + 9)2
+

3s

s2 + 9
−

7

s2 + 9

]

=e−2tL−1

[

9s

(s2 + 9)
2
+

s2 − 9

(s2 + 9)
2
+

3s

s2 + 9
−

7

s2 + 9

]

Using the the following basic inverse transforms

L−1

[

a

s2 + a2

]

= sin at, L−1

[

s

s2 + a2

]

= cos at

L−1

[

2as

(s2 + a2)
2

]

= t sin at, L−1

[

s2 − a2

(s2 + a2)
2

]

= t cos at.

We find the desired solution as

y(t) = e−2t

[

3

2
t sin 3t + t cos 3t+ 3 cos 3t−

7

3
sin 3t

]

47.4 Simultaneous Differential Equations

At the end we show with the help of an example the application of Laplace transform for

solving simultaneous differential equations.

47.4.1 Example

Solve
dx

dt
= 2x− 3y,

dy

dt
= y − 2x

subject to the initial conditions

x(0) = 8, y(0) = 3.
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Solution: Taking Laplace transform on both sides we get

sX(s)− x(0) = 2X(s)− 3Y (s)

and

sY (s)− y(0) = Y (s)− 2X(s)

Collecting terms ofX(s) andY (s) we have the following equations

(s− 2)X(s) + 3Y (s) =8 (47.1)

2X(s) + (s− 1)Y (s) =3 (47.2)

EliminatingY (s) we obtain

[(s− 1)(s− 2)− 6]X(s) = 8(s− 1)− 9

On simplifications we receive

X(s) =
8s− 17

(s− 4)(s+ 1)

Partial fractions lead to

X(s) =
5

s+ 1
+

3

s− 4
,

Taking inverse Laplace transform both sides we get

x(t) = 5e−t + 3e4t

Now we solve the above equations (47.1) and for (47.2)Y (s)

[6− (s− 1)(s− 2)]Y (s) = 16− 3(s− 2)

On simplifications we get

Y (s) =
3s− 22

s2 − 3s− 4
=

3s− 22

(s− 4)(s+ 1)

Using the method of partial fractions we obtain

Y (s) =
5

s+ 1
−

2

s− 4

Taking inverse transform we get

y(t) = 5e−t
− 2e4t.
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Module 2: Laplace Transform

Lesson 48

Application of Laplace Transform (Cont.)

In this last lesson of this module we demonstrate the potential of Laplace transform for

solving partial differential equations. If one of the independent variables in partial differ-

ential equations ranges from0 to ∞ then Laplace transform may be used to solve partial

differential equations.

48.1 Solving Partial Differential Equations

Working steps are more or less similar to what we had for solving ordinary differential

equations. We take the Laplace transform with respect to thevariable that ranges from0 to

∞. This will convert the partial differential equation into an ordinary differential equation.

Then, the transformed ordinary differential equation mustbe solved considering the given

conditions. At the end we take the inverse Laplace transformwhich results the required

solution.

Denoting the Laplace transform of unknown variableu(x, t) with respect tot by U(x, s)

and using the definition of Laplace transform we have

U(x, s) = L[u(x, t)] =

∫ ∞

0

e−stu(x, t)dt

Then, for the first order derivatives, we have

(i) L

[

∂u

∂x

]

=

∫ ∞

0

e−st
∂u

∂x
dt =

d

dx

∫ ∞

0

e−stu(x, t)dt =
dU

dx

(ii) L

[

∂u

∂t

]

=

∫ ∞

0

e−st
∂u

∂t
dt = e−stu

∣

∣

∣

∞

0

−

∫ ∞

0

u(−s)e−st dt

= −u(x, 0) + s

∫ ∞

0

ue−st dt

⇒ L

[

∂u

∂t

]

= −u(x, 0) + sU(x, s)

WhatsApp: +91 7900900676 www.AgriMoon.Com307



Application of Laplace Transform (Cont.)

Similarly for the second order derivatives we find

(iii) L

[

∂2u

∂x2

]

=
d2U

dx2

(iv) L

[

∂2u

∂t2

]

= s2U(x, s)− su(x, 0)−
∂u

∂t
(x, 0)

(v) L

[

∂2u

∂x∂t

]

= s
d

dx
U(x, s)−

d

dx
u(x, 0)

Remark: In order to derive the above results, besides the assumptions of piecewise

continuity and exponential order of u(x, t) with respect to t, we have also used the fol-

lowing assumptions: (i) The differentiation under integral sign is valid and (ii) The limit

of the Laplace transform is the Laplace transform of the limit, i.e., limx→x0
L [u(x, t)] =

L [limx→x0
u(x, t)].

48.2 Example Problems

48.2.1 Problem 1

Solve the following initial boundary value problem

∂u

∂x
=

∂u

∂t
, u(x, 0) = x, u(0, t) = t

Solution: Taking Laplace transform

d

dx
U(x, s) = sU(x, s)− u(x, 0)

Using the initial values we get

d

dx
U(x, s)− sU(x, s) = −x

The integrating factor is

I.F. = e−
∫
sdx = e−sx
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Hence, the solution can be written as

U(x, s)e−sx = −

∫

xe−sx dx+ c

On integration by parts we find

U(x, s)e−sx = −x
e−sx

−s
−

∫

e−sx

s
dx+ c

Simplify, the above expression we have

U(x, s) =
x

s
+

1

s
+ cesx

Using given boundary condition we find

1

s2
=

1

s2
+ cesx ⇒ c = 0

With this we obtain

U(x, s) =
x

s
+

1

s

Taking inverse Laplace transform, we find the desired solution as

u(x, t) = x+ t

48.2.2 Problem 2

Solve the following partial differential equation

∂u

∂t
+ x

∂u

∂x
= x, x > 0, t > 0

with the following initial and boundary condition

u(x, 0) = 0, x > 0 and u(0, t) = 0, t > 0

Solution: Taking Laplace transform with respect tot we have

sU(x, s)− u(x, 0) + x
d

dx
U(x, s) =

x

s
, s > 0

Using the given initial value we find

d

dx
U(x, s) +

s

x
U(x, s) =

1

s
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Its integrating factor isxs and therefore the solution can be written as

U(x, s)xs =

∫

1

s
xs dx+ c ⇒ U(x, s) =

1

s(s+ 1)
x+

c

xs

Boundary condition provides

u(0, t) = 0 ⇒ U(0, s) = 0, ⇒ c = 0

Thus we have

U(x, s) =
x

s(s+ 1)
= x

[

1

s
−

1

s+ 1

]

Taking inverse Laplace transform we find the desired solution as

u(x, t) = x
[

1− e−t
]

48.2.3 Problem 3

Solve the following heat equation

∂u

∂t
=

∂2u

∂t2
, x > 0, t > 0

with the initial and boundary conditions

u(x, 0) = 1, u(0, t) = 0, lim
x→∞

= 1

Solution: Taking Laplace transform we find

sU(x, s)− u(x, 0) =
d2

dx2
U(x, s)

Using the given initial condition we have

d2

dx2
U(x, s)− sU(x, s) = −1

Its solution is given as

U(x, s) = c1e
√
sx + c2e

−
√
sx +

1

s

The given boundary conditions give

lim
x→∞

U(x, s) =
1

s
⇒ c1 = 0
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and

U(0, s) = 0 ⇒ c1 + c2 +
1

s
= 0 ⇒ c2 = −

1

s

Hence, we have

U(x, s) = −
1

s
e−

√
sx +

1

s

Taking inverse Laplace transform we find the desired solution as

u(x, t) = 1− L−1

[

1

s
e−

√
sx

]

= 1−

[

1− erf
(

x

2
√
t

)]

= erf
(

x

2
√
t

)

48.2.4 Problem 4

Solve the one dimensional wave equation

∂2y

∂t2
= a2

∂2y

∂t2
, x > 0, t > 0

with the initial conditions

y(x, 0) = 1, yt(x, 0) = 0

and boundary conditions

y(0, t) = sinωt, lim
x→∞

y(x, t) = 0

Solution: Taking Laplace transform we get

s2Y (x, s)− sy(x, 0)− yt(x, 0)− a2
d2

dx2
Y (x, s) = 0

With the given initial condition we have the resulting differential equation

d2Y

dx2
−

s2

a2
= 0

Its general solution is given as

Y (x, s) = c1e
s

a
x + c2e

− s

a
x

The given boundary conditions provides

lim
x→∞

Y (x, s) = 0 ⇒ c1 = 0,
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and

Y (0, s) =
ω

s2 + ω2
⇒ c2 =

ω

s2 + ω2

Thus we have

Y (x, s) =
ω

s2 + ω2
e−

s

a
x

Taking inverse Laplace transform we obtain

y(x, t) = sin
[

ω
(

t−
x

a

)]

H
(

t−
x

a

)

.
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Engineering Mathematics III 

Module 2: Laplace Transform 

 

 

QUIZ 

1. Laplace transform of the rectangular wave function 0,  0 ,
( , )

1,  
t t b

W t a b
a t b
 

 
 

 is 

 

(a)  
1

as bse e
s

 (b)  
1  as bse e
s

 

(c)  
1  bs ase e
s

 (d)  
1

bs ase e
s

 

 

2. Laplace transform of the function 2sin pt  is 

 

(a) 
 

2

2 2

4

4

p

s s p
 (b) 

 

2

2 2

2

2

p

s s p
 

(c) 
 

2

2 2

2

4

p

s s p
 (d) 

 2 2

2

4

p

s s p
 

 

3. Laplace transform of the function sin cosat bt  is 

 

(a) 
 

     

2 2 2 2

2 22 2

 

   

a s a b

s a b s a b
 (b) 

 
     

2 2 2

2 22 2

 

   

a s a b

s a b s a b
 

(c) 
 

     

2 2 2

2 2

 

   

a s a b

s a b s a b
 (d) 

 
     

2
2 2 2

2 22 2

a s a b

s a b s a b

 

   
 

 

4. Which of the following function is not piecewise continuous? 

 

(a) 
1

( ) , 2
2

f t t
t

 


 (b) 
2

2 ,      1

1 ,  1

( )
t t

t t

f t


 


 


 

(c) 

1 ,  0

0,         0

( )

te t
t

t

f t

 




 


 (d) 

1sin ,  0

0,        0

( ) t
t t

t

f t
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5. Laplace transform of 2 cost at  is 

 

(a)    
2 3

2 2 2 2 22 8
 

  s s a a s s a  (b)    
2 2

2 2 2 2 22 8
 

  s s a a s s a  

(c)    
2 3

2 2 2 22 8
 

  s s a a s s a  (d)    
2 3

2 2 2 2 2 22 8
 

  s s a a s s a  

 

 

6. Laplace transform of ( ) sin( ) ,   0f t t t   is 

 

(a) 
  

2

2 2

1

1 1







 

s

s

e

e s




 (b) 

 

  2 2

1

1 1







 

s

s

e

e s




 

(c) 
  2

1

1 1







 

s

s

e

e s




 (d) 

  2

1

1 1







 

s

s

e

e s




 

 

7. Laplace transform of ( ) ( ),   0  f t t H t a t  is 

(a)  2
1

ase
as

s
 (b) 

 

 2
1

ase
as

s
 

(c)  2
1




ase

as
s

 (d)  2
1




ase

as
s

 

 

8. Which of the following functions does not possess the Laplace transform?  

 

(a)  erfcte t  (b)  
2

sin te  

(c) 
2te  (d)  

2 2

sint tte e  

 

9. The value of 1

2

2 3

4

s
L

s

  
  

 is 

 

(a) 
3

cos2 sin 2
2

t t  (b) 
3

2cos2 sin
2

t t  

(c) 
3

2cos2 sin 2
4

t t  (d) 
3

2cos2 sin 2
2

t t  
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10. The inverse Laplace transform of 
2

2 5

( 6)( 11)

s

s s



 
 is 

 

(a) 

  

61 67
28 28cos 11 sin 11 

47 11

 
   
 

te t t  

 

(b) 

 

 
61 67

28 28cos 11 sin 11 
47 11

 
   
 

te t t  

 

(c) 

 

 
61 67

28 28cos 11 sin 11 
47 11

 
  

 

te t t  

 

(d) 

 

 
61 67

28 28cos 11 sin 11 
47 11

 
  

 

te t t  

 
 

11. The value of 1

2

3 5

4 4 1

  
   

s
L

s s
 is 

 

(a)  2
1

6 7 ,
8


t

e t  (b)  2
1

6 7 ,
8




t

e t  

    

(c)  2
1

6 7 ,
8


t

e t  (d)  2
1

6 7 ,
8




t

e t  

 

12. The value of 
2

( )
2

se
F s

s






 is 

 

(a)   1
( )cosh 2

2
 H t t   (b)   1

( )sin 2
2

 H t t   

    

(c)   1
( )cos 2

2
 H t t   (d)   1

( )sinh 2
2

H t t    
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13. The solution of the initial value problem  
2

2
1 ( 1) ;   (0) 1, '(0) 1      

d y dy
H t y y

dt dt
 is 

 

(a)   11 2 1 2t ty t e H t t e          (b)   11 2 1 2        t ty t e H t t e  

    

(c)   11 2 1 2       t ty t e H t t e  (d)   11 2 1 2       t ty t e H t t e  

 

14. The solution of the initial value problem  

2

2

cos ,  0

0,       

( );   (0) '(0) 0; where ( )
 




     



t t

t

d y
y f t y y f t

dt




 

 

(a) 

  

     
1

cos sin
2

      y t t H t t t    

 

(b) 

 

     
1

sin sin
2

y t t H t t t          

 

(c) 

 

      
1

sin sin
2

      y t t H t t t    

 

(d) 

 

      
1

cos sin
2

      y t t H t t t    

 

 

15. The solution of the integral equation 
0

( ) sin 2 ( )cos( )

t

y t t y u t u du    is 

 

(a) ( )  ty t te  (b) 2( )  ty t t e  

    

(c) ( ) ty t te  (d) 2( )  ty t t e  
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16. The solution of the integro-differential equation 
0

( )
3 ( ) 2 ( ) ;   (0) 1

t
dy t

y t y u du t y
dt

     is 

 

(a) 21 5
( ) 2

2 2

  t ty t e e  (b) 21 5
( ) 2

2 2

  t ty t e e  

    

(c) 21 5
( ) 2

2 2
  t ty t e e  (d) 21 5

( ) 2
2 2

t ty t e e     

 

17. The solution of the wave equation  

 

                                        
2 2

2 2
;   0 1,  0

y y
x t

t x

 
   

 
 

 

          with the following initial and boundary conditions 

    ( ,0 ) sin ,   0 1y x x x    ,  ( ,0 ) 0,   0 1ty x x     

    (0, ) 0,   0,y t t               (1, ) 0,   0y t t    

             is 

 

(a) ( , ) sin cosy x t x t   (b) ( , ) sin2 cosy x t x t   

    

(c) ( , ) sin cos2y x t x t   (d) ( , ) sin2 cos2y x t x t   

 

18. The solution of the integral equation 
0

( ) 2 cos( ) ( )  
t

F t t t u F u du  

(a) 2 ( 1) 2  te t t  (b) 2 ( 1) 2  te t t  

    

(c) 2 ( 1) 2  te t t  (d) 2 ( 1) 2   te t t  
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19. The value of the integral 
0

sin





t t

e dt
t

 is 

(a) 
2


 (b) 

4


 

    

(c) 
3


 (d) 

6


 

 

20. The value of the integral 3

0

cos






tt e t dt  is 

(a)  
1

25
 (b) 

2

25
 

    

(c) 
3

25
 (d) 

4

25
 

 

 

Answers:  

1.  b 2.  c 

3.  b 4.  a 

5.  a 6.  c 

7.  d 8.  c 

9.  d 10.  a 

11.  a 12.  d 

13.  a 14.  b 

15.  c 16.  d 

17.  a 18.  c 

19.  b 20.  b 

 

WhatsApp: +91 7900900676 www.AgriMoon.Com318



******☺****** 

This Book Download From e-course of ICAR  

Visit for Other Agriculture books, News, Recruitment, 

Information, and Events at 

www.agrimoon.com 

 

Give Feedback & Suggestion at info@agrimoon.com 

 

Send a Massage for daily Update of Agriculture on WhatsApp 

+91-7900 900 676 

Disclaimer: 

The information on this website does not warrant or assume any legal liability or 

responsibility for the accuracy, completeness or usefulness of the courseware contents. 

The contents are provided free for noncommercial purpose such as teaching, training, 

research, extension and self learning. 

Connect With Us: 

                     

 
 

AgriMoon App 
App that helps the students to gain the Knowledge 
about Agriculture, Books, News, Jobs,  Interviews of 
Toppers & achieved peoples, Events (Seminar, 
Workshop), Company & College Detail and Exam 
notification. 

 

 
 

AgriVarsha App 
App that helps the students to All Agricultural 
Competitive Exams IBPS-AFO, FCI, ICAR-JRF, 
SRF, NET, NSC, State Agricultural exams are 
available here. 

 

http://www.agrimoon.com/
mailto:info@agrimoon.com
mailto:info@agrimoon.com
https://www.facebook.com/AgriMoon/
https://www.instagram.com/agrimoon_com/
https://www.linkedin.com/company/agrimoon-com
https://t.me/AgriMoonCom
https://www.twitter/AgriMoonCom
https://wa.link/kpmjo7
https://www.youtube.com/channel/UCQhqyW-cU7VUSfbPL-sdmDA
https://agrimoon.com/download/
https://agrimoon.com/download/

