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Module 1: Numerical Analysis

Lesson 1

FiniteDifferences

1.1 Introduction

The analytical solution to a problem provides the value of the dependent
variable for any value of the independent variable. Consider, for instance the

simple Spring-mass system governed by the differential equation.

j+A%y=0 (1.1)

whose analytical solution can be readily written as:

y(t) =c;sin At +c, cos At (1.2)

on any interval. Solution (1.2) gives the function value at any point in the
interval.If equation (1.1) is solved numerically, the time interval is first divided
into a pre-determined finite number of non-overlapping equally spaced or
otherwise subintervals and the numerical solution is obtained at the end points

of these subintervals. If the interval considered is (say) [t,,t,]and if the interval

Is divided into N number of non-overlapping subintervals, say of equally spaced
ones, then the numerical solution is obtained at the set of points

{t,t 1, ty oty }, with the difference betweent,,, and t;being constant for

j+1

every j, j =0,1,...,N -1.

Fig.1.1: Equally spaced division of the interval [t,,t, ].
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Similarly, this can be done with unequally spaced subintervals also

The set of points {t,,t,t,

Finite Differences

[

tl tZ t3

Fig.1.2: Unequally spaced division of the interval [t,,t_].

...ty } are called the nodal points. The numerical

solution at non-nodal points can also be obtained either using the interpolation

of the data at the nodal points. This concept is true when one is solving an

ordinary or partial differential equation. Many of the Finite difference operators

are applicable over equally spaced data points.

In the later part of this lesson, we shall define some of the finite differences

operators and their utility and their relationships.

1.2 Difference Operators and their Utility

Let y(t)be the variable depending on the independent variablet, consider the

equally spaced (N +1) data points, such thatt,, —t, = h, hbeing constant.

Table 1.1. Equally spaced data set

L

L

|

j-1

t.

J

t

j+1

Yo

Yi

Y

Ys

Vi

Yi

yj+1

Yn

The difference operator acts on the dependent function. Notation: y, = y(t;)

1.2.1 Shift Operator
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Finite Differences

It is denote by E, when it acts ony,, it shifts the data solution at t; to the

solution att;,, (i.e., the data is moved by one spacing forward) i.e.,

Eyj =Yiu (13)

Similarly, Ely =y (1.4)
J j-1

For any (positive or negative) integern,

E"Y; = Vi (L5)

1.2.2 Forward Difference Operator

It is denoted by A, which is defined as
AY; =Y — Y (1.6)

This is called the first forward difference operator. The second forward

difference operator is A?, its action is defined as:

AZYi =AY, — Ay, (1.7)
= (yi+2 - yi+1) - (Yi+1 - yi)
Or A%y, =Y, =2y, +Y, (1.8)

In a similar way for any positive integern, the n" forward difference operator

is defined as:
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Finite Differences

A"y =A"ry - A"y (1.9)

1.2.3 Backward Difference Operator:

The first backward difference operator is denoted by V, and this is denoted as

VY =Y = Yia (1.10)

The second order backward difference is VZand this is defined as:

szi =Yi—VYia

=Y. -2Y,+Y., (1.11)

The n"order backward difference of , is

Vnyi - Vn_l)/i = vn_lyi—l (1.12)

Observe that

Vnym =Yiu—Yi = VY, (1'13)

This means their difference operators are related to each other.

1.2.4 The Central Difference Operator

It is denoted by ¢ and it is defined as:

5yi:y_ 17 Y (1-14)

i+= i-=
2 2
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Here,

Also,

Observe that,

1.3 Construction of Difference Tables

h h
=yt +-)andy , =y, ——).
Y y(t +2)andy , =yt -2)

Finite Differences

2

5%y, =6y ;=Y ,

= Y= Y) =Y = ¥i)
= Via—2Yi tYiy

0" =8y 1 ="

2

2

2

52yi % Yiu _2yi + Yia

3 Azyi+1

(1.15)

(1.16)

(1.17)

Now, let us construct the forward, backward and central difference tables for the

given data points.

Example 1: Construct the forward difference table for the following set of

equally spaced data given by:

t, t, t, t, t, t,
Yo Y1 Y, Y, Y, Ys
Solution:
b Yo A A® A® A*
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Yi

Y

Ys

Ya

Ys

Finite Differences

Y1 — Yo =AY,
Y, =Y, =Ay, Ay, — Ay, = Azyo

Ys= Y, = Ayz Ayz _Ayl = Azyl Azyl _Azyo :A3yo

Ya—Ys =AY Ay, — Ay, =A%y, A%y, — A%y, =A%y, A’y — A%y, =AY,

Ys = Yo =&Y Ay, — Ay, = A%y, Ay, — A%y, =A%y, Ay, =A%y =Ay, Ay - Aty =A%,

From the forward difference table constructed above it is noted that for a data

with 6 data points, we have the maximum order forward difference is A> and
all differences of order 6 and above are zero. The entries with the same

subscript on y lie on sloping lines downward.

Example 2: Construct the backward difference table for the given data:

t, -1 0 1 2 3

Y, 9.1 8.2 7.3 6.4 5.5

Solution:

We knowV'"y, =V"'y —V"'y .. Giveny,=9.1,y,=82,y,=73,y,=6.4,
Ys =9.5.

Now the difference table is:
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Finite Differences

\% V2 Ve v*
-1 9.1
0 8.2 -0.9=Vy,
1 7.3 -0.9=Vy, 0=V?y,
2 6.4 -0.9=Vy,  0=V?y, 0=V1y,
3 5.5 -0.9=Vy,  0=V?y, 0=Vly, 0=V?y,

It is noted that for the given data, upto4 ™ order backward differences exist. It is
also evident that the second order differences onward the values are zero, the

reason being all the first order differences are same.

Example 3: Compute a table of differences through A*and V° for the function

y(t) =t* —1using the step size h=1andt, =—1.

Solution: For the given function, the data set is constructed as:

t t,=—1 [t =0 t,=1 t,=2

y(t) Yo =0 y,=-1 y,=0 y; =3

For a second degree polynomial t*—1, the third order (forward) difference is

zero, that is the reason; we considered only 4 data points.

Now the forward difference table is:

A A? A®
-1 0
0 -1 -1=Ay,
1 0 1=Ay, 2= A%y,
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Finite Differences

2 3 3=4y, 2=A%y,

Similarly the backward difference table is written as:

\% V?
1 0=y,
0 1=y, -1=Vy,
1 0=y, 1=Vy, 2=V?y,
2 3=y, 3=Vy, 2=V?y,

0=A%,

0=V’y,

The illustration reveals that the difference table is the same for both forward and

backward differences, but the entries are labelled differently.

Example 4: Form the central differences for the data given in the example 1.

Solution:

t y o 5°

tO yO

t Y1 Yi—Yo= 53@
2

t, Y, yz_y1:5y§ 5y, =6y, =6%Y,
2 2 2

t, Y Ys= Y2 =0Ys SYs—6y,=6"Y,
2 2 2

t, Ya Yo=Y¥3=0Y; &8y, 5y, =57y,
2 2 2

5° 5!
5y,

2
5°Ys 5*y,

In the central difference table, the entries with the same script lie on the

horizontal lines.
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Finite Differences

Keywords: Difference Tables, Central Difference Operator, Backward
Difference Operator, Forward Difference Operator, Shift Operator,

Finite Differences.
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Module 1: Numerical Analysis

Lesson 2

Relation between Difference Operators

2.1 Introduction

In the previous lecture, we have noticed from the difference table that these
difference operators are related. In this lecture we establish the relations

between these operators.

Example 1: Show that the shift operator is related to the forward difference
operator as A=E -1 [ 1lbeing the identity operator] and to the backward

difference operatorV asvV =1-E.

Solution:

By definition, the forward difference operator when operating over the function

datay,, Ay, it becomes

AY; = Yiu = Vi
=Ey, -V,
=(E-Dy;
~A=E-1.
Similarly, VY =Y — Yy
=y, —E7Y,
=(1-E7y,

From the above example, one can write that E=A+1 and E*'=1-V.
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Relation between Difference Operators

N

1 _
Example 2: Establish 6=E? —E 2.

Solution: We know oY,i=Y .-V,
i+ -
1 1 1 1
=E?y,—E 2y, =(E*-E ?)y,
1 1
o=E2-E 2.

From these examples, one can establish the relation between A ,Vand ¢ as:

1 1

S=1+V)2—-(1-V)2.

1

Example 3: Verify VE =EV = A = SE?2

Solution:
VEyi i v(ym) —e? 10 Ayi c

And EVy, = E(yi - yi—l)

=Yian—Yi

= Ay,

1
Similarly, SE?Y, =0y , =Y~ Y =AY,
i+

1
Thus we have VE =EV =A=0E?2.
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Relation between Difference Operators

Example 4: Show that 246 =V + A where i is the averaging operator defined

1( 1L 1
as ﬂ:E(EZ-l_E Zj.

Solution:
Zyéyi :2'u|:yi+l yi1:|
2 2
:Zluyié_zluy_é
2
1 1 1 1
:[E2 +E 2]y_ . —[EZ +E ij_ 1
i+ i->
:(yi+1 + yi)_(yi - yi—l)
=Yiu—Yia
Also (V+A)Y =(Yi = Yia) +(Yin = Y1)
= Yl T2
S2u0 =V +A.

2 2 2 2
Exercise 1: Show that A:%+5,/1+%andV:5‘/1+%—%.

In example 3 of previous lesson, we observed that the third order difference for
a second degree polynomial is zero. This is similar to the third derivative of a
second degree polynomial is zero. This gives an intuition that the differential

operator D js connected with the difference operator.

2

Let us denote D by 3—{ D? by ztgl and so on.
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Relation between Difference Operators

Relation between Difference Operators

Consider the function y(t) at a general node t_,. Now y(t,)=y(t+h)
can be expanded in Taylor series about the nodal point t [assuming the

continuity of the higher order derivative of y(t) at t ],

h"d’y

dy)  hdy
.20 dt?

ot + (2.1)

y(t,,) =yt +h) = y(ti ) +h

f;

Using the operators E and D, the above equation (2.1) can be written as

Eyi:{1+hD+ED +§D + o }yi (2.2)
Or Eyi = (ehD)yi
Or E=¢e™ (23)

Also, we know thatE = A +1, using this equation (2.3) we have:

A=e"™ -1=hD + o + e, (2.4)

Thus the forward difference operatorAis connected with the differential
operator D . We can express D explicitly in terms of A .

From equation (2.4), we can write

hD=In(1+A)
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Relation between Difference Operators

2 3

Now, the second order difference A®can be written as:

....... ] (2.5)

22 33 2
AZ:[hD+h 2 +h3[|) +on ) (2.6)
Or AZ:h2D2+h3D3+éh4D4+ .....

1

Exercise 2: Show that D? :—(A2 —A® +EA“ ....... )

h? 12

Exercise 3: Establish

hD
:e2

N

(i) E

2
(i) V=hD-—D?*+—D%+.....
2! 3!

(iii) D? :i2 V2eviailyey
h 12

44 616
(iv)52:h2D2+h D +h D",
12 360
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Relation between Difference Operators

Thus the first and second order derivatives of a functiony(t) at t are written

using A as:

dy, 1 A%y, Ay,
—L =Dy, =—(Ay, ——+—"— ... 2.7
d?y, 2 1,2 s, 11

L=Dy. =—(A"Y, —A’Y, + —A"Yy. —..... 2.8
dt2 yI h2( yl yl +12 y| ) ( )

Relation between Difference Operators

Similarly, in terms of V' we can write the differential operator as:

1 Viy. V.
Dy. =—(Vy. + L —L 2.9
o= (VY ) 29)
2 1 2 3 11 4
and D%y, :F(V Y. + V7, +EV Yo +.....) (2.10)
In terms of & :
Dy = £ (5y _ﬁJrﬁ_ ) (2.11)
i h i 6 30 ----- ]
and D2y _i(gzy _ﬁ_F&_ ) (2.12)
et 12 90 T '

In the next example we illustrate the use of the relations among these operators.
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Relation between Difference Operators

Example 5: Consider the function y(t)=t*+2t*+3t in the interval [—2,2]

with step size h=1.0. Find the approximate value for (i)(;—i/at t =—1 and

d’y

dt?

d’y
dt?

the backward differences.

at t = —1 using the forward differences and (ii) 3—¥and at t = 2 using

Solution:

Stepl: Let us construct the data set for the given function: Given h = 1,

Relation between Difference Operators

t,=-2 Y, =—6
t=-1 y,=—2
=0 v, =0 t (-2 |-1/0 |1 |2
-1 V.=6 y |6 [-2|0 |6 |22
R y, =22

Step 2: Construct the difference table. Note that for the given cubic, the third
derivative is constant and the fourth and higher derivatives are zero. Similarly

the third difference will be constant and all higher order differences will become
. dy ,d? . .
zero. The expressions for EandFare as given in equations (2.7), (2.8), (2.9)

and (2.10).

Difference Table:

L V

-2 -6

WhatsApp: +91 7900900676 www.AgriMoon.Com



Relation between Difference Operators

-1 -2 Ay, =4

0 0 Ay, = A%y, =2

1 6 Ay, =6 A%y, =4 A%y, =6

2 22 Ay, =16 A%y, =10 | A’y, =6 A'y, =0

Note: A’y, =A’y, =6 (constant), A'y, =0=A"y,.....

Relation between Difference Operators

Step 3: Calculations:

dy dy] 1 1,1 }

)= =—/" =—|Ay,—ZA%Yy,+=-A

0%l i h[ V=5 AN+ A%,

1 2 3

d?y 1 1

0 :F[Azyl—ASyl] :1[4—6] ==2
t=t,

Thus y'(-1)=2andy"(-1)=-2.
These approximations are coinciding with the exact values.

(ii) From the above table, we know vy, =16, V?y, =10,V%y, =6.

1

ﬂ :_|:Vy4+ivzy4+lv3y4:‘

dt h 2 3

t=t,

1

16+£-10+E-6} =23.
1 2 3
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Relation between Difference Operators

d’y

v =%[VZV4+V3V4]

t=t,

:%[10+6]:16.

These values also coincide with the exact values of y'(2) = 23and y”(2) =16.

Thus these differences give us a way of evaluating the derivative values from

the given data set.

. dy d?y
Exercise 4: Find EandFat t = 0 from the data set.
t 0 1 2 3 4
y -1 2 -3 4 5

2
Exercise 5: Find %at t = 2 from the given data.
t -1 0 1 2
y -1 1 3 5

Exercise 6: Write D* in terms of (i) A (ii) V (iii) S and x .

Keyword: Forward difference operator
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Relation between Difference Operators
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Module 1: Numerical Analysis

Lesson 3

Sources of Error and Propagation of Error in the Difference Table

3.1 Introduction

In a numerical procedure, many types of errors can occur, among which the
prominent ones are (i) the truncation error and (ii) round-off error. We briefly
introduce these two types of errors below. The other types of errors are not

discussed in this lesson.

We noted that while writing the Taylor series expansion for a function about a
point in its neighbourhood, the series is truncated after a finite number of terms
in the series. This induces certain amount of error in the solution and this error
Is called the truncation error. Thus the truncation error is the quantity T (say)
which must be added to the approximate solution in order to get the exact

solution.

il

For example, consider the function f(x) = (1+x)?,x [0,0.1]. We now try to

obtain a second degree polynomial approximation to this function by using the

Taylor Series expansion about the point x=0.

We have f(0)=1, and a certain higher order derivatives of the function and their

values at x=0gare found as:

1

241+ X

1

(0= (0= 2: ") =- (0) =3 £"(0) -

3
37 5 °
4(1+x)2 8(1+Xx)2

Now the second order approximation with the remainder term is written as:
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Sources of Error and Propagation of Error in the Difference Table

3 2 3
o (1+x)2 =1+5—X—+ix—15,for some 0<&<0.1.

2 8 16 {(1+§)2}

X3

Thus the truncation error after 2™ degree approximation is T _1

If we compute the value of f(x) at x=0.05, using this approximation we get the
value as f(0.5) ~1.0246875. The exact value is 1.0246951077 .

The upper bound for the Truncation error forxe[0,0.1] is given by

3
(01" _ 0.000625.

<

0.1)%
Tl=max @D 5
x€[0,0.1] 16‘:(1+ X)2:|

Thus the approximate value of f(x) at 0.05 is 1.0246875 which is with a

maximum error of 0.000625. This error can be further lowered by considering a

higher order approximation for f (x) .

There is another type of error called the round off error which is due to the
precision of the computer while doing the arithmetic operations among the
number. The round off error is the quantity denoted by R which must be added
to the finite representation of a computed number in order to make it the true
representation of that number. This is due to the rounding of numbers after a
certain decimal place during computation. The present day computers use the

double precession, because of which the round off error is minimum.

In general, the error is defined as the difference between the True value and the

Approximate value.
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Sources of Error and Propagation of Error in the Difference Table

Error = True value — Approximate value.
Absolute error = |Error|.

The Relative error is defined as

Absolute error

Relative error = :
|True Value|

Also one uses the Percentage Relative error which is given by

Percentage Relative error = 100 X Errar]
|True Values|

While dealing with finite difference operators, usually, the solution is associated
with a certain amount of Truncation error. This error can be minimized by
increasing the order of approximation in the Taylor Series expansion. The
difference operators are magnifiers of the error that occurred in the initial data
set, in turn affecting the approximate solution. The following example illustrates
how a small amount of error e induced in the initial data is increasing with

higher order differences.

Example 1: Tabulate the propagation of initial error e with higher order

forward difference operators for the data:

X -3 -2 -1 0 1 2 3

f(x) 0 0 0 c 0 0 0

Solution: The forward difference table for the above given data set is:

X f Af A*f A f A*f ASf A% f
-3 0

0
-2 0 0
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Sources of Error and Propagation of Error in the Difference Table

€
-1 € —4 e
€ -3e 10 e
0 —2¢ 6e -20e
- 3e -10e
1 0 € —4 e
0 —€
2 0 0
0
3 0

From the above we note that
1) The magnitude of error increases with the order of the differences

i) The error for any order difference is the binomial coefficients with

alternating signs.

1ii) The algebraic sum of the errors in any column is zero.

Exercises:

1. Find the approximate value of f(2) from f (x) =In(x), x [1,3] by considering a
3" order Taylor series approximation. Obtain the local truncation error and the

percentage relative error in this approximation.
2. If the number ~=4tan™(1)is approximated using 5 decimal digit, find the
percentage relative error due to rounding.

3. Tabulate the propagation of initial error € in the following data set with

increasing order differences.

X 0 1 2 3 4

f(x) 1 1 c 2 2
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Sources of Error and Propagation of Error in the Difference Table
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Module 1: Numerical Analysis
Lesson 4

Solutions of Non-Linear Equation

4.1 Introduction

In this lesson, we learn to find the roots of a given non-linear equation involving

a polynomial and Transcendental functions.

For example (i) x®-4x* “looisa polynomial equation while
X

(if) sin x—xcos%:O Is a transcendental equation.

Definition: A number ¢& is said to be the root of (or solution of) the equation
f(x)=0if f(&)=0. Itis also called a zero of f(x)=0. A root of f(x)=0is the

value of x at which the graph of y = f(x) intersects the x—axis.

f ()
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If the equation f(x)=0can be expressed as f(x)=(x-¢&)" g(x)=0for some

g(x)such that g(¢&)=0and g(x)is bounded for all xin the domain of definition of

the function f(x), then x=¢ is called a multiple root of f(x)=0 with

multiplicity n. If n=1, then it is called a simple root.

The root of f(x)=0 is found using either a direct method, which gives the

exact value of x=¢ or by writing f(x)=0as an iterative procedure such as

X.,=9(x,) n=012,... Root of cubic or higher degree polynomial equations and

transcendental equations cannot be found using the direct methods whereas the
iterative methods are quite handy though they provide approximate value to the

root of f(x)=0.

4.2 lterative Methods

These methods are based on the idea of successive approximations.

Consider for example the equation f (x) = x*+2x-4=0. This can be written as

(i) x:é or (ii) x:%(4—x2) or (iii) x=+4—2x.

Here we expressed the given f(x) = 0 in three different forms as x=¢,(x),

i=123where %(X)zé, ¢2(X)=%(4—x2)and @,(X) =/4-2x.

Thus any given f(x)=0 is written as x=¢(x), then the root of f(x)=0 is the

point of intersection of the function y = ¢(x) with then line y=x.

The function ¢(x) is called the iteration function. This is obtained by writing an

iterative method as x,,, =(x,) and generate a sequence of iterates {x} _ by
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starting with a suitable initial approximation x,, i.e., start with x,,
generate x, = ¢(x,), UsSing x,, generate x,, repeat this finitely many times until we
notice that the condition |x.,,—x|<e is satisfied, where x, x., are two

consecutive iterates and <is the pre assigned error tolerance. We note that with
different initial approximations and different initial iterative function, the
sequence of approximations generated will be different but in all these cases,

these sequences always give its limit as the root of the equation f(x)=0.

Definition: A sequence of iterates {x,}is said to converge to the root x=¢, if

limx _=&. The convergence of an iteration method depends on the suitable

k—o0

choice of the function ¢(x) and also on the initial approximation x, to the root.
Below we state a sufficient condition on ¢(x) for the convergence of {x,} to the

root¢.

Result: If o(x)is a continuous function in some closed interval | cR that

contains the root ¢ of x=¢(x) and |¢'(x)|<a<1, ¥V xel, then for any choice of
X, € I, the sequence {x} generated from x.,=¢(x).k=0,1,2,..,converges to the

root £ of x=¢p(x).
Example: Find the root of f(x)=cosx+3-2x=0 correct to two decimal places.

Solution:

Given 2x=cosx+3 oOr x:%(cosx+3)

Choose p(x) = %(cos X+3)

Write x, ., = %(cos Xx+3)
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since [¢/ (| =2 sin x| <1,

we start with x, =%, and generate the sequence of iterates as
1 V4
=—|cos—+3|=15
& 2( 2 j
1
X, :5(005(1.5)+3) =1.535
1
X, = 5(003(1.535) +3)=1.518
1
X, = E(cos(1.518) +3)=1.526

X, = %(cos(1.526) +3)=1.522

The root of the above equation correct to two decimal places is taken as 1.522
since |x;—x,|=[1.522-1.526/=0.004. We can improve the accuracy in this

approximation by considering more iteration.

4.2.1 How to make a good guess:

Convergence of the successive iterations {x}obtained for a given iterative
method x,_, =¢(x,) depends on a good guess for the initial approximation x, for

the root x=¢. The initial approximation is usually obtained from the physical

considerations of the problem and also based on the graphical representation of

the given function f(x). For the solution of algebraic equation f(x)=0, an

elegant method to choose the initial approximation is by using the intermediate

value theorem which is stated below:
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Intermediate value Theorem:

If f(x)is continuous on some interval |=[a,b]JcR and the product
f(a)- f(b) <0, then the equation f(x)=0has at least one real root or an odd

number of real roots in the interval (a,b).

Now it amounts to choosing two real values a and b such that f(a)- f(b) <0,

and then choose the initial approximation between a and b.

Example 1: Find an interval in which the root of x* +4x-5=0lies in.

Solution:
Given f(x)=x>+4x-5.
Take x=0, f(x)=-5.

Again when x=2, f(2)=11.

Now f(0)and f (2)are having opposite signs. Hence f (0)- f(2)<0.

The intermediate value theorem guarantees that a root of x*+4x-5=0 will lie in

the interval (0,2).

[Exercise: Plot this function — it cuts the x-axis at x = 1].

Example 2: Find the interval which contains the smallest positive root

of xe* —cosx=0.

Solution:
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Takex=0, f(0)=0-e’—-cos0=-1, and x=1,f(1)=2.718-0.54=2.178.

Since f (0).f(1)<0, the root is in(0,1) .

4.3 Bisection Method

This method is based on the repeated application of the intermediate value

theorem. Let the root of the equation f(x)=0 be in the interval 1,=(a,,b,).

Bisect the interval 1, and let m be the midpoint of (a,,b,), i.e., m =%(a0+b0).

Check the following conditions:

1) if f(a,)- f(m)<0, then root lies between a, and m, .

i) if f(m)- f(b,) <0, then the root lies between m and b,.

Accordingly take 1, as either (a,,m)or (m,b,), as one of these contains the root.
Bisect 1, and let m, be the midpoint of 1,. The above conditions are checked

for these bisected intervals to get the new subinterval that contains the root.
Keep bisecting this way until we get a smallest subinterval containing the root.
Then the midpoint of that smallest interval is taken as the approximation for the
root of f(x)=0.

The following example illustrates the Bisection method:

Example 3: Find a positive root of the equation f(x) = xe* -1 which lies in (0,1).

Solution:

Given a, =0,b, =1,
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f(a,) =1, f (b,)=1.718, £ (0)- f (1) <O.

Step 1: Bisecting(0,1) gives (0,0.5)and (0.5,1) as two subintervals.
f(0.5)<0andf(0)<0, so the interval (0,0.5) is discarded as f(0)f(0.5)>0.

Denote I, =(0.5,1).

Step 2: Bisecting 1,=(051)  gives (0.50.75)and (0.751) as the new
subintervals. f (0.75) >0, f (0.5) <0 = f(0.5) f (0.75) <0,

also f(0.75) >0, f(1.0)>0= f(0.75) f (1)>0.

Discard the interval (0.75,1.0) and denote I, = (0.5,0.75).

Step  3: Bisecting L, gives (0.5,0.625) and (0.625,0.75) . Note
f (0.5). (0.625) <0 and f (0.625).f (0.75) > 050 discard the interval (0.625,0.75) and

take 1, =(0.5,0.625).

Step 4: Bisectingl,, we get (0505625 and(0.56250.625), = we
see f(0.5625) f (0.625) <0, take 1,=(0.5625,0.625) keep doing this process for

more steps to get a better approximation to the root. After step 4, the root lies in

I,and we take the approximate value of the root as the midpoint of this interval

l,, .6, &=059375.

This is a crude approximation to the root.

Note: Both the iteration method and Bisection method take more steps to give a

solution with reasonable accuracy.
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Exercises:

1. Use bisection method to obtain a real root for the following equations correct

to three decimal places:
1) x*+x*-1=0
i) e*=10x
1) 4x-1=4sinx

IV) x+logx=2.

2. By constructing a proper iterative function for the given equation, find an

approximation to its root.
1) sinx=1-x
1) e*=cotx

i) x*-x*=-1
Iv) sinx =~
2

V) x*+x*-80=0

Vi) sin®x=x"-1.

Keywords: Polynomial and Transcendental Functions, Direct Method, Iterative

Methods, Iterative Procedure
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Module 1: Numerical Analysis

Lesson 5

Secant and Regula-Falsi Methods

5.1 Introduction

A root of the algebraic equation f(x)=0 can be obtained by using the iteration
methods based on the first degree equation. We approximate the given f(x)by a

first degree equation in the neighborhood of the root of f (x) =0.

We may write the first degree equation as:

f(x)=ax+a, (5.1)

with a, #0and a, and a, are arbitrary parameters to be determined by posing two

conditions on f(x) or its derivative at two different x locations on the curve.

5.2 Scant Method

Take two approximations X, , and X, to the root ¢ of f(x)=0. We determine the

constants &, and &, in equation (5.1) by using the conditions

fk—l =a X, +a, (5.2)

and

fk =a X ta, (5.3)
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Where, f(x.)="Ff_,and f(x)=f.

Solving equations (5.2) and (5.3), we get,

_ (Xk fk—l — X fk )

8

(Xk _Xk—l)
( fk - fk—l)
and Q="
(Xk - Xk—l)

The solution of (5.1) is

(4)

()

(6)

Now the new approximation x., based on two initial approximations x,_, and x,is

written as equation (5.6) as:

X = (Xk fk—l — X fk)
k+1 ( fk _ fk_l)

This may be rewritten as:

Xep = X, —M f.,k=L2,..

( fk - fk—l)

2
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Secant and Regula-Falsi Methods

(Xk B Xk—l)

mfkgenerates a Ssequence of
k — k-1

Here iteration function (P(Xk,Xk_1)=Xk—

o0

iterates {Xk+1}k:1 :

5.2.1 Algorithm

1. Start with (X,, f;)and (X, f,).

2. Generate X,using (7) and compute f, = f(x,).
3. Use (%, f;) and (X,, f,)to compute X;.

4. Repeat steps (2) & (3) until the difference between two successive

approximations X,,;and X, is lessthan the error tolerance.

The method fails if at any stage of computation f (X, )= f (x._,)(see equation 5.7).

3
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Secant and Regula-Falsi Methods

/ /f\ /(\2 1 %o X

Fig. 5.1. Secant Method — a Graphical Representation.

5.3 Regula-Falsi Method

The initial approximations X,_;and X, taken in the secant method are arbitrary. If
we impose a condition on these initial approximations such that f(x.).f(x.,)<0

the method given by equation (5.7) satisfying this condition is called the Regula-

falsi method. Then the root of f(x)=0Iies in between these two values x,andx, ;.

Now draw a chord joining the points (X, f,)and (X, ). This chord intersects
the X—axis, say at X=X,,. Now look for f(x.,).f(x)<0or f(x.).f(x_)<0.

One of these two will hold. Without loss of generality, say f(x,,). f(x) <0, then

4
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join the points (X, f,) and (X,.,, f,..) by a chord, this chord intersects x — axis say

at X=X,. The above procedure is repeated till we reach the root of f(x)=0. In

this procedure we are sure of convergence of the sequence of iterates generated
using equation (5.7).

f/

J‘.!!'(XO’ fO)

y

c(x,, £,y 8%, f)

Fig. 5.2. Regula - Falsi Method — a Graphical Representation.

Example 1: Find the real root of x*—2x-5=0 using the Regula-falsi method.

Solution:

Given f(x)=x*-2x-5. We compute that f(2)=-1<0 and f(3)=16>0.

Take x,=2,f,=-1,x =3, f, =16.

5
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Using the method given by (7),

x2:3—13_2

16=2.0813, f(x,)=-0.1472<0.
6+1

The root lies in the interval (2.083,3), join the points (2.0813,-0.1472) and (3,16) by

the chord, which cuts the x—axis at x, =2.08964 .

Proceeding in this way, we obtain

X, =2.09274, x, =2.09388, x,=2.0943 etc.

The approximate value for the root is taken as x = 2.0943.

Now we illustrate this method to find a root of the transcendental equation.

Example 2: Find the root of cosx—xe* =0using the Regula-falsi method correct

to four decimal places.

Solution:
Let f(x)=cosx—xe*, f(0)=1, f(1)=-2.17798.
Clearly f(0). f(1)<0.

X — Xy
fl_ fo

We obtain X, = X, — f, =0.31467 and f(0.31467) =0.51987 > 0.

6
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The root lies between 0.31467 and 1. Repeating the procedure we obtain the

approximations to the roots as

X, = 0.44673,

X, =0.49402,

X, = 0.50995

X, =0.51520, X, =0.51692
X, =0.51748, x, =0.51767

X, =0.51775, ...

The root correct to 4 decimal places as & =0.5177.

Exercises

1. Find a real root of the following equations using the Regula-falsi method:

a) xlog,x=1.2
b) x*-32=0

c) x*-2x-5=0

) 1
d) sinx==
X

2. Solve the above problems using the Secant method.

Keywords: Scant Method, Regula-Falsi Method

7
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Module 1: Numerical Analysis

Lesson 6

Newton-Raphson Method

6.1 Introduction
Both the Bisection and Regula-fasi methods give a rough estimate for the root
of the equationf(x) = 0, but these methods take many iterations to get a

reasonably accurate approximation to the root. An elegant method of obtaining

the root of f(x) = 0 is discussed below which is known as Newton-Raphson

method.

Let x, be an approximate root of the equationf(x)=0. Let xbe a
neighbouring point of x,, such that for every small h > 0, x, =x,+h. Also let x

be the exact root of f(x) = 0.

Then f(x)=0.

Expanding f(x,+h) in Taylor Series about X,

weget f(x) = f (x,+h) = f(x,)+hf'(x,)+...=0.

Since h is very small, we neglected h? and higher powers of h in the above

Taylor series expansion.

F (%)

Thus we have f(x,)+hf'(x,)=0 giving h=-—-=2¢.
F'(%o)

F (%)

Then we have x = h=x,— .
Xl XO + XO f!(xo)
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" a closer approximation to the root of the given f(x) = 0 is given by

%)
X, =% 00) (6.1)

A better approximation x, can be obtained by

_y ()
X, = X, 00 (6.2)

We generalize this procedure and write a general iteration method as

., e . _
X =X 00 n=20,1,72,.. (6.3)

This is called the Newton-Raphson iteration method. Comparing this method
with the general iteration method

X1 = 0(X,) (6.4)

the iteration function is given as ¢(x) = x— :((X)) :
X

For convergence of this iteration method the sufficient condition is |¢'(x)| <1

1+f_'+f.fn ~ |f(X)-fn(X)| <1o0r |f(x).f”(x)|<‘[f’(x)]z

e e |

which becomes

If we choose the initial approximation x, in the interval I such that for all xe1,

2
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| f(x)- f”(x)|<‘[f’(x)]2‘ Is satisfied, then the sequence of iterations generated by

iteration method (3) will converge to the root of f(x) = 0.

Example 1. Using the Newton-Raphson method, find a real root of

f(x) = x"-11x+8=0.

Solution:
Given f(x)=x"*-11x+8=0

f'(x) =4x®-11.

Choosex,=2. This initial approximation can be obtained by using the

intermediate value theorem.

X =X, _ 1) = 2—3 =1.90476
f'(x,) 11

1.90476)* —11(1.90476) + 8
% =% -8 _j gng76.. (1:90476) ~1ULI04TE)+

A PN reD 4(1.90476)°

~1.89209

x, =%, %) | g gg1gg
)

=1.89188.

We now accept the numerical approximation to the root as &=1.89188, correct

to 5 decimal places.

Note that this method requires evaluation of f’(x)at every stage. Also if f'(x)is

very large, then h(:—%lwill be very small. Thus x,is close to x (which is

3
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assumed to be the root of f(x) = 0 in the derivation of the method) and makes

the convergence of the successive iterations to the root faster.

Example 2: Evaluate +29 to four decimal places using the Newton-Raphson

method.

Solution:
Let x=+/29. Then x*-29=0
Consider f(x)=x*-29, then f'(x)=2x.

2_
ax=x 52 o012

n

y="f(x)

Fig. 6.1. Newton-Raphson method — a schematic representation; &~ f(x,)

4
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Example 3: Find a root of f(x)=3x-cosx—-1=0lying between Oandl.

Solution: Given f(x)=3x—-cosx-1=0
f'(x)=3+sinx choose x,=0.6.

3X, —cosx, —1
3+sinXx,

n+l = n

X, sinx, +cosx, +1
m 3+sinx,

This givesx, =0.6071, x,=0.6071. Thus the approximation to the root is 0.6071.
Definition: An iterative method x_,=¢(x,) is said to be of order n or has the
rate of convergence n if n is the largest positive real number for which there
exists a finite constant M # 0 such that |e . |<Mle[, where e =x —¢ s the

error in the k" iterate. The constant M is called the asymptotic error constant.

Exercise 4: Determine the order of the Newton-Raphson method.

Solution:

The Newton-Raphson method is x,, = x, 106)

(%)

Take ¢,=x & or x =&+¢, and expanding f(é+¢g)and f'(é+¢,) in Taylor

Series about the root &, we obtain.

[ek f'(§)+;ek2 f"(§)+..}
S~k —
[f'(§)+ = f"(§)+...]

5
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. {e L1 +..1[1 e +}
SRR EEGR e~

ore.,= ) e’ +0(g.’).
f ©)

On neglecting <’ and higher powere, , we get €,,=C > where C BERNG)

2 (6

Thus the Newton-Raphson method is a second order method.

Exercises:

Solve the following equations f(x) = 0 using Newton-Raphson method:
)x—e>*=0
I)cosx—xe ™ =0

i) x*-5x+1=0

.\ . COSX
IV)sin x + =0

V)x®-2x-5=0
Keywords: Sufficient Condition, Newton-Raphson Iteration Method

References

Jain, M. K., lyengar, S.R.K., Jain. R.K. (2008). Numerical Methods. Fifth

Edition, New Age International Publishers, New Delhi.

Atkinson, E Kendall. (2004). Numerical Analysis. Second Edition, John Wiley
& Sons, Publishers, Singapore.

Suggested Reading

6
WhatsApp: +91 7900900676 www.AgriMoon.Com



52

Newton-Raphson Method

Scheid, Francis. (1989). Numerical Analyysis. Second Edition, Mc Graw-Hill
Publishers, New York.

Sastry, S.S. (2005). Introductory Methods of Numerical Analysis. Fourth
Edition, Prentice Hall of India Publishers, New Delhi.

7
WhatsApp: +91 7900900676 www.AgriMoon.Com



Module 1: Numerical Analysis

Lesson 7

Linear System of Algebraic Equations — Jacobi Method

7.1 Introduction

In this lesson we discuss an iterative method which gives the solution of a
system linear algebraic equations.

Consider a system of algebraic equations as:
A X +apX, .+, X, = b1
8y % + 8%, +...+ 8, X, =D,

2n"*n

a, X +a,% +..+a X =b (7.1)

This is a linear system of n-algebraic equations in nunknowns. In general, the
number of equations is not equal to the number of unknowns. In (7.1),

a;,i=12..,n; j=12..,n are the given coefficients,b,i=12,..,n are the known

numbers and x,i=12,..,n are the unknown numbers to be determined.

The system given in (7.1) can also be written in the matrix vector form as:

Ax=b (7.2)
Ay, Ay . & b X
where A= % Ban , b= " , X= &
a‘nl anZ e ann bn Xn
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A is called the coefficient matrix.

The solution of this system can be obtained using direct methods such as Gauss

Elimination and also by finding the inverse of the matrix A directly. When the

size of the matrix A is very large, applicability of these direct methods is
limited as finding the inverse of a large size matrix is not so easy. Also, Gauss
elimination demands the diagonal dominant structure for A. These difficulties
are overcome in the other class of methods called the iterative methods. In what
follows, we discuss two useful iterative methods namely the Jacobi and Gauss-

Seidel methods.

The iterative methods are based on the idea of successive approximations.

Initially, the system of equations is written as:

X, =HX,+C,n=0,12,.. (7.3)

whereH is the Iterative matrix which depends on the matrix A and C is a
column vector which depends on both A and b. We start with an initial
approximation to the solution vector x=x, and obtain a sequence of
approximation to x asx,x,..,X,.., this sequence, in the limit as n— o,
converge to the exact solution vector x. We stop the iteration process when the
magnitude of the two successive iterates of x i.e., x,,, and x, is smaller than

1 I+l

the pre-assigned error tolerancee, |x,,, - x,| < for all elements of x.

The procedure of obtaining the iterative matrix H is given below.

2
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Linear System of Algebraic Equations — Jacobi Method

Let the diagonal elements a;, i=12,..,n in the linear system (1) do not vanish.

We now rewrite the system (1) as:

b, a a
X; = : Axi_ﬁxs -2 X,
a'22 a‘22 a22 a22
bn anl anS an-n—l
X, =————5X ——2X, —.. — =X (7.4)
a‘nn a‘nn a'22 ann

The system of equations (7.4) is meaningful only if all a, (diagonal elements)

are non-zero. If some of the diagonal elements in the system of equations given
in (7.1) are zero, than the equations should be rearranged so that this condition

satisfied. We now form an iterative mechanism for the equation (7.4) by writing

et _ B B, s B3 o) A, ()
WA N IR E RN L

a, a ) a,
(0 _ B B 8w Bam
2 . | Xi 3 n
a22 a22 a22 a22
b a a a
(n+1) _ Mn nl ,(n) n2 ,(n) n-n-1 y,(n)
Xg = ey Rl Ly (7.5)
a_ a a

nn nn nn nn

Choose the set of initial approximations as: x© :(x1<°>,x§°>,...,x<°>)and generate a

n

sequence of iterates x@,x®,..,x® x%*? . until the convergence condition

|l(k+1) —X(k)| <e IS satisfied.

Equation (7.5) is written in the matrix vector formas X =HX™ +C

3
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Linear System of Algebraic Equations — Jacobi Method

o &[]

a a, a

8 5 8 b,

where H=| a,, a, |, C=|a,
8y Ay 0 "

L a'nn a‘nn i _ann_

In matrix vector form, the Jacobi method is derived as follows:

Given Ax=b, decompose A as the sum of lower Triangular, Diagonal and

upper triangular matrices. This decomposition is always possible.

l.e, A=L+D+U

Ax=(L+D+U)x=b

or Dx=—(L+U)x+b

or x=-D'(L+U)x+D"
or x*'=-D'(L+U)x"+D™

k17t k
or X =Hx"+C

where the Iteration matrix H in Jacobi method is -D*(L+U)and C is D ™.

Example 1: Solve the following system of equations using Jacobi method

A + X, + X, =2
X, +5X, +2X; =—6
X, +2X, +3X, =4

4
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Linear System of Algebraic Equations — Jacobi Method

by taking the initial approximation as x® =[0.5,-0.5,-0.5]" .

Solution:
4 1 1
Given A=|1 5 2
1 2 3

Note that a, =0for i = 1,2,3.

Firstwrite Aas A = L + D + U, where

4 0 0 0 0O 011
D=|0 5 0|,L=|1 0 OjandU|0 0 2
0 0 3 1 20 0 0O

The iteration matrix H is

L

4 0 010 0 O
H=-DL+U)=—-|0 5 0| |1 0 0
3l 1.2 0
1o o
4 01 1
o 1 oll1 0 2
> 120
0 0 X
i 3
o 1 1
4 4
B
5 5
12,
i 3 i

5
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Linear System of Algebraic Equations — Jacobi Method

and the column vector

Earay (1]

4 2 2
C=Db=|0 1 Ol|-6|= —9.
5 4 5

0 0 4

i 3 | 3]

We now write the Jacobi iterative method as:

o 1 1 1
X1(n+1) . 4 42 X1(n) 26
M =XM== 0 =[x |+|-=|n=012.. ... (i)
(n+1) S S| S
X X
3 1 2 3 4
= ~_Z 00 i
. 3 3 i . 3
i 1 0.5
Start with the given initial approximation| x” |=| —0.5 |, we generate from (i)
x| |-05
x 0.75
xP = -11
x| | -1.1667
x? 1.0667
Using this, we generate the next approximation as| x\? |=| -0.8833 |, using
x? —-0.85
x 0.9933
this,| x¥ |=| -1.0733 |, ...
XY -1.1
6
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The exact solution of this system is x, =1, x, =—1,X, =—1.

Example 2: Solve the following system of linear algebraic equations using the
Jacobi method by writing the iterative system directly:
20x+y—-2z=17, 3x+20—-z=-18, 2x—-3y+20z=25.

Solution:

We can directly write the iterative system as

X" = %(17 —y® +227)

ym = 2%(—18 —x™ 4 z(”))

1
(1) _ M 2y™ ), —
2" — 20(25—2x +3y")n =0,1,2, ..
Start with x© =y©®@ =z =0,

x® =0.85y" =-0.9,z% =1.25.

Using this, we generate

x? =1.02,y® =-0.965,z” =1.1515.

In the same way, we generate few more successive approximations as
x® =1.0134, y® =-0.9954,z® =1.0032
x“ =1.0009, y* =-1.0018,z’ = 0.9993

x® =1.0,y® =-1.0002,z® = 0.9996

7
59 WhatsApp: +91 7900900676 www.AgriMoon.Com



60

Linear System of Algebraic Equations — Jacobi Method

x® =1.0,y® =-1.0,2®% =1.0

Thus the solution is: x = 1.0, y = —1.0, z = 1.0.

This is an alternative way of writing the iteration procedure used in the earlier

example.

Exercises:

1. Solve the equations

10X, —2X, — X; — X, =3,-2X, +10X, — X; — X, =15,—-X, — X, +10X, — 2x, =27
—X — X, —2X%, +10x, =—9using  the Jacobi method by taking

X9 =0.3,x? =x© =x® =0.
2.Write L,D,UH and € for the following system of equations:
54x+y+1z=110,2x+15y +62=72,—x+ 6y +272=85. Solve this system

using the Jacobi iterative method by taking x© =2,y® =0,z =0.

Keywords: System of Linear Algebraic Equations, Jacobi Iterative Method
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Module 1: Numerical Analysis

Lesson 8

Gauss-Seidel Iteration Method

8.1 Introduction

This method is applied to the linear system of algebraic equation Ax = b for
which the diagonal elements of A4 are larger in absolute value than the sum of

other elements in the each of its row in.

One should arrange, by row and column interchange that larger elements fall
along the diagonal, to the maximum possible extent. This method may be seen
as an improvement to the Jacobi method, where the available values for the
unknowns in a particular iteration are used in the same iteration. Consider the

system of linear algebraic equations (5) as given in the lesson 7.

X0 =23 0 a0 8y

all all all a'll
b, S=gi a a
Xél) = _Z_A)(l(o) _ﬁx?(’o) - _AX,gO)
a22 a22 a22 a'22
VO SRV B RV ORI TRV C
® = o 0.
a a a

nn nn nn nn

This is the first step of the Jacobi iteration method.

In the first step of the iteration, we make use of the initial approximations

X2 x0,x@ in the first of the above equation to evaluate x using,
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Gauss-Seidel Iteration Method

b

x® :_—i(aﬂxgo) +a,,x” +...+2,x" ). This approximation for x{ is used
a; a,

in approximating x{" as shown below:

w_0 1 ) (0) (0)
X; _———(a21x2 + 8y X+t By X )
22 22

Likewise, the other unknown are found as shown below:

b 1
w _ b 0 0 ©
X == - = (@, X" + 2, X" + ...+ 2, X
a33 a33

w_b 1 &) ) &)
X _———(anlx1 +a LX)+, X )

nn nn

We proceed to find the second approximation for the solution in the same
manner. The iteration process is terminated using the same criterion that was
discussed in the case of Jacobi method.

We express the Gauss-Seidel method in the matrix form as follows for Ax = b.
Let A=L+ D+ U, where L and UJ are the lower and upper triangular matrices

with zeros for the diagonal entries and D is the diagonal matrix.

Then, Ax = (L+D + U)x = b.
(L+ D)x* ™ =p—ux®
XY =(D+L) b~ (D+L)*Ux®

2
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Gauss-Seidel Iteration Method

or XY = Hx® 4+ C

where H=—(D+L)"-U andC=(D+L)"b.
Let us illustrate the use of Gauss-Seidel method below.

Example 1: Solve the system of equations using the Gauss-Seidel method

correct to three decimal places:

x+2y+z=0 L. 0]
3x+y—z=0 L (i)
r—y+4z=3 =\ L. (i)
Solution:

In the above equations, note that
i[> |2+, ie. 1 >[3] is false.
ii.  [>[3+]-1 ie., 1>4 is false.

i, |4 >[]+|-1] ie., 4> 2istrue.

Thus in the first two equations, the diagonal dominance is not present.

We now rearrange the order of the given system as:
3x+y—z=0
x+2y+z=0

x—y+4z=3

Now this system shows diagonal dominanceas 3>2,2>2,4>2.

3
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Gauss-Seidel Iteration Method

We now write the iterative process for the above as:

¥ (D) :%[—y(") +2%]

1
y(k+1) _ E[_X(kﬂ) . Z(k)]

1
70D 23y kD 012
Akt

We start with the initial guess values as x® =1,y©® =1,z =1,

This gives,

@ _ %[Z(O) ~y®@]=0
yo = %[_Xm ~20]=-05

1
20 ==13—x® 1+ y®1-0625.
oy T

The second iteration is given by

1
x® — 5[ W _ y‘”] —0.375

y(Z) — %[_X(Z) - Z(l):| =-0.5

7 = %[3 —x® +y®|=0.53125.

Proceeding in this way, we generate the sequence of approximations as:

4
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Gauss-Seidel Iteration Method

x® =0.34375,y® =—-0.4375,z® =0.55469
x“ =0.33075, y“ =-0.44271, 7z = 0.55664

x® =0.33312, y® =-0.4449, 2 = 0.5555.

The approximate solution correct to 3 decimal places is take as:

x = 0.333, y = —0.445, z = 0.555.

Example 2: Solve the system of equations

2x —y =7, —x+2y—z =1, —y + 2z = 1 using the Gauss-Seidel method by

taking the initial approximations as x® =0,y® =0,z =0.

Solution:
2 -1 0
Given A=|-1 2 -1|, b={1|, we find the decomposition of A as
0 -1 2
2 00 0O 0 0 0 -1 0
D=0 2 0Of,L={-1 0 O|,U=/0 0 -1].
0 0 2 0 -1 0 0 0 O

Gauss-Seidel method is x** = —(D + L) *-Ux™® + (D + L) *b.

Lo o

2 0 0 i :
(D+L): —1 2 O ,(D+L)_1: Z E 0 y
0 -1 2 111
'8 4 2|

5
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Gauss-Seidel Iteration Method

0 —% 0 g
(D+L)"U =|0 —% —%, (D+L) b= % |

o 1 _1 13

® T8 1 3

Applying the above method,

o Lo !
X(l) 2 0 2 35
yol=lo X Llols| 22| 225
@ 42 0 4 1.625
B PR ae B EE R
| 8 4] | 8 |
x® x® 4.625
Using | y® |, we generate | y*® |=| 8.625 |,
z® AR 2.3125
x® 5.3125
Similarly, | y® |=| 4.3125 |.
A 2.6563

Note that these iterates are approaching the exact solutionx = 6, y =5, z = 3.

Exercises: By choosing suitable initial approximations, solve the following

system of linear algebraic equations using Gauss-Seidel method.
1. 8x+2y—2z=8,x—8y+3z=—42x+y+9z=12
2. 2x+10y+z=51,x—2y+8z=0515x+3y—2z =85

3. x+2y+z=0,3x+y-5=0,x—y+4z=3.

6
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Gauss-Seidel Iteration Method

4. 10X, —2X, — X, — X, =3,—2%, +10x, — X; — X, =15,—-X, — X, +10x, — 2%, = 27,
—X, — X, —2X, +10x, =-9.

Keywords: Linear Algebraic Equations, Gauss-Seidel Method, Diagonal
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Module 1: Numerical Analysis

Lesson 9

Decomposition Methods

9.1 Introduction
LU and Cholesky Decomposition methods:

Gauss Elimination method, Gauss-Jordan method and LU and Cholesky
decomposition methods are the direct methods to solve the system of linear

algebraic equationsdx = b. Decomposition methods are also known as

Factorization methods. In this lesson, we discuss theLUand Cholesky

Decomposition methods. In this, the basic idea is to write the coefficient matrix A

as the product of a Lower triangular matrix L and an upper triangular matrix U.

9.2 LU Decomposition Method

Given the matrix 4as A= (&) 1,]=12,...,n

in general or
a; @, a4
A=|a, a, a,|, in particular, the decomposition is possible if all the
a31 a32 a'33
9, a, ay
. . . a, a, .
principal minors of 4, i.e., aﬂ,{ } a, a, a, |arenon-singular.
o A, a
LetA=LU
1 0 O U, U, Uz
with achoice for L=|1,, 1 Ojand U=| 0 u,, Uy |.
L, 1, 1 0 0 \u,
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Decomposition Methods

One can also choose 1’s along the diagonal elements for U and |;as diagonal

elements for L. We now determine the element of L and U/ as follows.

U, U, Ug; a, 4a, a;
Uy Uy |8y ay ady = A.

0 us; 8y d3p g

Consider LU =|1,,

31

Equating the corresponding elements on both sides, we get

Uy =ay;,U;, = a5, U3 =a,

a
_ _ %
|21u11 - a21 - |21 -

8y

dy
I31un =day = |31 =
a;,

Ly, + Uy, = 8y, =5 Uy, =y, — 2
21712 22 22:> 22— V22 a12’

Ay

LUy + Uy = 8y = Uy, = 8y — 28
21713 23 23:> 23 7 Y23 a13'

a,

|31u12 + |32u22 =a5 = |32 = 1
. _[aﬂ]
22 ,

|31u13 + |32u23 + Uy = 8y,

= Ugg = g5 — |31u13 - |32u23-

Once we compute I, ’s and u;’s, we obtain the solution of Ax = b as given below.

Consider LUX =D
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CallUx=z= Lz =b.

1 0 0]lz b,
e, |, 1 0|z |=|b,|.
|31 |32 1 23 b3

Now Forward substitution gives
= Z1:b1’|2121+22 :bz = 1, :bz _|21b1

|3121 + |3222 +Z;= bs = 1;= bs - I3121 - |32 (bz - |21b1)-

This gives z in terms of the elements of b. Having found z, Ux = z gives the

unknown as
ull u12 u13 X:I. Zl
0 Uy, Uy |l X | =] 2,
0 0 ugyllX Z,

Using backward substitution process,

z

-3
Uss

c
©w
@

<
o3

Il

N
w

<
o5

I

Uy X, +UpX; =2,

Up Xy + U X, +UsXy =2,
= X =2 = UpgXg —Upp Xy,

[xl,xz,xg]T is the required solution.
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Decomposition Methods
Example 1: Solve the following equations by LU decomposition

2x+y+4z=12,8x—3y+2z=20,4x+11y—z = 33.

Solution:
2 1 4 12

Given A=|8 -3 2 |,b=[20]|.
4 11 -1 33
2 1
Clearly a, =20, s 3 =-14%0,|A|#0.

We find a decomposition of 4 as LU as follows

1 0 2 1 4

L={4 1 OlandU=|0 -7 -14]|.
) 9 1 0O 0 -27
i 7]

Ax=LUx=Db.

Take Ux=1z.

1 0 0}z 12
ThenLz=b=|4 1 0]z |=20
9 Z, 33

—7,=12,2,=20-4x12=-28,
z,=33+ %(—28) —2(12) =-27.

2 1 4 ||x 12
Now Ux=z2=|0 -7 -14|y|=|-28
0 0 -27|z —27
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=27
l=—=
=27

y = —%[—28 +14.1]=2

1,

x:%[12—2—4.1]:3

Thus the solution of the given system of equationis x =3, y =2and z = 1.

The advantage of direct methods is that we obtain exact solution while the iterative
methods give an approximate solution. For the generalization of the

LU decomposition procedure to a system of n equations in n-unknowns, the reader

Is referred to any standard text book on Numerical methods.

Exercise 1: Solve the equations using LU decomposition.
2x+3y+z=9
X o S el =it

3x+y+2z=8

9.3 Cholesky Method

If the coefficient matrix A is symmetric (i.e., A=A") and all leading order
principal minors are non-singular (as in case of LUdecomposition method), then

the matrix A can be decomposed as
A=L-L"

whereL =1.,I. =0fori < j.

ij 2 ij
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Then Ax =b becomes
L-L"'x=b
Take L'x=12z

= Lz=b.

The intermediate solution z,, i = 1,2,...,n is obtained by forward substitution (as

described earlier) and solution X, i=1,2,...,n is determined by the back

substitution.

Example 2: Solve the system of equation using the Cholesky decomposition

method

x+2y+3z=5
2x+8y+22z=6
3x+ 22y + 82z =-10.

Solution:
1 2 3 5
Given A=|2 8 22|b=| 6
3 22 82 -10
Write A=L-L'
1 2 37 [, 0 o7, L, I

|
or[2 8 22|=[l, 1, 0|0 L, I,
3 22 82| |I

2 _ _
=1;=1=1,=1,

I, =2=1, =2,
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I11|31 =3= |31 =3,

|221+|222 =8=1,, =2,

L1, + 1,1, =22=1,, =8,
12 +12+12,=82=1,,=3.

1
~L={2 2 0]
3 8 3

NowAx=b=L-L'x=Dh.

ul
PutL'x = uwhere u =| u, |(say)
u3
1 0 0ly 5
=Lu=b=|2 2 Of|u,|=| 6
3 8 3|u,| |-10

e e = =

1 2 3|x 5
SolvingL'x=ugives|0 2 8| y|=|-2
0 0 3|z -3

= z=-1,y=3and X = 2as the required solution.

Exercises 2:

1. Solve the system of equations

dx+y+z=4 x+4y—2z=4, 3x+ 2y — 4z = 6 using the (i) LUand

Cholesky decomposition methods.
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2. Solve the system of equation

(2 01 -4 170y [ 4]
4 3 5 -2|u| |-10
1 -1 1 -1yl | 2
1 3 -3 2y | 1]

by LU decomposition method.

3. Solvedx —y =1, —x + 4y — z = 0, —y + 4z = 0 by the Cholesky method.

Keywords: Cholesky Decomposition Method, LU Decomposition Method
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Module 1: Numerical Analysis

Lesson 10

Interpolation

10.1 Introduction

Let f(x)be a continuous function defined on some interval [a,b] Consider a
partition of this interval [a,b] as a=x, <X, <..<X_, <X <...<X, =b, having
(N +1) nodal points. These nodes are either equally spaced (x,—x_, =ha
constant,i=0,1,2,...,N —1) or unequally spaced. Let f(x)=f,,i=012,..,N.
The process of approximating the given function f(x)on [a,b] OR a set of

(N +1) data points (x, f;), where the function f(x)is not given explicitly

using polynomial functions {xo,xl,xz,...,x“',...}is known as polynomial
interpolation. The problem of polynomial approximation is to find a polynomial
P.(x)of degree nor less thann, which satisfies the condition

P.(x)=Tf(x),i=0L2,..,N.

In such a case, the polynomial P, (x)is called the interpolating polynomial. The

advantage of polynomial interpolation is of two folds. The first use is in

reconstructing the approximation to the function f(x)when it is not given
explicitly. The second use is to replace the function f(x)by an interpolating
polynomial P,(x)using which differentiation and integration operations can be

easily performed. In general, if these are N +1distinct points

a=X, <X, <..<X_, <X <..<X,=Db, then the problem of interpolation is to
obtain P,(x)satisfying the conditions P (x)= f(x),i=0,12,...,N. We discuss

below the methods in which these interpolating polynomials can be obtained.
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10.2 Linear Interpolation

Consider two data point (x,, f,)and(x,, f,). We wish to determine a polynomial

R(X)=ax+a,, (10.1)

wherea,and a, are arbitrary constants, satisfying the interpolating conditions

R(x)=f(x),i=01 (10.2)

(%) =P (X)=ax,+a,and f(x)=P(x)=ax +a,.

Eliminating a,and a,, we obtain the interpolating polynomial as:

P(x) x 1
f(x,) x 1|=0.
FOq) % 1

/
y

y=f(x)
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Linear interpolation

Expanding the determinant, we obtain

ROO(X =% ) — (%) (x=x)+ f(x)(x=%)=0

orB(x) =

X — X — X, F(x).

L (%) +

Xo =% X =X
This gives the linear interpolating polynomial.

Write P(x) =1, (X) T (%) + 1, (x) T (%) (10.3)

where I,(x) =222 1,(x) =~
Xo =% X =Xy

The functions 1,(x)and I, (x)are linear functions and are called the Lagrange
1
fundamental polynomials. They satisfy the conditions (i) Zli(x):l and (ii)
i=0
1, ifi=]

"(Xj):@j:{o, ifizj’

Equation (10.3) is called the Linear Lagrange interpolating polynomial.

10.3 Quadratic Interpolation

We now wish to determine a polynomial
P,(X) =a, +aX+a,x*, (10.4)

wherea,,a, and a, are arbitrary constants, satisfying the conditions
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(%) =Py (%), F (%) =P, (x) and f (%) =Ry (X,) .(10.5)

Thus we are determining P, (x) passing through 3 data points

(%o, To): (%0 1)1 (%0 T,).

The arbitrary constantsa,, aand a,can be determined from the three

conditions:
f (Xo) =a, +a X, + azxg
f(x)=a,+ax +a,x’

f (%) =2, +aX, +a,x;

Eliminating a,,a,,a, we obtain:

_Pz(x) 1 x X
f(%) 1 % X _0
fx) 1% %
fG) 1% x|
1 %, X 1 x X 1 x X
=P x X[-f)L % X+ F)L %, X
1 x, X 1 x, X 1 X, X

Expanding the determinants and simplifying, we obtain

P00 =100 1 (%) +L0) T () +1,0) T (x;)
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Interpolation

ere X) = (x=%)(x=x,)
here " %) (%)

These I.(x), 1=0,1,2are Lagrange fundamental polynomials of second degree,

which satisfy (i) in(x) —1 and (ii) I,(x,) = ;.

Example 1: Obtain the value of f (0.15)using Lagrange linear interpolating

polynomial for the data:

X: 0.1 0.2
f(x): 0.09983 0.19867
Solution:

Put x=0.15in (3), we get

p(0.15) = 21792 ¢ 09983 + 019701 5 19867y
0.1-0.2 02-0.1

=0.14925

Example 2: Find P, (x) for the following unequally spaced data set:

X: 0 1 3

f(x) 1 3 55

Hence find P,(x).

WhatsApp: +91 7900900676 www.AgriMoon.Com



Interpolation

Solution:

We compute the fundamental polynomial as:

(-1)(-3)
PR
-

Now %00:%08_4X+3y1+%@x_ﬁ)3+é(ﬁ—x)55
~8x? — 6x+1.

- Py(x)=8-(2)" -6(2) +1
=32-12+1
=21.

Example 3: Find P, (x) approximating the given data

X: 2 2.5 3

f(x): 0.69315 0.91629 1.09861
Hence find y(2.7).

Solution:

Let us find the fundamental polynomialsl,(x),l,(x) and I,(x) :
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Interpolation

x—25)(x-3)

- (-05)(-10)

=2x*—11x+15

|, (X) = (x= 2)(( ) = —4x* +20x—24

v

Iz(x):(x_z)( ) =2x* —9x+10

Hence,
P,(x) =(2x* —11x+15)(0.69315) — (4x* — 20X + 24)(0.91629)
+(2x* —9x+10)(1.09861)

Simplifying, we get

P,(x) =-0.08164x’ +0.81366x — 0.60761.

Puttingx=2.7, P,(2.7) =0.99412.

Exercises:

1. Find the Lagrange quadratic interpolating polynomial P,(x)for the

data: f(0)=1, f(1)=3, f(3)=5.

2. The function f (x) = sinx + cosxis represented by the data given by:

X: 10° 20° 30°
f(x): 1.1585 1.2817 1.366
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Interpolation

Find P,(x)for this data. Hence find P, (%) Comepare it with the exact

value f (EJ
12

Keywords: Equally Spaced, Nodal Points, Unequally Spaced, Linear
Interpolation, Quadratic Interpolation.
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Module 1: Numerical Analysis

Lesson 11

Higher Order Lagrange Interpolation

11.1 Introduction

Consider the data set {(x,,f,),(x. f,),...(xy. fy)} corresponding to the
function f(x)on the interval[x,,x,]. Also, the partition of the interval
[%,, Xy 11X, < X, < X, <...< X, , heed not be equally spaced. We now derive an
interpolating polynomial P, (X) for the above data,

satisfying P, (x,) = f,,i=0,1,...,N .

11.2 Lagrange Interpolating Polynomial
Result: Show that the N™ degree Lagrange interpolating polynomial for the

data set {(xo, fo) (%4, 1) e (X F )} is given by

)o(X =Xy ) (. (X =% ) (X=X, )..e( X=Xy )
(% = %)% =% ) (% =%y ) (% =% ) (X =%, )ere(X = Xy )

fil i

This is written in the compact form as:

PN (X) = ZNlli (X) fi

w(X)

where 1,(x) = (X — X )W(x)

wherew(x) = (X — X, )(X =X, )...(X = Xy )
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Higher Order Lagrange Interpolation

andw'(x,) = (% — %o ) (% = % )e-(% = X1 ) (% = Xiyp ) (X = Xy, )

These I (x)are the n™ degree fundamental polynomials satisfying

(1) ili(x):l and (i) I, (x;) = 0.

The Truncation error in Lagrange interpolation is given by

T ()= 100 )

where ¢ is some point from the discrete data set {x,,x,,..., X, } such that

MIN{ Xy, Xy, Xy X} <& < MAX{ X, X0y X5 X -

The derivatives of this truncation error is not done here, the reader is referred to

the reference books.

Proof: Let B, (x) be of the form

Py ()= f(x)= ao(X - Xl)(x - Xz)---(x - XN) + a1(x - Xo)(x - Xz)---(x - XN) +
et A, (X = X)(X = X%,) .. (X = Xy 1) (11.1)

Use the condition atx = X,, f(x,)= f,in (11.2)

fo = ao(xo - Xl)(XO - Xz)---(xo - XN)
(Xo - X1)(Xo - Xz)---(xo - XN)

= a,

Similarly, use the other N conditions, we get

2
WhatsApp: +91 7900900676 www.AgriMoon.Com



87

Higher Order Lagrange Interpolation

a, = b !
(X1 - Xo)(x1 - Xz)(X1 - XN)
f f
a.2: ""aN =

(Xz - Xo)(xz - Xl)"'(XZ - XN) (XN - XO)(XN - Xl)(XN - XN—l) .

Substitutinga, ’s in (11.2), we get P, (x) as given in equation (11.1).

Example 1: For the below given unequally spaced data find the interpolating

polynomial with highest degree:

X: 0 1 3 4

f(x) —20 12 —20 24

Then compute f (2).

Solution:

Given 4 data points, we can find utmost a third degree polynomial of the form
P(x) =a, +ax+a,x*+a,x>, where these a s are determined using the given

data.

Now let us use the Lagrange Interpolation formula
P3(X) = Io(x) fo(x) + I1(X) fl(x) + |2(X) fz(x) + |3(X) f3(X)

wherel. (x) are the fundamental polynomials;

P3(X) — (X _1)(X — 3)(X — 4) (_20) + (X — O)(X — 3)(X — 4) (_12) +
(=D(=3)(-4) DE2D(3)

3
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Higher Order Lagrange Interpolation

(x=0)(x=D(x-4) (=20) + (Xx=0)(x-D)(x-3) (—24)
3)(2)(-1) (4)(3)D)

orP,(x) = x> —8x* +15x — 20 is the highest degree polynomial that satisfies the

given data set.

Now f(2)~P,(2) = (2)* —8(2) +15(2) — 20
=-14.

11.3 Inverse Interpolation

In interpolation, we find the function value of f(x) at some non-nodal point

x in the interval. On the other hand, the process of estimating the value xfor a

value of f(x)which is not among the tabulated values is called the inverse

interpolation. The inverse interpolating polynomial is obtained by interchanging

the roles of x.and f(x.)in the Lagrange interpolating polynomial.

Fory = f(x) and for the given data set{(xo,yO)(xl,yl)...(xN,yN )} it is given
by:

X = (y_yl)(y_yz)---(y_YN) X. + (y_yo)(y_yl)“'(y_yN)
Vo= YDVo = ¥2)-(o = Yn) (Vo= Yo) (Vs = ¥a)-e (¥ — Vi)

Y =YY = ¥)- (Y =Yna)
(Y = Yo)(Yn = Y)Yy = Yna)

X +

Example 2: Find the value of x, if f(x)=7 from the given table.

X 1 3 4

f(x) 4 12 19

4
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Higher Order Lagrange Interpolation

Solution:

Using the above inverse interpolating polynomial with N =2, we get

T-1-19) gy (=419 o (-D0-3)
(4-12)(4-19) ~  (12-4)(12-19) ~  (19-4)(19-12)

1,27 4

214 7
—1.860.

Observe that the function representing the above data set is y(x) = x* + 3.

Exercises:

1. Find the value of f(7) from the following data using the Lagrange

interpolation.

X 5 6 9 11
f(x) 380 -2 196 508
2. Find a polynomial which passes through the

points (0,-12), (1,0), (3,6), (4,12).

3. Find xif f(x)=6from the below given table

X: 0 1 3 4
f(x): -12 0 12 24

using the inverse interpolating polynomial.

5
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Higher Order Lagrange Interpolation

4. Find the value of xcorresponding to f(x)=12from the following data set
{(2.8,9.8), (4.1,13.4), (4.9,15.5), (6.2,19.6)} using the inverse interpolating

polynomial.

Keywords: Lagrange Interpolation, Inverse Interpolating Polynomial
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Module 1: Numerical Analysis

Lesson 12

Newton’s Forward Interpolation Formula with Equal Intervals

12.1 Introduction

Let y = f(x) be a continuous function defined on the interval [a, b]. Consider the

partition of the interval into equally spaced subintervals as:

A= Xy <Xy <Xy <o <Xy <Xy <X e <Xy =D
wherexj — X, =hforeach j=0,12,...,N.
Thus the nodes X, X,,..., X, are such that x; = x, + jh for j=0,1,2,..,N.

We have the data set as:

{(%s T )a (X B oo (X Fi0)}-

12.2 Gregory-Newton Forward difference Interpolating Polynomial

Suppose it is required to evaluate f(x) for some x=x,+ phwhere p is any real

number. Newton’s forward difference interpolation makes use of the forward

difference operator A on the given data set to generate a polynomial. For any real

numberp, the shift operator E gives E” f (x,) = f (X, + ph).

Also we know E =1+A.

E (4 ph) =1+ A) 16)=(1+4)’y,
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Newton’s Forward Interpolation Formula with Equal Intervals

p(p-1) », , PP-D(P-2) s

={¥o + PAY, +TA Yo+ 3l Yot

p(p D(p-2)..(p—N+1)
T Aot}

(using Binomial theorem).

For an N-data set, the (N + 1)"and higher order forward differences became zero,

so the infinite series in the above equation becomes a polynomial of degree N.

Note that p =2 _hXO is a linear function of x

Thus p(p—l)(p—li)'---(p ~N+1)

will be a polynomial of degree N is x.

Thus we have

p(p—)

p(p—l)(p—Z)Aa

LA Yot 31

Yo = f(X + ph) =Y, + pAy, + Yo +

NI

as the n™ degree polynomial interpolating the given equally spaced data set. This

Is called the Gregory-Newton Forward difference interpolating polynomial.

The local truncation error in (12.1) becomes

T (f X) p(p 1)((?\' +21)) (p N)h(n+1)f N+1 (g)

2
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Newton’s Forward Interpolation Formula with Equal Intervals

where min{Xy, X,,..., Xy, X} <& < mMax{ Xy, X,,..., Xy, X} -

Example 1. Find the Newton Forward interpolating polynomial for the equally

spaced data points

X: 1 2 3 4

F(x): -1 ) -1 -2

Compute f(1.5).

Solution:
Given x,=Lh=1 f,=-1.

The difference table for the given data is:

X f Af A* f A*f
1 i
-1
2 -2 2
1 0
3 -1 -2
-1
4 -2

Clearly Af =—1,A*f =2and A*f =0.

Using the Newton’s forward interpolating polynomial given by (12.1), we have

3
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Newton’s Forward Interpolation Formula with Equal Intervals

F(x) = _1+( XT—lj 1)+ (x—l)z(!x— 2) () XD ;!2)(x—3) )

1+ (X _1)(_1) + (X _1)()(2_ 2)(_2)

=X*—4xX+2.

Now f (x :E) :(EJZ —4(§]+ 2= I -1.75.
2 2 2 4

“ f(1.5) = —1.75.

Example 2: Interpolate at x = 0.25 from the data given without writing the

polynomial.

X: 0.1 0.2 0.3 0.4 0.5
f(x): 1.4 1.56 1.76 2.0 2.28
Solution:

The function value is to be found at x = 0.25 which is nearer to the node x = 0.2.
So choose x, =0.2,h=0.1,x=0.25.
X, =0.25=x,+ ph=0.2+ p(0.1)

0.25-0.2
TP o

0.5.

The forward difference table for the given data is written as

X f(x) Af A% f A% f A*f

4
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Newton’s Forward Interpolation Formula with Equal Intervals

0.1 14
0.16
0.2 1.56 0.04
0.2 0.0
0.3 1.76 0.04 0.0
0.24 0.0
0.4 2.0 0.04
0.28
0.5 2.28
From above,  x,=0.2(chosen),  f, =1.56,Af, =0.2,A’f, =0.4and
A*fy=A"f, =0.

The Newton’s forward interpolating polynomial becomes

£(0.25) = f, + pAf, + p(gl‘l) AZf,.

Thus £(0.25) = 1.56 + (0.5)(0.2) — (0.125)(0.04)
= 1.655.

Note: Newton’s forward interpolation formula is used if the function evaluation is

desired near the beginning of the tabulated values.

Exercises:

Use Newton’s forward interpolation formula to find

5
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Newton’s Forward Interpolation Formula with Equal Intervals

1. f(—0.5)and £(0.5) from

X: —2 -1 0 1 2

f(x): 9 16 17 18 24
2. f(45) from

X: 40 50 60 70 80

f(x): 31 73 124 159 190

3. Find the number of persons getting salary below Rs. 300 per day from the

following data.

Wages in|200—250|250—300 [300—350|350—400 | 400— 450

Rs.

Frequency | 9 16 35 70 20
Keywords: Newton’s Forward Interpolation Formula, Forward Difference

Operator
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Module 1: Numerical Analysis

Lesson 13

Newton’s Backward Interpolation Polynomial

13.1 Introduction

Consider the discrete data set for the continuous function f(x) on the interval

[a,b] as (as considered in the lesson 12)

(%0 6, (% £) e (X T}

Let us now try to evaluate the function f(x) at some location x near the end

nodes x,,_, Or X, .
Write x =X, + ph, p is any real number.
Theny, = f(x)=f (X, +ph)=E"f(x).

13.2 Gregory-Newton Backward Interpolating Polynomial
Use the relation between E and the backward difference operator V given as

E=(1-V) .
Now EP =(1-V)".

Thus f (x, + ph)=(1-V) "y,.
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Newton’s Backward Interpolation Polynomial

Expanding (1- V)_p using binomial expansion, we write

+1 +1)(p+2
f(xy + ph)={yy + pVy, + p(gl )VZyN + PP 3)|(p )V3yN +...
. p(p+1)(p+§)l---(p+ N=Dgny 1.3

For the given N-data set, the (N + 1)"and higher order backward differences

become zero, so the infinite series above becomes a polynomial of degree N.

Note that x = x,, + ph

p(p+D..(p+N-=-1) i
N!

a

X=Xy . : .
=p= - N.is a linear function of x, and the product

polynomial of degree N in x.

Thus we get the N™ degree interpolating polynomial in terms of the backward

differences at x, as:

f (% +ph)=yy + pVy, + p(gfl) vy, + PN D gy

3!

. |0(|0+1)(|o+|§I)|---(|o+N—1)VNyN (13.2)

This is called the Gregory-Newton Backward interpolating polynomial.

The local truncation error in (13.2) is

Tu(f:%)= p(pz;);(l;’ﬁ N v v gy

2
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Newton’s Backward Interpolation Polynomial

where min{Xy, X,,..., Xy, X} <& < mMax{ Xy, X,,..., Xy, X} -

Note: Newton backward interpolating polynomial is more efficient when applied

to interpolate the data at the end of the data set.
Let us illustrate this method.

Example 1: The following data represents the relation between the distance as a

function of height:

x =height | 150 200 250 300 350 400

y =distance | 13.03 15.04 16.81 18.42 19.90 21.27

Find y(410).

Solution:

Letx = 410, chose x, =400, h = 50, y, =21.27.

X=Xy _E_
h 50

0.2.

We now find vy, V?y,,V3y,,V"y, by constructing the difference table:

X f \ V? \% V!
150 13.03

2.01
200 15.04 -0.24

1.77 0.08

3
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Newton’s Backward Interpolation Polynomial

250 16.81 -0.16 -0.05
1.61 0.03

300 18.42 -0.13 -0.01
1.48 0.02

350 19.90 -0.11
1.37

400 21.27

Using (2), we obtain

L PP+ oo

VY, 3l N

f(410) = y, + pvy, + 22D

2702002 i 0DAAE2

=21.53.

Thus f(410) = 21.53

Note that, whenp = 0.2, p?® p*only correct the solution at fourth and fifth

decimal places.

Example 2: Find the cubic polynomial which takes the following data:

x: 0 1 2 3
f(x): 1 2 1 10
Solution:

4
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Newton’s Backward Interpolation Polynomial

Let us now form the difference table for the given data:

X f Af A?f A’ f
X, =0 1=f,
1= Af,
1 2 -2= A%,
=A°f
12 ’
_1 {: A3 fN
2 1 10=A?f,
9= Af,
Xy =3 9= f,
_ X—=%X x-0
Case 1: Take X, =0,p= = =X.
h 1
Let us now find the Newton’s forward interpolating polynomial:
F(X)= 1, + pAf0+—p(p2_1) APy + p(p—lg(p—Z) A%,
-1 -1)(x-2
11 XY oy XOXED(X22)
2 6
=2 -7x*+6x+1 (i)

Case 2: Let us now find the Newton’s backward interpolating polynomial:

Take x, =3, f, =10,h =1.

5
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Newton’s Backward Interpolation Polynomial

p= = =(x-3).

F(X)= f, + Vi, +p(p2 Dy, PR E2 g

p=(x—-3),p(p+1) =(x—-3)(x—2), p(p+D(p+2)=(x—-3)(x—-2)(x—-1)

Thus f(x) =10+ (x-3)(9) + (X_3)2(X_2)(10)+ (X_B)(ng)(x_l) 12)

=2x° —7x* +6x+1. (i)

(i) and (ii) clearly indicate that the interpolating polynomial for the given data is
the same though we use different methods.

Exercises:
1. Use the Lagrange interpolating polynomial for the data:

X 0 1 2 3
f(x): 1 2 1 10

Show that the interpolating polynomial is p,(x) = 2x® — 7x* + 6x +1.

2. Find f(2) from the data

x: 1 1.4 1.8 2.2
F(x): 3.49 482 5.96 6.5

6
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Newton’s Backward Interpolation Polynomial

3. Iff(1.15) = 1.0723, £(1.2) = 1.0954, f(1.25)=1.118 and
£(1.3) = 1.1401 find £(1.35).

4. Find the number of men getting wages below Rs. 35 from the data:

WagesinRs: [ 0— 10 10—20 20— 30 30—40

Frequency 9 30 35 472

Keywords: Backward Difference Operator, Local Truncation Error, Newton’s

Backward Interpolation Polynomial
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Module 1: Numerical Analysis

Lesson 14

Gauss Interpolation

14.1 Introduction

Newton’s Forward and Backward interpolating polynomials are used to interpolate
the function values at the starting or end of the data respectively. We now see the
central difference formulas which are most suited for interpolation near the middle

of a tabulated set.

Consider the data points as:

{(%a Vs ) (X0 Yoo o 0 Vg ) (X0 Yo ) (% ¥ ) (%o ¥z ) (X0 V3 )}

14.2 Gauss-Forward Interpolation Formula

The difference table for the above data is:

The newton’s Forward interpolation formula is:

RS CE IR (LR

p(p-1)(p-2)(P-3)

Yo+ A1

Yo + -

(14.1)
We know A’y =A%y, — A%y = A%y, =A%y + A%y .
Similarly, A’y, = A’y + A%y |, A'y, = Ay + A% .
Also A’y — A%y, =A%y , = A’y =A%y, +A%Y,.
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Gauss Interpolation

Similarly, A’y , =A%y , + A’y etc.
Substituting for A%y,,A%y,,A%y,,...in equation (1), and rearranging, we get

p(p-1) A2
2!

(p+(P)P-1) ya, , (P+D(ONP-D(P-2) .

Yo=Yot PAY, + 31 41

Yat

(14.2)

This is called Gauss-Forward interpolation formula.
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Module 1: Numerical Analysis

1 difference

2" difference

3" difference

4" difference

5™ difference

Yo

Yo =

Yi

Ay_3 [: é‘)/5]
2

Ay_z [: é‘)/3}
2

Ayl(: 5y1\J
2

Central

Ayo (: 5y1]
2

Ayl(: é‘ysj
2

Line

Azy-s(: 52)/_2)

AZY-z (: 52)’_1)

Azy—l(: 52)/0)

AZYO(: 523’1)
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Gauss Interpolation

AZYl(: 523’2)
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Module 1: Numerical Analysis

We know Ay, = 5y1,A2y_1 =5%y, A’y = 53y1and A'y , =&"y,;using these in (2),

2 2

we write the equation in (2) in terms of the central differences as:

P(P=D) 5o, (P+D(PIP = g5 (P+D(PI(P=D(P=2) s
21 ° 3! : 41

Yp = Yo+ POY, + Yo+
2

(14.3)

This formula can be used directly to interpolate the function at the centre of the

data i.e., for values ofp, 0 < p < 1.

14.3 Gauss-Backward Interpolation Formula
We have Ay, —Ay =A%y,

= Ay, =AYy +A%Y

Ny, =A%y + A%y, Ay, =A%y, + A%y etc
Also, A®y =A%y +A%y

A'y =AYy, +A%y,, etc.

Substituting these in equation (1), we get

p(p-1)
2!

p(p-D1(p-2)
3!

Yo = Yot P(AY4+ A%y, )+ (A%y, +A% )+ (A%, + A%y, )+

(p+Dp o, (P+DP(p-1

=Yt pAy—l + o -1 3

(Asy_2+A4y_2)+...

109 WhatsApp: +91 7900900676 www.AgriMoon.Com



Gauss Interpolation

or

0+ o, (PHDP(O-D o (P+2(P+DP(P-D)

21 N 3! 4 Yoo

Yp=Yot PAY, +
(14.4)

This is called Gauss-Backward interpolation formula. This is written using the

central differences as:

p(p+D) o (RHDD(D-D) s,

+2)(p+1 -1
yp:y0+p5y_1+T y_1+(p )(p )p(p )54
2 -

T : " Yo + -

(14.5)

Formula given in (2) and (4) or (3) and (5) have limited utility, but are useful in

deriving the important method known as Stirling’s method.

Keywords: Stirling’s Method, Central Differences, Gauss-Forward Interpolation

Formula, Interpolation near the Middle of a Tabulated Set
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Module 1: Numerical Analysis

Lesson 15

Everett’s Central Difference Interpolation

15.1 Introduction

We have the Gauss forward interpolation formula as

PR+D) poy , (PFDP(R=D) sy, (PHDP(P=1(P=2) s

Yo=Yot PAY, + ol -1 31 41 Yo

+(p+2)(p+1)5p'(p—1)(p—2)A5

VoS \. (15.1)

15.2 Everett’s Formula

Eliminating odd differences Ay,,A’y_,,A°y_,etc. by

AY, =Y, — Yo, A%y, = A’y — A%y, A°y , = A"y, — A'y_,etc., then (1) becomes

p(p=1) 2y, , (P+DP(p—-1)

Yo =Yoo+ P(Yi—Yo)+ ) S

(Azyo _Azy_l)+
(p+1)p(r:”—1)(p—2) Aty + (p+2)(|o+1):!(p—1)(p—2)(A4y_1_A4y_2)+_“
P(P=D(P=2) 2,  (P+DP(P=1) \2p

3! 3!

(p+Dp(p-D(p=2)(P=3) sy, , (P+2)(p+DP(p-1)(p—2)
5! B 5!

=(1-p)yo+ Py -

Ay | +...

(15.2)

This is known as Everett’s formula.
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Everett’s Central Difference Interpolation

This formula is extensively used as it involves only even differences in and below

the central line.

Example 1: Below given data represents the function f(x) = logx. Use Everett’s

formula to find f(337.5):

360
2.55630

320 340 350

2.50515

330
2.51851

X: 310
f):

2.49136 2.53148 | 2.54407

Take the data as:

x_, =310, f_, =2.49136,
x_, =320, f , = 250515,
X, =330, f, =2.51851,
x, =340, f, = 2.53148,
x, =350, f, = 2.54407,
X, = 360, f, = 2.5630,

h=10,p = x—1330.

y Ay A’y A'y A°y

2.49136
0.01379

113

2.50515
0.01336
2.51881

-0.00043

-0.00039
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Everett’s Central Difference Interpolation

0.00001

0.01297 0.00001
253148 -0.00038

0.01259 0.00002
2 54407 -0.00036

0.01223
255630
Takex::3375,p::§§z£%;§§9::075.

0.00004

To change the terms with negative sign, putting p=1-—qin equation (1), we get

2 2 2 2 2 2
@ 1) o, A1) 2)

Yo =Y +T

+PY; + 3l

g=1-p=0.25.

ol

P(P° ~1) po, | P(P"-1)(P" ~2)
| 0

ol

Y, e

Y+

.y, =0.62963+0.00002 — 0.0000002 +1.89861+ 0.00002 + 0.00000001 = 2.52828

Exercise:

1. Find £(25) from the data

X:

20

24

28

32

f:

854

3162

3544

3992

using Everett’s formula.

3
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Everett’s Central Difference Interpolation
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Module 1: Numerical Analysis

Lesson 16

Stirling’s and Bessel’s Formula

16.1 Stirling’s Formula

This is obtained by taking the mean of the Gauss Forward and Backward

interpolation formulae.

This is written as:

Yp=Yot p(—AyO ;Ay‘1j+g—jA2yl + p( p;_l)(A3y1;A3y2j+ p2( ZZI _1) Ay, +
(16.1)

Writing this using central differences, we obtain

Y, =Y +§(5y; +5y;j+g—j5yo +%(53y; +53y;j+ p2( p42!—12)54y0 +
(16.2)

This is called the Stirling’s formula.

Example 1: Find the value ofe*when x = 0.644 from the below given table:

X 0.61 0.62 0.63 0.64 0.65
y =e* 1.840431 1.858928 1.87761 1.896481 1.91554
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Stirling’s and Bessel’s Formula

Solution:

X=0.644,x,=0.64,p= W =0.4,y,=1.896481.

By forming the difference table (left as an exercise!) we note that
Ay, =0.018871, Ay, =0.01906,A’y , =0.000189and all higher order differences

are approximately zero. Substituting these in the Stirling’s formula given in (1), we
get
v(0.64) = 1.896481 + 0.0075862 + 0.00001512 = 1.904082.

16.2 Bessel’s Formula

We know A%y, — A’y =A%y,
= Ay, =A%y, - A%y ,.
SimilarlyA'y_, — A%y, =A%,

= Ay, =A%y, -A%,

Using these in the Gauss forward interpolation formula, we obtain

2
_ -1
—p( P 1) (EAZ -1 L j‘l‘—p( p3| )Aay_l

Yo = Yo + PAYy +— | SA%Y +§A2y_1

+|0(|oz—1)(|0—2)(1

4 1 4
T EA y_2+§A y_2J+...

1 -1 1 -1
=Y, + PAY, +_MA2y_1+E p(gl )

2.1
2 2] (AZYO_A3y—1)+MA3y_1

3l

2
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Stirling’s and Bessel’s Formula

p(p*-1)(P-2)
41

21 -2
+1 p(p )(p )A4y_2+1
2 41 2

(A4y_1—A5y_2)+...

or yp =Yt pAyo +

2! 2 3!

+(p+1)l@(lo—l)(lo—Z)(A“y_z+A“y_lj+
41 2

This is known as the Bessel’s formula.

Example 2: Using Bessel’s formula,
y(25)0iven(20) = 2854, y(24) = 3162,y(28) = 3544,y(32) =

Solution:

Taking X, =24,h=4,y,=3162.

We have p :%(x—24).

X y Ay A2y
20 2854
308
24 3162 74
382
28 3544 66
448
3

WhatsApp: +91 7900900676

IO(lo1)[A2y1+A2yoj+(p;j p(p_l)A3y_1

(16.3)
obtain
3992.
A’y
-8

www.AgriMoon.Com



Stirling’s and Bessel’s Formula

32 3992
: 1
Taking x=25,p =7

Bessel’s formula is:

p(p-1)( A%y, +A%y, (p_;jp(p_l) )
Yo =Yo+ PAYy +——; ( 5 ]+ 3 A’y +...
=, y(25) = 3162 + (0.25)(382) + (0'25)(2_0'75) (74 ; 66] + (_0'25)(0'625)(_0'75) (-8)
=3250.87.
Note:

1. If the value of plies between —%and % prefer Stirling’s formula, it gives a
better approximation.
2. If plies between %and % Bessel’s or Everett’s formula gives better

approximation.

Exercises:

1. Using Stirling’s formula, find v(35) from the data
y(20) =512,y(30) = 439,y(40) = 346,y(50) = 243.

2. Find f(34) using Bessel’s formula from

4
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Stirling’s and Bessel’s Formula

X: 20 25 30 35 40

F () 11.47 12.78 13.76 14.49 15.05

3. Tabulate f(x)=e"in[1.72,1.78]with h = 0.01. Find f(1.7475) using (i).

Bessel’s and (i) Everett’s formula.
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Module 1: Numerical Analysis

Lesson 17

Newton’s Divided Difference Interpolation

17.1 Introduction

In Lagrange interpolation, the fundamental polynomials are constructed for writing
the interpolating polynomial. Suppose we found the fundamental polynomials for
the given N data point set. If a data point is added to this set, then the fundamental
polynomials are reconstructed. This makes the process laborious. An easier way of
finding an interpolating polynomial is given by constructing the divided

differences.

17.2 Divided Difference

For the set {(x,, f,).(x. f,)}, the linear interpolating polynomial a,+a,x is given

by:
wess N
f(x,) x, 1=0.
i) x 1

Expand the determinant in term of the first row, we get

p(X)(XO - Xl)_x[ f (Xo) - f(Xl)]+1[X1f (Xo) - Xof(xl)] =0

or it is rewritten as

p(x) = f(x,)+(X—X,) f (X;) : )1: (%)

= (X)) + (X=%;) F [ X, %] (17.1)
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Newton’s Divided Difference Interpolation

where f [x,,x, ]is defined as the first divided difference of f(x) relative to x, and

X,, given as:

F09)— F(%)

f %% ]= —
0

Example 1: Givenf(2) = 4, f(2.5) = 5.5, find the linear interpolating polynomial

using Newton’s divided difference interpolation.

Solution:

Given X, =2, f,=4,x =25, f =55.

Newton’s first divided difference

f(x)-f(x) 55-4 15
f y = 0 = = :3
X% X, — %, 25-2 05

The interpolating polynomial is
p1(X) = f (Xo) + (X_ Xo) f [XO’ Xl]
=4+ (x—2)(3)

=3x-2.

17.3 Generalization to (N + 1) Data Points

The second divided difference of f(x) relative to the points X,, X;, X, is written as:

f X0 %] = % %]
(Xz_xo)

f[XO,Xl,X2]=
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Newton’s Divided Difference Interpolation

where f [x,,x, |is the first divided difference of f(x) relative to x,and x,is given

by:

f —f
e 100100

The third divided difference of f(x) relative to X,, X, X,, X;is given by

f [XO’X]-’X27X3]: f [X1!X2!X3]_ f [XO’X17X2] |

(X3 _Xo)

The same way, the n" divided difference is written as

[ X X )= [0 X Ko ]
(XN _Xo)

f
f [ %o Xpooons Xy | =

Let p(X)=2a,+(X—X;)a, +...+ (X=X )(Xx—x)...(x— X, )a, be the interpolating

polynomial for the (N + 1) distinct points {(X,, f5),(%;, f; ) (X f )} -

Substituting x = x,in the above, we get

P(%)=a= (%)= f[x].

Put X =X , we obtain

P(x)=a,+(x—%)a, = f[x](say)

)= (%) _
(% = %)

=a f[X,, %]
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Newton’s Divided Difference Interpolation
Put X =X,, we get

p(X2)= f(Xo)"'(X_Xo) f[XO'X1]+(X2 _Xo)(xz _Xl)az =f(x,).

On simplifying, we get

f[xvxz]_ f[Xo’x1]
(%, = %) |

a, = f[Xo’Xiixz]:

Proceeding in this way, we show that

a, = f[Xg, X, Xy 1.

Then we obtain the divided difference interpolating polynomial as

Pu (X) = F (%) + (X =% ) F[Xo, X+ ootk (X =% ) (X=X )ee(X = Xy ) F[Xg, X0,y X 1.
(17.2)

This formula is easily extended to (say) (N + 2) data. (i.e., addition of one more

data point to the previous data set) as

Praa(X) = (%) + (X =% ) F[Xg, X ]+ oo (X = Xg ) (X = Xy ) F[Xgr Xoovs X T+
(X =Xg ) X=Xy ) F[Xgs Xy e Xy s Xy 1] (17.3)

It amounts to finding the next divided difference and adding it to previously

obtained interpolating polynomial as shown above.

Example 2: Find the Newton divided difference interpolating polynomial for the
data.
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Newton’s Divided Difference Interpolation

X 0 1 3
f 1 3 55
Solution:

X, =0,x,=1x,=3f,=1f =3 f,=55

f)-fO) 3-1
1-0 1

f[01]= =2,

13- 13 522 %.

[om]—ﬂ 2 _g.
0 3

. Newton’s divided difference interpolating polynomial is
p,(x)= f(0)+(x-0)f[0,1]+ (x-0)(x-1) f[0,1,3]
=1+x-2+(x)(x-1)8

=8x* —6X +1.

Exercises:
1. Find f(7) from the following data using the Newton’s divided difference
interpolation.

X: 1.5 3.0 5.0 6.5 8.0

f: 5.0 31.0 131.0 282.0 521.0

. If f(x)=—, find the divided difference f[X,, X, X,].

125 WhatsApp: +91 7900900676 www.AgriMoon.Com



Newton’s Divided Difference Interpolation

3. From the data
X: -1 1 4 7

F ) -2 0 63 342

(1) Find the Lagrange interpolating polynomial.

(i1) Find the Newton divided difference interpolating polynomial.

Keywords: Divided Difference
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Module 1: Numerical Analysis

Lesson 18

Numerical Differentiation

18.1 Introduction

Given a continuous function f (x)on an interval [a,b], it can be differentiated on
(a,b). However, when f (x) is a complicated function or when it is given in a data

set, we use numerical methods to find its derivatives. There are many ways of
finding derivatives of a function when given in its data form. Important among
these methods are methods based on interpolation, method based on finite

difference operators. We discuss these methods through examples.

18.2 Methods based on Interpolation

If (x.f), i=012., Nare the (N+1)data points representing a function

y = f(x). The Lagrange interpolating polynomial for above set of data points is

given by
P00 =300, (18.1)

7(X)
(X_Xk)ﬂ-’(xk) .

and z(x) = (x—%, ) (X=X, )...(x=%y ) .

wherel, (x) =

Differentiating (1) w.r.t. x, we obtain

P/ (0= 1 (01,

Case 1: Linear interpolation: For(x,, f;),(x. f,):
We have P (x)=I,(x)f, +1,(x)f,

wherel (x) = 2= and 1,(x) = 22

0
Xo =% X — X,
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Numerical Differentiation

X—X

P(x)=—2f + 2% g
Xo =% X =X,

The derivative of this is

H’(x)=X1X1f0+ 1 ¢ (18.2)

Case 2: Quadratic interpolation: For the data{(x,, f,).(x. f,).(x,. f,)}, we have
the interpolating polynomial as P,(x) =1,(x) f, +1,(x) f, + L, (x) f,.

Its derivative is

P/(xX) =1 () f, +1 () f, +1,' (%) f,

2X—=X =X,

(Xo _Xl)(XO _Xz)

o 2X— X, — X, 2X— Xy =X, 2X =Xy — X
L P(x) = f,+ f, + f, (18.3)
{(Xo_xl)(xo_xz) (% =%) (% =%,) (% = %) (% = %)

2X— Xy — X,
(Xl_XO)(Xl_XZ)

2X— Xy — %,
(%= %) (% = %)

wherel, (x) = LX) = L L(x) =

At x=x,P/(x) = 4% 2%~ % — %,

+ %% f,.
(Xo_xi)(xo_xz) ’ (Xl_XO)(Xl_Xz) i

(% =%) (% —%)

f,+

Similarly we can write P)/(x)at any nodal point or a non-nodal point.

" 2 " 2
In the same manner,1," (x) = (X)) = and
’ (Xo_xi)(xo_xz) ' ( _XO)(Xi_Xz)
n 2
I2 (X):
(% =% ) (%, = %)
and the second derivative of P,(x)i.e.,
i f i
P'(x)=2 0 + L + 2 18.4
=2 G0 e )06 %) (xz—xo)(xz—xl)} (184)

This gives a way of finding an approximation to f'(x)at every xe[x,,x,]by

finding the interpolating polynomial P,(x) for the given set of data points.
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Numerical Differentiation

Example 1: Find f’(2)and f"(2) for the below given data set.

X 2 2.2 26
f. 0.69315 0.78846 0.95551
Solution:
We have
' ' 2Xy = X — X (XO_XZ) (XO_X1)
f'(x,)="1'(2)= 0 1 2 _f + f,+ f,
i (% =%)(%=%) ° (% =%)(=%) " (%=%)(%~x)
4-22-2.6 2-2.6 2-2.2
=0.49619.

" _ fo + fl 4L f2 .
O (e P s T Fem e ]

0.69315 0.78846 0.95551 }

“@= 2{(—0.2)(—0.6) (02)(~04) " (0.6)(04)

=-0.19642.

Thus '(2)=0.49619 and f"(2)=-0.19642.

In the above, we used Lagrange interpolation method. Similarly one can use

Newton interpolation methods also.

18.3 Methods based on Finite Differences

For a given equally spaced data set, we have learnt that Ef (x) =e"™ f(x)

i.e., e®=E=hD=IlogE (18.5)

where E is the shift operator, D is the differentiation operator, hbeing the

constant step size. Using the relation between E, Aand Vv, we write
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Numerical Differentiation

1 1
log(1+A)=A-—=A>+=A%— ..
og( + ) ; +3

hD=IlogE = 1 1
~log(1-V)= V4o Vi Vit (18.6)

Af, BEYL f, FEYS f—..
df 3
Then hd—(xk)sth(xk)s . .
X Vi +=V2f + V3 +.

2 3 (18.7)

In general we can write the higher order derivatives in terms of the higher order

differences, the n" derivative operator (;j —can be written as
X
An _EAn+l+mAn+2 .,
h"D" = 2 324 i
VANSUR LS ClLL i) RV
24 (18.8)

In particular, when n=2and at x=x,,

i Asz—Asfk+EA4fk—...
h* (%) = .
dx’ 2 3 11_,

Vet +V fk+EV fo+...

(18.9)

2
Example 2: Find Y and OI—z’at x =1.2 using forward differential from the

dx dx
following table:
X! 1 1.2 1.4 1.6 1.8 2.0
y(x): 2.7183 3.3201 4.0552 4.953 6.0496 7.3891

Solution:

Take x,=1.2, y,=3.3201, h=0.2. We form the difference table for the given data

set as:
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Numerical Differentiation

%w =%{Af (1.2)—%& f (1.2)+%A3f(1.2)—..1
:%[0.7351—%(0.1627)+%(0.0361)—..}
~ 3.3205.
X y A A? A A* A®
1.2 3.3201
0.7351
14 4.0552 0.1627
0.8978 0.0361
1.6 4.9530 0.1988 0.008
1.0966 0.0441 0.0001
1.8 6.0496 0.2429 0.0094
1.3395 0.0535
2.0 7.3891 0.2964
1.6359
2.4 9.025

d’y 1r., 5
LA VNS T
dx? s hz[ ]

= L[0.1627 - 0.0361] ~3.165.
0.04

Example 3: Given: (x.y;), i=12,34,5,6as:

X 3 4 5 6 7 8
y 0.205 0.24 0.259 0.262 0.25 0.224

Find the value of xfor whichy is minimum.

Solution:
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Numerical Differentiation

The difference table is:

X y A A’ A
3 0.205

0.035
4 0.24 -0.016

0.019 0.0
5 0.259 -0.016

0.003 0.001
6 0.262 -0.015

-0.012 0.001
7 0.25 -0.014

-0.026
8 0.224

Take X, =3, y, =0.205, h=1.0.

Let us now obtain the interpolating polynomial using Newton’s forward

X— X,

difference interpolation. It is y(x) =y, + pAy, + p(pz—l) A’y, Wherep=

or y(x)=0.205+(0.035) p —(0'0716) p(p-1).

The minimum value of y(x)is obtained by solving j—z: 0

ie., (0.035)- 2 p2—1) (0.016) =0

— 0.035-0.008(2p -1) =0

. (2p 1) 2005
0.008
— p=2.6875
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Thus x =x, + ph=3+2.6875="5.6875.
Hence minimum value of y(x)is attained at x =5.6875and the minimum value

150.2628.

Exercises

1. Find the value of cos1.747 using the below table:

X 1.7 1.74 1.78 1.82

sinx: 0.9916 0.9857 0.9781 0.9691

2. Given sin0° =0,sin10° = 0.1736,sin 20° = 0.3420,sin 30° = 0.5,sin 40° = 0.6428.
Find

(i) sin23°

(i) cos10°

(i) —sin20° using the method based on the finite differences.

3. Find the value of xfor which yis maximum from the below tabulated values

for y(x).
X: 1.2 1.3 1.4 1.5 1.6
y: 0.93 0.96 0.98 0.99 1.0

Keyword: Finite differences, Lagrange interpolation,
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Module 1: Numerical Analysis

Lesson 19

Numerical Integration

19.1 Introduction

Consider the data set S for a given function y=f(x) which is not known

explicitly where S ={(x;,¥), (X, Y1 )1 (X Vi )} -

It is required to compute the value of the definite integral

I =j.y(x)dx; (19.1)

The Lagrange interpolating polynomial for the above data is given by

109= 200 e 0 1 (€)

where z(x) = (X=X, )(X=%,)..(Xx=Xy ) ; X, <& <X,

andl.(x) is the Lagrange fundamental polynomial.

Replace the function y(x) by (19.2) in the integral (19.1) we obtain

A
-"LZ'

e

:i[il(x)f}dxﬂ'{ (%) ‘N”)(g)}dx (19.2)
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-2

N
i=0

[

orl=4f +R, (19.3)

QD ey T

Ii(x)de f,+R,

1+1)|jn(x)f<N+l>(§)dx .

b
where 2, arejli(x)dx and R, is the remainder given by T

Equation (3)gives an approximation for the integral value.

19.2 Newton-Cotes Formulae

Using Newton’s, forward difference interpolation polynomial for the given data

set S, we now derive a general formula for numerical integration of

I ='t|1y(x)dx (19.4)

Consider the partition of the integral [a, b] as

a=X, <X..<x, =bsuch thatx, =x,+Nh i.e., h:b&—a.

Using Newton’s forward interpolation formula in the above integral; we obtain

XN

I=I[Yo+pAyo+

X

p(P-1) .o, ., P(P-D(P-2) ,5
TA Yo + o A y0+..}dx (19.5)

X=X
where p= 0,

The above integral can be written as
N 2 3 2

I :hj{yﬁ pAyo+%A2yo+WA3yo+_}dp (19.6)
. ! !

N

2 3 2 4 3
orl =[hyo+%Ayo+(%—p7)ﬂyo+(%—%+ pszsyw--}

p=0

2
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N N (2N -3 N(N-2
:Nhl:yo.p?AyO_F%AZyo_,_%

Case 1: With N = 1, we have

| = J' y(x)dx
Xo
1
zl’h{yo +§Ay0}

h
:E(YO +Y1)

Case 2: With N = 2, we have

| = Xf y(x)dx

Xo

2 2(1
= Zh[y0 +§Ay0 +%A2yo}

1
=Zh[yo+(y1—yo)+g(y2—2yl+yo)}

1 2 1
= h|:2y1+§y2 _§y1+§yo}

1
=§[y0+4y1+y2]
Case 3: With N=3, we have
| = f y(x)dx
Xo

3 3 1
= 3h|:yo +EAyo +ZA2yo +§A3y0}

3

3 1
:3h[y0+—(y1—yo)+—(y2 —2y1+yo)+§(y3—3yz +3y1—yo)}

2 4

3
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3h
=§[yo+3y1+3yz+y3]

Numerical Integration

(20.1)

XN

We now discuss the use of the casel for evaluating the integral, | = j y(x)dx .

We can write 1 =1, +1,+1

Xj

where |, = I y(x)dx.

Xjfl

N
sty =21,
j=1

X0

We take two consecutive data points at once and apply the formula given in

(19.5) for every pair of data points. Equation (19.4) is known as the Newton-

Cotes quadrate (Interpolation) formula. With different values of N =1,2,3,... ,we

derive different integration methods.

Ly

y = f(x)

4 B
o xc xl ;
We obtain
4 1. 1] h
l, = I y(x)dx = h{yo +§Ayo_ =§[yo + Y]
2 1.7 h
1, = [ y()dx= h[yﬁEAyl_ =5[y1+ Y.]

Xo

138
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Numerical Integration

g 1 h
I =xjoy(x)d><= h{yz +5Ayz}=§[yz +Ys]

* 1 h
I, = j y(x)dx:h{yNﬁszNl}:E[yN1+yN].

XN-1

Now

XN

| = '[ y(x)dx = T y(x)dx+T y(x)dx +...+ XIN y(x)dx

Xo XN-1

=L+, +..4+1
h h h
:E[yo+y1]+5[y1+y2]+...+§[yN_1+yN]

h
:E[yl"'z(yz+Y3+---+nyl)+yN] (202)

This is known as the Trapezoidal rule. Since the method involves finding the
sum of the areas of these N-trapezoids, this method is named as Trapezoidal

rule.

12
Example 1: Evaluate j 2e*dx using trapezoidal rule by taking h=0.2.
0

Solution:

a=0, b=1.2, h=0.2, we tabulate the functione* at the nodal points as:

X: 0 0.2 0.4 0.6 0.8 1.0 1.2

y = e”. 1 1.221 1.492 1.822 2.226 2.718 3.32

The trapezoidal rule is given by

h
|=25|:(y0+ y5)+2(y1+ Yot Ys+ Y, + y5):|

5
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= O.2[(1+ 3.32) +2(1.221+1.492+1.822 + 2.226 + 2.718)] :

s 1 =4.656.

Example 2: Evaluatef;'ﬂy(xjdx, where y(x) is tabulated as:

x: 0 025 05 0.75 1.0
y: 1 08 0.6667 0.5714 0.5

Solution:
The trapezoidal rule gives
h
=2+ va)+2(vi+ Y2+ %)

= %[(u 0.5) +2(0.8+0.6667 +0.5714)]

=0.697.

Exercises:

1 A solid of revolution formed by rotating about the x —axis, the area between
the x —axis, the lines x = 0and x = 1 and a curve through the points with the

following coordinates:
x: 0 0.25 0.5 0.75 1.0

y: 1.0 09896 0.9589 0.9089 0.8415

Find the volume of the solid formed using the Trapezoidal rule.

2. Evaluate f;fdx using the Trapezoidal rule by taking h = 0.1.

Keywords: Newton-Cotes Formulae, Numerical Integration,

6
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Module 1: Numerical Analysis

Lesson 20

Simpson’s one Third and Simpson’s Three Eighth Rules

20.1 Simpson’s One-Third Rule

It is obtained by taking N = 2 in the Newton-Cotes formula (4). We described
this in case (2) of the lesson (19). We divide the interval [a,b] into an even

number of subintervals of equal length having odd number of abscissas.

We divide the interval [a, b] into 2k subintervals each of length h = E;'—: we

then get 2k + 1 abscissas as
aA=2Xp <Xg<Xg << Xyp, = b, X; = X + ih, 1=1,2,..2k—1.

Now I = f: v(x)dx

= ffy(x]dx—k ff y(x)dx + -+ EZ:_ y(x)dx.

Now using the Newton-Cotes formula with N = 2 for each of the above

integrals, we get

Xo h
| yeoar =i+ 4+ 32

Xy h
| yeoax =31 + 4 + 0]

Xk h
| veodx = Staics + dvcs + vl

Xok—2

Add all these values, we obtain
b

I = f}f(x]dx

a
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Simpson’s one Third and Simpson’s Three Eighth Rules

h
= E[J’ﬂ +4(yy tys t ot Yop_g) F206 Y+ Vop_a) + Vol
or,

[ = g[x +4.0+ 2E] (20.1)

whereX = sum of the function values at the end points, 0= sum of the function
values at odd numbered abscissas, and E = sum of the function values at even

numbered abscissas.
. . . , 1 . .
This formula is known as the Simpson’s Erd rule of integration.
12
0

Example: Evaluate [ ﬁdx by Simpson’s érdrule taking k = 6.

Solution:

y(x)=—5,a=0b=12,k=6,h =2
yieenh = v £ (A 3145
x: 0 2 4 6 8 10 12

v(x): 1 0.2 0.05882 0.02703 0.01538 0.0099 0.0069

By Simpson’s érd rule:
h
I= E[Q’G +¥s) + 4 +ys +¥5) + 200 +3)]

2
= 5 [(1+0.0069) +4(0:2 +0.02703 +0.0099) + 2(0.05882 + 0.01538)]

= 1.40201L

20.2 Simpson’s Three-Eighth Rule

2
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Simpson’s one Third and Simpson’s Three Eighth Rules

Take N = 3 in the Newton-Cotes formula (4). This is described in Case (3) of
the lesson (19).To apply this method the number of subintervals should be taken

as multiples of 3.

The integral
Xy =Xg+Nh

| = j y(x)dx
Xo+3h Xp+6h XN

= Jy(x)dx+ j y(X)dx +...+ Jy(x)dx
Xo Xo+3h XN—3

(20.2)

This is known as the Simpson’s %”‘rule.
. 6 1 £ ’ Eth
Example 2: Evaluate fD ﬁdx by Simpson’s . rule.

Solution:

1
1+x2°

The number of subintervals is 6, is a multiple of 3. So we can use the Simpson’s

Take h=1,x,=0,%x,=6, f(X)=

20 ryle.

a

X: 0 1 2 3 4 5 6

y: 1 0.5 0.2 0.1 0.0588 |0.0385 |0.027
Yo Y Y, Y3 Y, Ys Ye

3h
=L+ Y6) +3(v+ Y2 + Va+ ¥5) +2(y;) | =1.3571.

3
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Simpson’s one Third and Simpson’s Three Eighth Rules

0.6
Example 3: Using Simpson’s grdrule, find Ie‘xzdx by taking 6 subintervals.
0

Solution:

Evaluation of e is not a simple function, that cannot be integrated directly. In

such a situation using numerical integration it can be easily evaluated. Let us

construct the data:

X, X, X, X, X, Xs Xs
X: 0 0.1 0.2 0.3 0.4 0.5 0.6
X% 0 0.01 0.04 0.09 0.16 0.25 0.36
y= e X |1 0.99 0.9608 |0.9139 |0.8521 |0.7788 |0.6977
Yo Y1 Y> Ys Ys Ys Ye

. , 1
By Simpson’s E“’ rule, we have

0.6

Ay €T
je dx=§[(y0 Y ) H AV + Yo+ Ys) +2(Yo + V) |
0

:%[(u 0.6977) +4(0.99+0.9139 + 0.8521) + 2(0.9608 + 0.8521) |

:%[1.6977 +10.7308 + 3.6258]

=0.5351.

Example 4: A solid of revolution is formed by rotating about the X-axis the

area bounded by the x-axis, the lines x =0and x =1, and the curve through the

point with the following data:

X: 0 0.25 0.5 0.75 1.0
y: 1.0 0.9896 0.9589 0.9089 0.8415

4
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Yo Yi Yz Ys Ya

Estimate the volume of the solid using Simpson’s é“’ rule.

Solution:

Here h=0.25.

The volume of the solid of revolution is

I :Jl'nyzdx
0

Using the Simpson’s grd rule:

I =%ﬂ[(y02 + y42)+4(y12 + y32)+2(y22)]

02522
3 7

= 0.2618[10.7687]

{(1)" +(0.8415)"} + 4{(0.9896)" + (0.9089)°} + 2(0.9589) |

=2.8192.

Exercises:

5.2
1. Evaluate _[Iogx-dx
4

Using (i) Trapezoidal rule

(if) Simpson’s 2 rule

(iii) Simpson’s =" rule

by taking 12 subintervals. Then compare your results.
2. A curve is given by

5
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Simpson’s one Third and Simpson’s Three Eighth Rules

2

3

2.5

2.3

Evaluate (i) the area below the given curve

6
(ii) Ixy -dx using Simpson’s ird rule.
0

3. Estimate the length of the arc of the curve3y = x* from (0,0) to(1,3) using
Simpson’s i“’ rule by taking 8 subintervals.

T

2
4. Evaluate | = J\/cose -d@ by using Simpson’s 33“’ rule using 11 ordinates.
0

Keyword: Simpson’s one-Third rule, Simpson’s three-eighth rule, Even

number of subintervals.
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Module 1: Numerical Analysis

Lesson 21

Boole’s and Weddle’s Rules

21.1 Introduction

Boole’s and Weddle’s rules are higher order integration methods. These
methods use higher order differences as explained below. By taking N = 4 in

Newton-Cotes formula, we obtain Boole’s rule as:

't 5 2 7
_[ y(x)dx = 4h[y0 + 2AY, +§A2y0 +§A3y0 +%A4y0}

Xo

:Z—g[7y0 +32y, +12y, +32y, +7y,]

Similarly for the next set of data points between (x,,y,)and (xg, ys), We write

the integral as

't 2h
I y(x)dx :E[7y4 +32y, +12y, +32y, + 7y8]

By taking the number of subintervals as a multiple of 4, we obtain

XN

| = j y(x)dx

X

2h
:Epyo +32(Y, + Y+ Vo + Yy o) H12( Yy + Yo + Yig o) H1A(Y + Vg + Yip +) + T Yy |

(21.1)

To use this method, the number of subintervals should be taken as a multiple of
4. By taking N = 6 in the Newton-Cotes integration formula, we obtain the

Weddle’s Rule. Here, the number of subintervals should be taken as a multiple
of 6.
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Boole’s and Weddle’s rules

i _ 9 , . 123, 11 .. 41
For XJ;y(x)dx_(ih[yo+3Ay0+§A Y, +4A y°+EA y0+2—0A y0+mA yo}

:E[yo+5Y1+y2+6y3+y4+SY5+y6]'

X12 3h
For [ y(dx="[Ys +5Y7 + Yo + 6o + Vi + 5%, + Via ]

Proceeding this way, we write

| = f y(x)dx
X0
3h
:E[yo +5(y1 +YstYy,+ y11"')+(y2 Y, +Yst+ Yoo +)
+6( Vs + Yo + Yis o)+ 2( Vs + Yo + Yis +-) + Yy ] (21.2)

Weddle’s rule is found to be more accurate than all the methods discussed
earlier. This is because higher order approximation is used for the integration.

The below given table gives the error estimates involved in the integration
methods.

2
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Boole’s and Weddle’s rules

Summary of Newton-Cotes Methods

S.No. Name Integral Formula Error
1 Trapezoidal Rule le y(x)dx g(y0 +,) _gy”(g); X <& <X
2 Simpson’s érd Rule Ty(x)dx g(yo+4y1+y2) —g—:)y”((f);xo<§<x2
3 Simpson’s %th Rule X3 Y0 %(yo +3y, +3Y, + V) _% YU (€)% <E<X
4 Boole’s Rule Tﬂ y(x)dx 2_2(7y0+32y1+12y2+32y3+7y4) —%yVi(f)iXo<§<X4
5 Weddle’s RilE Ty(x)dx %(y0+5y1+y2+6y3+y4+5y5+y6) —%y“(é);xo <E<X

150
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Boole’s and Weddle’s rules

1.2

Example 1: Evaluate jexdx using Boole’s rule by taking i = 0.3.

Solution:

The function y(x) =e”is tabulated at the nodes x, =0to

Xy =L.2withx. = x,+1ih,i=1,2,3,4,...as:

X: 0 0.3 0.6 0.9 1.2
e 1 1.34986 1.82212 2.4596 3.32012
Yo Y1 Yz Ys Ya

Using this data in Boole’s rule

2h
J' y(x)dx = (7y0 +32y, +12y, + 32y, +7Y,)

[7 +32(1.34986) +12(1.82212) + 32(2.4596) + 7(3.32012) |

=2.31954.

12
Example 2: Evaluate I
)1+ X

~dx by using Weddle’s rule with h = 2.

Solution:

is calculated

The function y(x) = ! >
1+Xx

atx, =0,x, =2,x, =4,%x,=6,X, =8,%x, =10 and x, =12
asy,=1y,=0.2,y,=0.05882,y,=0.02703,y, =0.01538, y. = 0.0099 and
Y, = 0.0069.

4
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Using this data in the Weddle’s rule,

Tl 3h
[T =g (Yo 5%+ Yo+ 6% + Yo +5%,+¥o)

= %[1+ 5(0.2)+(0.05882) + 6(0.02703) +(0.01538) +5(0.0099) + (0.0069)}

=1.37567 .

Exercises:
5.2

1. Evaluate J' log x - dx using (i) Boole’s rule with i = 0.3; (ii) Weddle’s rule by
4

taking h = 0.2. Compare these two values.

1
1-—x?

2. Evaluate

dx using Weddle’s rule.

1
3. Evaluate I(1+ e *sin4x)dxusing Boole’s rule with i = ;
0

1
1+ X

2
4. Evaluate J' dx using Weddle’s rule taking 12 intervals.
0

Keyword: Boole’s Rule, Higher order integration methods, Weddle’s rule.
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Module 1: Numerical Analysis

Lesson 22

Gaussian Quadrature

22.1 Introduction: The problem of numerical integration is to find an

approximate value for

| = [ w(x) f (x)alx (22.1)

where w(x) is a positive valued continuous function defined on [a, b] called
the weight function. The function w(x)f(x) is assumed to be integrable. The
limits @ and b are finite, semi-infinite or infinite. The integral (22.1) is

approximated by a finite linear combination of f(x,) in the form

= [ Wi f (x)dx = izk f, (22.2)

where x,,k=0,1,..,Nare called the nodes which are distributed within the
limits of integration [a,b] and A,k =0,1,..., N are called the discrete weights.

The formula (22.2) is also known as the quadrature formula.

The error in this approximation is given as

R, = [ W(x) f () dx ~ ZN:/ikfk (22.3)

An integration method of the form (22.2) is said to be order p if it produces
exact results i.e.; R, = 0for all polynomials of degree less than or equal to p.
In evaluating the integral (22.1) using (22.2) involves finding (N + 1)

unknown weights A, ’s and (N + 1) unknown nodes x, ’s leading to computing
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Gaussian Quadrature

(2N + 2) unknowns. To compute these unknowns, the method (22.2) is made

exact for polynomial of degree less than or equal to (2N + 1), for example, by

considering f (X) =, + CX+C,X* + ...+ Cppy , X0

1
For example, when n = 2, then _[f(x)dx =w f(x) +w, f(x,).
-1

When the nodes x, are known, the corresponding methods are called Newton-

Cotes methods where the nodes are also to be determined, then the methods are

called the quadrature methods.

The interval of integration [a,b] is always transformed to [—1,1] using the

transformation x :(b;zajt +(b+Taj_ Depending on the weight function w(x)

a variety of methods are developed. We discuss here the Gauss-Legendre

integration method for which the weight function w(x) = 1.

22.2 Gauss-Legendre Integration Methods

Consider evaluating the integral

| = Jl.f(x)dx = ZN: A F(X)

where x, are the nodes and A, are the weights.
1

(1) One Point formula n = 0: The formula is I f(x)dx = 4, f(x,)
-1

In the above A,,X,are unknowns, these are obtained by making this integration

method exact for f(x) = 1,x.
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1
e, (@) [L1odx =2, f(x)=4,=2
-1

1
(b) Jx-dx:ﬂ,oxozﬂ,oxO:O: X, =0("4 =2).
-1

j f(x)dx =2 f(0).

-1
(1) The two point formula n = 1: The formula is given by

1

[ F00dx = 2, T(x) + 4 f(x)

-1

The unknowns are A,, 4, X,, X, . These unknowns are determined by making this
method exact for f(x)=1,x,x° x>; we get

f(X)=1=4,+4,=2.

f(X)=x= 4%, + 4% =0.

f(x)=x2:>ﬂox§+ﬂle=%.

f(x)=x"= A%+ A% =0.
Solving these non-linear equations we obtain

xozi%,xl:$%, A=A, =1.

And the two point Gauss-Legendre method is given by

1

1 1
jf(x)dx ~ f(—ﬁ) + f(ﬁ).

-1

Exercise: Show that the three point Gauss-Legendre method is given by
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Gaussian Quadrature

h 1 3 3
jlf(x)dx = 5[5f(—\g)+8f(0)+5f(\g)].

2
Example 1: Evaluate the integral | = j 12—X4dx
1+ X

using the Gauss-Legendre 2-point quadrature rule.

Solution:

The general quadrature formula is written in [—1,1].

sodefine  x=(C=Hr+ 2y = x=Li42 ax=Lat
2 2 2 2

2
1
The integral transforms to I 8t +3) 7
[16+ (t+3)*]

Using then 3-point rule, we get

e

-~ [5(0.4393) +8(0.2474) +5(0:1379)

=0.5406

2X
1+ X

dx and its integral is tan‘1(4)—%:0.5404.

4

2
We can directly integrate I
1

1
Example 2: Evaluate the integral j %dx using the Gauss-Legendre two point
o1+ x

formula.

Solution:
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Define x:£t+l:>dx:£dt.
2 2 2

O ENES
=0.69231

1

1+ x* dx

1 2 2
Exercises: Evaluate (8) [——dx  (b) [~ax  (c)
v L+ X 1 X 1

using Gauss-Legendre (i) 2-point (ii) 3-point quadrature methods.
Keywords: Gaussian Quadrature, One Point formula, Two point formula.

References

Jain. M. K., lyengar. S.R.K., Jain. R.K.,(2008).Numerical Methods. Fifth
Edition, New Age International Publishers, New Delhi.

Atkinson. E Kendall, (2004). Numerical Analysis. Second Edition, John Wiley

& Sons, Publishers, Singapore.

Suggested Reading

Scheid.Francis,(1989). Numerical Analyysis. Second Edition, Mc Graw-Hill
Publishers, New York.

Sastry.S.S, (2005). Introductory Methods of Numerical Analysis. Fourth
Edition,Prentice Hall of India Publishers, New Delhi.

158 WhatsApp: +91 7900900676 www.AgriMoon.Com



Module 1: Numerical Analysis

Lesson 23

Difference Equations

23.1 Introduction

Difference equations arise in problems in which sequential relations exist at

various discrete values of the independent variables say {t,,t,,t,,....,t, }. These

equations are commonly seen in control engineering, radar tracking etc.
Definition: A difference equation is a relation between the differences such as
of an unknown function at one or more general values of the independent

variable.

A general difference equation in terms of k unknown function values is written

as
F(yn’ yn+l’ """ ' yn+k) = 0 (231)
For Example, A’y ,+Ay =0 (23.2)

Is a difference equation written using the forward differences. This can be
rewritten as

Ayn+2 - Ayn+1 + Ayn =0

or (yn+3 - yn+2) - (yn+2 - yn+l) + (yn+1 - yn) = 0

or Yiez — 2yn+2 + 2yn+1 Y. = 0 (233)

If the function F is non-linear in any one of these unknowns, then it is a non-
linear difference equation. If F is a linear function in all these unknown function

values, then it is a linear difference equation.
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Difference Equations

Definition 2: The order of a difference equation is the difference between the
largest and the smallest argument occurring in the difference equation divided

by the unit of increment the equation (3).

3)-n 3
The order of the difference equation (3) is w =—=3,

Example 1: Find the order of the difference equation derived from

Ayn+1 + 2yn :3'

Solution:

The difference equation correspondingto Ay, +2y. =3 is
Yoezo =™ Yot 2yn —-3=0 (234)

n+2)-n
So the order of this equation is: & =2.

23.2 Formation of Difference Equations:

We now illustrate the formation of difference equations from the given family

of curves.

Example 2: Form the difference equation corresponding to the two parameter

family of curves given by y = at + bt?.

Solution:

We have Ay = aAt + bAt?
=a(t+1-t)+b[(t +1)* —t?]
=a+b(2t+1)
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Difference Equations

and A2y = 2b[(t +1) —t]=2b.

Eliminating the arbitrary constants a and b from Ay and A®y, we get

b :%Azy and a= Ay—%Azy(Zt +1).

Hence the given family of curve become
y =[Ay —%Azy(Zt +Dt +%A2yt2

or (t> +t)A’y —2t-At+2y=0.

Equivalently, the difference equation is

(2 +1)y,,, — (2t° +4t)y,, +(*+3t+2)y =0 (23.5)

Exercise 4: Form the difference equation from

(i) y,=at+b2" (ii) y,=a2 +b3".

23.3 Linear Difference Equations:

Consider the linear difference equation

a'0 yn+k + alyn+kfl + a'2 yn+k—2 to + a'k yn = g (n) (236)

where a,,a,.....,a, are constants.
If g=0then equation (6) is a homogeneous equation otherwise it is non-

homogenous equation. The solution of a difference equation is an expression for

y, Which satisfies the given difference equation.
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Definition: The general solution of a difference equation is that in which the
number of arbitrary constants is equal to the order of the difference equation,

e., Y. =cy(n)+cy,(n)+...+cy.(n) (23.7)

with c,,c,,....... ,C,are arbitrary constants.

Definition: A particular solution is that solution which is derived from the
general solution by fixing the arbitrary constants. This is done using the initial

conditions on the unknown function at the nodal points.

If V_is a particular solution of (6), then the complete solution of (6) is

y. =Y +V, (23.8)

Y, is also called as the complementary function.

23.4 Homogenous Equations:
For finding the complementary solution of the equation (23.6), we assume the

solution of the form y =Az" where A is a constant which is non-zero.
Substituting this in (23.6), we get
At +a, &+ +a)E" =0

or a*+ac*+..+a =0 (23.9)

which is called the characteristic equation of the difference equation (23.6). Let

the roots of the equation be &,¢&,,.....& are real and distinct. These roots are (i)

real, distinct (ii) real, repeating (iii) complex roots.

Let us see how the solution looks like in each case.

Case (i): Here &,¢,,.....& are real and distinct, then

Y =& + o)+ a & (23.10)
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where o, a,,....,a, are arbitrary constants.

Case (i): Let ¢ =¢, =&and¢, &, ..., & are all real, then Y, is written as

Y, = (0‘1 +Na, + nzaa)ﬁl” +(a4§f +....+ak§k") (23.11)

As a special case when ¢ is a real root with multiplicity k, then

Y, :(a1+na2+....+ nkak)fl” (23.12)

Case (ili): For the case where two of these roots are complex and rest of them
are real distinct: say & =a+ip=re’ and & =a—-ip=re™
&, &, .., & are real and distinct. Then

Y, = (e, cosnd+a, sinnd)|& " +¢,& +.... +C &

with r=\/a*+ 4* and H:tanl(ﬁj.

(04

In the same way one can write the solution of the homogeneous difference

equation when it has several pairs of complex roots.

Example 3: Solve the difference equations

(I) Ynis _2yn+2 _5yn+1 + 6yn =0

(”) Yni2 = You +Zyn =0
Solution:

Note that the above are homogenous difference equations.

(i) By the replacey, by A&", we obtain the characteristic equation as
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Difference Equations

£ -2 -5£+6=0, the roots of this are &£=1,-2,3(real, distinct). Hence the
complete solution is

Vo= )" +a,(-2)" +,(3)".

(i1) The characteristic equation is: &2 —§+%: oand its roots are &= %

N |-

(real, repeating). Hence the complete solution is:y, = (e, + naz)(%j :

Example 4: (For complex roots): Find the complete solution of the difference

equation vy, ,-4y, +5y,=0.

Solution:

The characteristic polynomial is £*-4£+5=0and its roots are &=2+i and

& =2-1. So r=v4+1=+5 and G:tan‘l(%j, and hence

Y, =(a, cosné +a,sin n@)(«/g)n .

Exercises:

1: Write the difference equation A®y, + A’y, + Ay, =0 in the subscript form.
2: Write the difference equation Ay, , + A%y, , =5 in the subscript form.

3: Find the order of the difference equation

Yoz = 2Yn + ¥oa =1

5: Find the general solution of Azyml—%Azyn =0.

6: Solve the following difference equations
(I) yn+3 +16yn—l = O
(“) Yni2 _6yn+l +9yn =0

(“I) yn+3_3yn+l+2yn =0

WhatsApp: +91 7900900676 www.AgriMoon.Com



Difference Equations
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Module 1: Numerical Analysis

Lesson 24

Non Homogeneous Difference Equation

24.1 Introduction

In this lesson we learn how to find the solution of the non-homogeneous
difference equation. The solution corresponding to the non-homogeneous term

Is called the Particular integral of the difference equation:

Consider the non-homogeneous difference equation in the form

yn+k + alyn+k—l to + ak yk = f (n) (241)
Note that equation (24.1) is equivalent to equation (23.6).

Using the shift operator E, the above can be put in the operator form as
p(E)y, =, (24.2)

where p(E)=E* +,E“" +....+ o, .

Then the Particular integral is written as:

1
Vo= f
"= () (n)

24.2 Finding the Particular Integral:

@(E) is an operator involving E, E IS its inverse operator [assuming its
@

existence]. The particular solution is obtained for different forms of non-

homogeneous function f(n) as given below. We consider the forms for f(n) as

a", sinpn, cospn and nPfa"-G(n)where G(n) is a polynomial in n.
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Non Homogeneous Difference Equation

(A) When f(n) = a™, the particular integral (P.1.) is

1

a' = a"provided p(a) #0. If for ¢(a)=0, a is asimple root,
o(E)  o(a)

a"=na"" and if ‘a’ is a root with multiplicity m (m < n) then

then
E-a

(E—a)" =0and the particular integral is

1 _ n(n-1).....n—m) am
(E-a)" m! '

This way one can find the P.I. I, for the given non-homogeneous equation

when f(n) = a™
Example 1: Find the particular integral of y,  , -4y, +3y,=2"+5".

Solution:
1 n n
(E2—4E+3)(2 %)
1 ) 1 )
(E2—4E+3)2 +(E2—4E+3)5

Bl =

Clearly, 2 and 5 are not the roots of the auxiliary equation of E*> —4E + 3.

Plee by 1 o
22-4.2+3" 5 -4.5+3
:—2”+E5n
8

Example 2: Solve the difference equationy,  , -6y, ,+9y, =3"+(-1)".
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Non Homogeneous Difference Equation

Solution:

The characteristic equation is £* —6& +9=0.

Roots are £ =3,3.

The complementary function is: y. . = (e, + he,)(3").

Note that 3 is a root of the characteristic equation, with multiplicity 2, the

: : . -1 1
particular integral is written as n(n-1) ) 3 4

15

Hence the complete solutionis y =y.. +y,, =Y. +V,

1
32+ —(-1)".
15( )

= (a, + a,n)3" + n(n I_l)

(B) When f (n) =sin pn or cos pn:
ipn _ 4-ipn
P.I.:isin pn= L [e _e j
o(E) p(E)\ 2
1 ( 1, 1 j a" =g
= a - b™ |; .
2i\o(E)  o(E) b" =g

This is in the form discussed for f(n) = a™.

Similarly, ﬁcosp 1( (1E) a" %b“j.

(C)When f (n) =nP”, then

Pl.=—t 1P =[p(E)]"n’
o(E)

Recall E=1+A.
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Non Homogeneous Difference Equation

~P.l.=[p(E)] "n".
Expanding [(p(1+ A)]flin increasing powers of A (using binomial theorem) and

operating it overn®, we get the particular integral.
(D) When f (n) =a"a(n), where a(n) is a polynomial in n.

P.l. =ia”a(n) =a" 1
o(E) p(ak)

a(n).

This can be solved using the procedure given in (C).
Example 3: Solve y, , —2cosay,,, + Y, =cosn.

Solution:
It can be readily seen that the characteristic equation as
£2 —2cosaé +1=0 and its roots are cosa tisina.

So the C.F. is: (&, cosan = a,sinan)(1)".

ein_|_e—in
Pl.=— Cosa = 1 ; ( )
E2—2Ecosa +1 E?-2E(e“+e™)+1 2
211 1 n 1 1 g
2 E_eia (ela_e—ia) E_e—ia (efia ela)
1 i 1 in 1 —in
=— —.g" — —.¢
disina| E—¢" E-e™
1 i 1 in 1 —in:|
=—— —— . ————.¢
disina| €' —e" e'—e"
.y, =C.F.+P..

Example 4: Find the particular integral of y_., -2y ., +y,=n-3".
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Solution:
Sp— =-n-3"
(E-1)

=3". 1 =N
(3E -1)
=3". 1 =N
3
22(1+Aj
2
n -2
:%(H%A) ‘N
3n
= 5(1-3a+..)[n]
3 3"

Non Homogeneous Difference Equation

_?{[n]—i%-l}:?(n—?,).

Exercises:

1.Solve y, ,—4y. =n-1.

n

2. Solve the following difference equations:

(i) A’y —BAy, +4y =n+2"

(i)y,,—6y,,+8y, =2"+6n

1 .. n
(“I) yn+2 _(ZCOSEJ yn+1 + yn = SInE'

Keyword: Particular integral, Non-homogeneous difference equation,
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Module 1: Numerical Analysis

Lesson 25

Numerical Solutions of Ordinary Differential Equations

25.1 Introduction

Many problems in engineering and science are modelled as ordinary differential
equations which are either linear or non-linear equations satisfying certain given
conditions. Only a few of these equations can be solved using the standard
analytical methods whereas the other alternative is to find their numerical
solution. Here, we see some of the numerical methods to solve a class of
problem known as the initial value problems (1.VV.P). An initial value problem is
one where the differential equation is solved subjected to the required number
of initial of initial conditions.

A general first order initial value problem is given by g = f(y,t) (25.1)

t € I = [t,, b]; subjected to y(t,) = ¥, (25.2)

The solution of (25.1) - (25.2) can be found as a series for y in terms of power
of the independent variable ‘¢’, from which the value of y can be obtained by

direct substitutionor as a set of tabled values of t and y.

The methods due to Picard and Taylor (Series) find the solution of the IVP
(25.1) -(25.2) as the dependent function y as a function of the independent

variable ‘t’. The other methods such as the Euler and Runge-Kutta methods

give the solution y at some discrete data set for t in the interval I = [t,, b].

h

For ann™ order differential equation, the general solution has n arbitrary

constants and in order to compute the numerical solution of such an equation,
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Numerical Solutions of ordinary Differential Equations

we need n initial conditions each on the function and its derivatives upto the
(n — 1)" order at the initial value 1.V.P can also be found in the similar manner

as that of the solution of (25.1)-(25.2), but by using the vector treatment. Let us

now discuss the Picard’s method of successive approximations.

25.2 Picard’s Method

In this method, a sequence of approximations is constructed by stating with an
initial approximation to the solution. The limit of this sequence (if exists) will

be the approximation for the solution of the LV.P given by
equationsj—": = f(t,y), t € [ty,b]
(25.3)

subjected to (t,) = ¥, (25.4)

Integrating (1) between the limits,

idy:j'f(t,y)dt

ty

t
ory=y,+[ f(t,y)dt (25.5)
t

Notice that the unknown that is to be found isalso seen inside the integral, such
an equation is called an integral equation. Such an equation can be solved by the
method of successive approximations. To start with the procedure, assume an

approximation for the unknown function y(t) as y, inside the integral. This

makes the equation (25.3) as

172 WhatsApp: +91 7900900676 www.AgriMoon.Com



Numerical Solutions of ordinary Differential Equations

t
Y=Y+ [ f(ty)dt (25.6)
t

The r.h.s. of (25.4) can be evaluated and call it as y'(t)

t
L&ym=%+ﬁa%ML
ty

Here y'(t) is the first approximation to the solution. The second approximation

to the solution is obtained by using y'(t) in the integral as

V() =y, + [ f Ly ®)dt.

Repeating this process, we obtain
t

Y'(®) =y, + [ £ (6 y™ ()t
)

with yO(t)=y,, n=12,3,...

By this way we generated a sequence of approximating functions{yn (t)}

n=1’

It can be proved that if the function f (t,y) is bounded in some region about the
point (t,,y,)and if f(t,y) satisfies the condition |f (t,y)— f(t,y*)|<k|y—y*
for the same positive constant k, then the sequence {y”(t)}:1 converges to the

solution of the I.V.P. given by (25.1)-(25.2) .

Example 1: Find the first three approximate analytical solutions to the

I.V.P. % =3t + y?subjected to y(0) =1.
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Numerical Solutions of ordinary Differential Equations

Solution:

Integrating % =3t + yin the domain, we get

dey = j(3t +y?)dt
= y(t) - y(0) = [ (3t + y’)dt
or y(t) =1+j(3t+ y,”)dt

t
ory'(t) =1+ j (3t +1)dt
0

2
:3L+t+1
2

Is the first approximation. The second approximation is

ye(t) =1+ j[3t +(y'(t))2: dt

‘ 3t? ‘
:1+I 3t+(7+t+1j dt
0

I e I IR
20 4 3 2

Likewise, the third approximation can be found as

y3(t) _ 8L g 27 o AT o AT 6 (11577 B8
4400 400 240 32 1260 45
#2205 1 285 0 e 20y,
12 12
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Numerical Solutions of ordinary Differential Equations

The advantage of this method is that we can compute the solution of the given
I.V.P. at every point of the domain. The disadvantage of this method is, as also
seen in the earlier example, that the integration procedure is laborious and at

times, integration might not be possible for some functions f (t,y). The limited

utility of this method demands for the search of more elegant methods for

solving 1.V.Ps.

Example 2: Solve the equation % =t + y° subject to the condition y(t =0) =1.

Solution:

Start with y© =y, =1.
t

This generates y®(t) =1+ I (t+1)dt
0

2
:1+t+t—
2

t 2\2
and y(t) :1+j[t+(1+t+%J ]dt
0

st ity e
2 4 20

and so on.

Note that finding y® (t)itself involves squaring a 5" degree polynomial and

Integrating it, thus making this method more tedious.

In the next lesson, we learn one other analytical method that gives an

approximation for the solution in a function form.
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Numerical Solutions of ordinary Differential Equations

Exercise:

1. Use Picard’s method to find the solution yat t=0.2,0.4and 1.0 correct to

2
three decimal places for the 1.V.P. ﬂ: t -
dt 1+vy

subject to y(0) =0[Hint: obtain

y® (t) which results in a 9" degree polynomial in tas the approximate solution,

which gives the solution correct to 3 decimal places].

2. Use Picard’s method successive approximations to solve the following
I.V.Ps:

a)ﬂ=1+ xy, y(0)=1.
dx

dy
b =t-vy, y(0)=1.
)dt y, y(0)

c)ﬂ:tﬂ“y, y(0) =3.

dt
d)d—y:x+ y%, y(0)=0.
dx

o Y _yiy, yO)-1.
dx

Keywords: Approximate analytical solutions, Initial value problems, Picard’s
Method,
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Module 1: Numerical Analysis

Lesson 26

Taylor Series Method

26.1 Taylor Series Method
Let y=y(t)be a continuously differentiable function in the interval[t,,b].

Expanding y(t) around t=t, in Taylor Series, we obtain

y(t) =y(t, )+ 2_ 3

Taking t=t,and t,—t, =h, a small increment, i.e., t,+h=t,t, [t,,b] we get

V) =)+ Iy )+ Ly, )y (t) 4o (26.2)
Now consider the 1.V.P. == f(t,y),t [t,,b] (26.4)
subject to y(t,) =y, (26.5)

The Taylor Series solution of the given L.V.P. (3)-(4) is to find an approximate

function y(t) as given in (1) which involves the derivatives of the unknown

function y(t) at the initial point t =t,, that satisfies the 1.\V..P. (3)-(4).

. dy
Given === f(t,y).
pm (t,y)

d
Att=t;; (t=t)=(,y(b)

= f (tO’ yo)
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Taylor Series method

= f, (Say)

iy 9 (dy
y(t)_dt(dtj

d of of dy
Sty =L LY
i )=+ 5

of of
254_5( f (t, y)) .

14 —_ _ﬂ — ﬂ fry . =
y(t—to)_at(t_tmy(to))"'ay(t t, () F(t=t5, y(t;))-

In the same manner, we calculate the higher order derivatives of y(t) depending on
the necessity. Before we discuss the order of approximation of the Taylor Series
method and error associated with a particular order method, let us see its utility for

finding the solution of the given 1.VV.P. through a few examples.

Example 1: Find y(0.1) from the I.V.P. %zsuy?subject to y(0)=1.

Solution:

Given y' =3t+y?

= y'(0)=0+[y(0)] =1

y'=3+2y-y' = y"(0) =3+2y(0)-y'(0)

=3+2.1.1=5

y"=2y-y"+2y"? = y"(0) = 2y(0)- y"(0) +2[y'(0)]’
=2.1.5+2.1=12

y' =2y Yy +2y-y"+4y - y"=2.1.5+2.1.12+4.1.5 =54 efc.

2
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Taylor Series method
Now the Taylor Series solution is written as

y(t) = y(t) +(t—t) y'(ty) +———— 5 a3 2

Taking t=0.1t,=0 (given),

0.1

3)y%m wl)w%m+

y(0.1) = ymwwonywwfon v+

500712017, 54
=1+ 0.1+ 2(0.0) +5(0.0) + 2(0.1)

- y(0)=1.12722.

(=8) oy ) iy 28)

Example 2: Obtain the Taylor Series solution for the LV.P. given by

%=2y+3et , ¥(0)=0. Compare the solution at t=0.2 with the exact solution given

by y(t)=3(e* —¢').

Solution:

Given y'=2y+3e' = y'(0)=3
y' =2y +3e' = y"(0)=9
y"=2y"+3e' = y"(0) =21

y" =2y"+3e' = y"(0)=45

The solution is y(t) = 3t+9t +21t +£t4
2 6 24

At t=0.2, y(0.2)=0.811.
From the exact solution, y(0.2)=0.8112.

So the error in the numerical solution is |0.8112-0.811] = 0.001.

3
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26.2 Local Truncation Error and Order of the Method

The Taylor series expansion of y(t) about any point t; is written as

0=y +(t-1)y e+ 5y
---+%(t—to)p Y (t) + ( pil),(t—tg)(p+l) y'" (t, + oh) (26.6)

where y®(t) is the p”‘ of the y(t) and 0<&<1, areal number. The last term in the

expansion is called the remainder term. In general, the local truncation error at any

location t=t,,, of the method is given by
=L heyeag . gh)
" (p+1)! .

where h=t, —t,.

j+1 T

The order of a method is the largest integer p for which ‘ET. .
h "

= 0(h").

The notation O(h?) denoting that all terms of the order p onwards are grouped to a

single term representation.

The method given by equation (26.1) is called the Taylor Series method of order p.

Example 3: Determine the first three non-zero terms in the Taylor Series for y(t)

fromthe LV.P. y' =t +y*, y(0)=0.

Solution:

y'(0)=0;

4
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y'=2t+2yy'=y"(0)=0

y"=2+2(y') +2yy" = y"(0) =2

y" =6yYy"+2yy" = y"(0)=0

y' =2yy" +8yy"+6(y") = y'(0)=0

y" =2yy" +10yy" +20y"y" = y"(0) =0

Similarly y*"(0)=80, y""(0)=0=y*(0) = y*(0), y*(0) = 38400.

Thus the three term Taylor Series solution for the given I.V.P. is
Ly, 2 g,

1 3 7
t)=—t"+—=t"+
ye) 3 63 2079

Example 4: Given the 1.V.P.: y' =2t +3y; y(0) =1 whose exact solution is

1, 2

y(t) = 5 e 5(3t+1).

a) Use 2" order Taylor Series method to get y(0.2) with step length h=0.1
(note h=t,,,-t,).

b) Find “t’, if the error in y(t) obtained from the first four terms of the Taylor
series, is to be less than 5x107°, after rounding.

c) Determine the number of terms in the Taylor Series required to obtain the

result correct to 5x10°for t<0.4.

Solution:

2

a) The second order Taylor Series method is given byy =y +hy’ +h? yy+0(h%).

n=01h=0.1.
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We have y'=2t+3y

or,y'(t,) = y, =2t, +3y,

or,y"(t,)=y, =243y, =2+6t, +9y,.
Take n=0;h=0.1y,=1y; =3;y, =11.

2
-~ y(0.2) =1+(0.1)-3+%-11=1.355.

Taking n=1h=0.1;y, =1.355; y/ = 4.265; y" =14.795
(0.1)°
= ¥(0.2) =1355+(0.1)(4.265) + - —+(14.795)

=1.8555.

b) Given y(0)=1,y'(0)=3.

Compute y"(0) =11, y"(0) =33, y"“(0)=99.
So the Four term Taylor Series solution is

11 11
t) =143t +=—t> +=—t3.
y() > >

The remainder term is given by

4

R, :%y” (&) gives the error in the approximation.

We require |R,|<5x107°.

Given the exact solution, use it to find y"(&);
s _
9

y"(£) =99

y(t) = §(3t+1).

.-.|R4|=‘%e3tt4 <5x10°°.

24

Simplifying and solving this non-linear algebraic equation for finding t, we get
t*e* <0.000012
=1<0.056

6
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Note: In the event, if the exact solution is not known, write one more non-
vanishing term in the Taylor Series than is required and then differentiate this

series p times: here p is 4.

Now to determine the number of terms required in the Taylor series solution to

obtain the solution correct to 5x10*“fort <0.4, we estimate it as:

max tp

p!

max

|y (&)|<5x10°

" &[0,04]

0<t<0.4

Again using the analytical solution, we find the pth derivative of y(t) at t=¢ as:
y*(&)=(@13"" e

p
or%(ll)?,"‘2 g2 <5x10°
p:

Solving this non-linear algebraic equation using the Newton-Raphson method or
otherwise, we get a lower bound for p as

p>10

This indicates that a minimum of 10™ order Taylor Series method gives the
solution which will be accurate upto the 6" decimal place for all values of

t<[0,0.4].

Exercises:
1. Compute an approximation to y(0.1) up to five decimal places from

dy .,
—=t°y-1vy(0)=1.
praal y(0)

2. Solve y'=y*+t , y(0)=1using Taylor Series method and compute y(0.2),
h=0.1.

7
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3. Evaluate y(0.1)correct to six decimal places (5x10°)by Taylor Series method if

y(t) satisfies(;—i’ =1+yt,y(0)=1.

Keywords: Taylor Series method, Taylor series solution.
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Module 1: Numerical Analysis

Lesson 27

Single Step Methods

27.1 Introduction

Picard’s and Taylor Series methods give solution of the given 1.V.P. in the form
of a power series. We now describe some numerical methods which give the
solution in the form of a discrete data at equally spaced points of the interval.
The discretization of the interval is considered as described in the lesson 1 and 2

is not repeated here.

Single Step methods:

dy _
Consider the 1V.P. gt~ (G Y)teltiP] (27.1)
subject to y(t,) =y,

Consider the partition of the interval as
LVE L Sh (27.2)

t, <t <t <..<t, <t; <t;,

such that t.

j+1

-t,=h;vj=0,12,..,N -1 where h is a constant is the step size.
Also denote y, =y(t,)and y,, =y(t,,). t.t,..t,are called the nodal points. A
general single step method may be written as

yj+1=yj+h¢(tj+1’tj’yj+1’yj!h) (27'3)

Where ¢ Is ¢(t,y,h) is called the increment function. Note that in (3), we see
the dependence of the unknown function on the two nodes t;and t;,,. In single

step methods, the solution at only the previous point.

Also, if y,,,can be obtained by evaluating the right hand side of (27.3), then the

method is called an explicit method.
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Then equation (27.3) is written as y,,, =y, +he(t;, y;,h) (27.4)

The method is called an implicit method if increment function ¢ depends on

y,, also, as seen in equation (27.3). In such a situation, we cannot get the

solution y,,, explicitly, we need to solve the equation (3) to get the solution.

27.2 The Local Truncation Error (L.T.E)

Denote y(t;)as the exact solution and y, as the numerical solution of I.V.P.
(27.1) at t=t;. The exact solution y(t;) satisfies the equation

Y(ta) = V() + oty Y (1), Y (8).0) + T (27.5)

where T. . is called the L.T.E of the method.

j+1

Thusthe LT.E T, =y(t;,)-y(t;)-ho(t..t, v(ti). v(t).h) (27.6)

(27.7)

j+l

By definition, the order of the single step method is ‘%T

27.3 Forward Euler Method for the 1.V.P. %: fY); yt)=Y,:

Let t, be any point in the interval [t,,b]. Then the slope of y(t)at t =t;is given by

d
d_tt, = f(,y,) (27.8)
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y(x)

Exact Solution

Y xError

Numerical

Yi \ Solution

\Slope f(t,,y,;)

>t

j tJ'+1

<h —>
Fig.1: Explicit Euler method

Replacing %at t=t, by the first order forward difference at t,, we get

%zf(t“yj) or y,,=y;+h-f(t,y;),j=012..,N-1 atevery pointof t, as

given in (2). By this, we mean
y1=yo+h' f(tO’yO)!
Y, ZY1+h' f(tl’yl)l

Yn=Yna Tt h- f(tN—l’ yN—l) .
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For a chosenh and/with the initial conditiony,, one can find the solution

explicitly at all the nodal points of the given interval. The local truncation error
in the method is given by

Tj+l = y( j+l) y]+1

= y(tm)_[y(tj)*h' f(tj,yj)]

Now expanding y(tm) in the Taylor Series about t=t; and simplifying, we get

h?
=7y 9]

where t, < £ <t,,,. Let the maximum value of y"(t)in[t,,b]beM”, then

j+1*

max

[to.b]

J+1

=T (say) =0y

2

Thus T <M
2
i.e., the L.T.E is of O(h*) and by definition, the order of this forward Euler

method is one since — =0(h").

‘1 h2

Example 1: Use Forward Euler method to solve y’'=-y with the initial

condition y(0)=1 in [0,0.04] by taking h=0.01.

Solution:
Take t,=0,t, =0.01,t, =0.02,t, =0.03,t, =0.04; f(t,y)=-y

Now y(t,) = y(t,)+h- f (. Y,)
=1+(0.1(-1) =0.99

y(tz) = y(tl) +h-f (tl’ yl)
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Single Step Methods

=0.99+(0.01)(-0.99) =0.9801,
Y(t) = Y(t,) +h- F(t,,,)
=0.9801+(0.01)(-0.9801) =0.9703
y(t,) = 0.9703+ (0.01)(~0.9703)

=0.9606 .

We know the exact solution y'=-y,y(0)=11is y(t)=e™ and gives y(0.4) =0.9608 .
The error in the Euler method for the solution at t=o0.4is given as

10.9606 —0.9608] = 0.0002.

27.4 Backward Euler Method

We can also replace the slope of y(t)at t=t by the first order backward

difference approximation which is given by

Yi— Y-
S = ()
ory,=y,,+h-f(t,y,)

or equivalently, y,, =y, +h-f(t,,.y,), =012, N-1.

Evidently, this is an implicit method. It can be shown (left as an exercise!) that
2

the L.T.E. of this method is _n y'(&),t. < &<t and the order of the method is
2 ] I+

also one. Let us now illustrate this method with an example.

Example 2: Solve the I.V.P. y'=-2ty?,y(0)=1 in [0,0.2]with h=0.2.

~— —
— " —

0 0.2

Solution:

Backward Euler method is
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Yia =Y +h- (Y.

Here t,=0,t, =0.2,h=0.2, f =-2ty* for j=0.
yi=Yo+h-f(t,y,)

= y(0.2) = y(0)+h[ -2-t,- y(0.2)" |

ory, =1-2(0.2)(0.2)y,?

can be written as a quadratic in y, as
0.08y°+y,-1=0

whose solution is y, =0.9307.

Exercises:

1. Continue this to compute the solution at t=0.4 if the above I.V.P. is solved in
the interval [0,0.4]with h=0.2.

2. Solve the LV.P. y'=t+y?*y(0)=1,h=0.1[0,04] using the forward Euler

method.

3. Solve the LLV.P. y'=-2ty*,0<t<0.5,h=0.1,y(0)=1 using the forward Euler

method.

Keywords: Backward Euler method, Local truncation error, Forward Euler

method.
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Module 1: Numerical Analysis

Lesson 28

Modified Euler Method

28.1 Introduction

The first order Explicit Euler method is improved to achieve better accuracy in

the numerical solution for an initial value problem y'= f(t,y), y(t,) =, -
In the modified Euler method, the slope of y(t) at t=t;is approximated by the

average of the slopes at t=t, and t=t, .

1.,y =y,+h-Y]
h
=Y +§'[f (6 y5)+ F (t, yj+1)]

ory,, =V, +g~[f(tj,yj)+ f (tm,ym)] (28.1)

This implicit method is used by setting an iterative procedure as follows:

S +g-[f (t,,y;)+ f (i yﬁi’l)] s =y L (28.2)

Now the initial approximation for y!% is considered as the solution y,,, of Euler

method. The above iteration process is terminated at each step if the condition

(s+1) _

y© -yl < ¢ ,is satisfied,

where ¢ is a reassigned error tolerance.

Exercise: Show that the modified Euler method has L.T.E. as O(h®) and the

order of the method is O(h?).

The exponent of h in O(h")is the order of accuracy of the method. It is a

measure of accuracy of any numerical scheme. It gives an indication of how
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rapidly the accuracy can be improved with refinement of the grid spacing h in

any given interval. For example, in a first order method such as

Yia=Y;+h-f (tj,yj)+0(h)

If we reduce the mesh size h by g the error is reduced by approximately a

factor é Similarly in a second order method such as

Yia=Y; +g[ f (tjvyj)+ f (tj+11 yj+l):|+o(h2) .

If we refine the mesh size by a factor of 2, we expect the error to reduce by a
factor 2°i.e., 4, which gives a rapid decrease in the error. Thus higher order

numerical schemes are preferred.

Example 1: Determine the value of y(0.1) from the LV.P.y' =y +t?,

y(0)=1,h =0.05.

Solution:

t,=0,t,=t,+h=0.051t,=t,+2h=t, +h=0.1,y, =0, f(t,y)=t*+v; vy, = y(0.05),
Y, =y(0.1).

Yy = yo+2~[f(to,yo)+ f(ty®)] s=012.

Compute y© using the Euler method.

h
v =y, 3 f(t:Yo)
—1+(0.05)(1.0)

=1.05.

Use modified Euler method now as follows:

2
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Compute y(0.05):

Take s=0: calculate f(t,y{”)=1.0262

Y = ng-[f (to:Yo)+ (1. ¥) ]

=1.0513

Take s=1; y®is computed as:

¥ =y, +%[f (to: o)+ f (6, ¥) |

=1.0513
Note: |y1(2) —~ y1<1>| =0, SO We can stop the iteration process and conclude that

y(0.05) =1.0513.
Compute y(1.0) :t, =0.05,y, =1.0513,h = 0.05
Euler method givesy\” =y, +hf (t,y,)
=y =1.104.
Now use the modified Euler method:

h
s—iliies yir= y1+§.[ ft,y,)+f (tz, yé‘”)]
=1.1055

h
s=1=y? = yl+§.[f (t,y,)+f (tz, yél))]

=1.1055
Take the solution y(1.0)=1.1055.

Example 2: Given the I.V.P. %=2ty, y@) =1find y(1.4) using the modified Euler

method by taking h=0.1. Compare this solution with the exact solution

y(t) =e"*. Calculate the percentage relative error.

Solution:

3
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We have the data: t,=1t =1.1t,=1.2,t,=1.3t,=14,y,=1,h=0.1.

Modified Euler method is:

Yia =Y +g-[f (t5,¥;)+ f (t0¥5) | fOr j=01,23.

Take j=0:We have the iterative method is written as

e B ) 1)) 502

Compute y® using the Euler method:
y @ =y,+(0.1)-2-(0.1)-1=1.2.

(0.1)

Now y® =y, +
0.1
y1(2) =Yt ( 5 )

[Zt0 Yo +24

[ZtO Y, +2t

]:1.232.

v ]=1.232,

j=1 toj=3 are calculated (left as an exercise) and are tabulated below. The

absolute error and percentage relative errors are calculated as:

Absolute error = |Exact value — Numerical Value| and

ntage relative error =

|S‘T‘]"GT’|

Exact value

Table 28.1

J t Y, Exact value | Absolute error | Percentage relative

y=gh error

0 1 1 1 0 0

1 1.1 1.232 1.2337 0.0017 0.14

2 1.2 | 1.5479 1.5527 0.0048 0.31

3 1.3 | 1.9832 1.9937 0.0106 0.53

4 1.4 | 1.5908 2.6117 0.0209 0.80
Exercises:

4
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1. Solve the 1.V.Ps. using modified Euler method

(i) 3—¥:—2y, y(0)=1h=02, t<[0,06].

i dy _ y-t
i)—-=2—y(0)=1,h=0.1,t<[0,0.2].
(N4 el €[0,0.2]

o d
(|||)d—3t’=2+\/m, y()=1h=051te[1,2].

(iv) y'=t(1+t’y),y(0)=3,h=0.1t[0,0.4].

Keywords: Absolute error, Explicit Euler method, Percentage relative errors,
Modified Euler method,
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Module 1: Numerical Analysis

Lesson 29

Runge-Kutta Methods

29.1 Introduction

In single step explicit method, the approximate solution y,,, is computed from the

known solution at the point (t;,y, ) using
Yia=Y;+h-f(t.y;) (29.1)

ory,,=y,+h (slope of y(t) at t=t,) (29.2)

In equation (1), we used the slope at t=t;, only. Similarly, in the modified Euler

method

Yin =Y+ h[ Fty)+ f (ta yj+1)] (29.3)

The slope is replaced by the average of slopes at the end points (tj,yj)and
(tj+l’yj+l)'
29.2 Runge-Kutta Methods

Runge-Kutta methods use a weighted average of slopes on the given interval

[tj,tjﬂ], instead of a single slope. Thus the general Runge-Kutta method may be

defined as

y;.. = Y; +h[Weighted average of slopes at n points on the given interval]  (29.4)

This way one can derive N-explicit methods by taking n=12,..,N . Also, nin

(29.4) indicates the order of this Runge-Kutta method. The general N"order
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Runge-Kutta method is written as

Vi =Y +(wk +wk, +..+wky )

where w, are the weights and each k, is defined as
k=h-f(t,y;)

k, =h-f(t;+c,h,y; +a,k)

Ky =h-f(t;+Ch, y; +a,k +a,k, )

ky =h-f(t;+cyh,y; +agk +ayk, +.+ay k) (29.5)

All w’s , ¢’s, a’s are the parameters which are determined by forcing the
method (29.4) to be of N"order. Deriving a general N" order method is out of

purview of this material, but we demonstrate the derivation of the 2™ order Runge-

Kutta method below.

29.3 Second Order Runge-Kutta Method

Consider the general form of the (2™ order) Runge-Kutta method with 2 slopes,
Yin =Y +Wk; + Wk, (296)
wherek, =h-f (t;,y;)

k, =h-f(t;+c,h,y; +a,k)

The parameters c,,a,,,w,w, are chosen to make vy, closer to the exact solution

y(t,..) upto the 2" order.

Now writing y(t,,,) in Taylor series about t=t,,

j+1
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2

V) = V)NV 6) 4y ()

h? (of . of
:y(tj)+h-f(tj,yj)+5-[a+ f@—yj (29.7)

t=t;
Also,k, =h-f,

k, =h-f(t;+ch,y; +ayh- )

Expanding f about (t;,y,) , we get

2 2 2 2
k2=h[f(tj)+h(02%+a21fij‘ +h [C:%T:—i-zczanf ot +a,f 0 f]

+...
t=t;

o (29.8)

t=t;

)., 2 dyat oy’

Substituting the expressions for k, and k, in (1),we get

of of
Yia=Y;+(W+w,)h-f, +h2(wzc2§+wza21f EJ

Comparing the coefficients of hand h® in (27.7) and (27.8) we obtain

. 1, 1
w, +wW, =1; w,C, :E,wzaﬂzz.

The solution of this may be written as

a,, =C,; W —i'w —1—i
21 21 772 2C2’ 1 2C2’

¢, Is arbitrary non-zero constant.

With the choice of c, :% , we derive the 2" order Runge-Kutta method.
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a21:%;w2 =Lw, =0

we getk, =h-f(t;,y,)

h 1
k,=h-f (tj +§, Y +§klj

And Yia=Y; +k,

With the choice of ¢, =1, we get
1 1
W2 :E,Wl =Eanda21 :l
1
and Yin=Y;j +E(k1+k2)

wherek, =h-f (t;,y;)

k,=h-f(t;+hy;+k).

(29.9)

This method is also a second order method which is known as the Euler-Cauchy

method. Clearly, with different choices for c, , we get a different second order

Runge-Kutta method. Let us demonstrate its utility for solving the initial value

problems.

Examplel: Compute y(0.4) fromthe .LV.P. y' =-2ty* y(0)=1h=0.2

Solution:

Yin =Y +k2

wherek, =h- f (t;,y;)=(0.2)[ -2t;y;* | =-0.4t,y*

h 1
k2 = h f (tj +E, yj +Eklj
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=-04(t, +o.1)(yj %kl]z

Taking j=0; giventhat t,=0,y, =1,
=k, =0,k, =-0.04.

- y(0.2)=y(0)+k, =1-0.04=0.96 .
Forj=1,t=02,y,=0.96

= k, =-0.073728,k, =—0.10226

and y(0.4) = y(0.2) + k, = 0.96 —0.10226 = 0.85774

Keywords: Weighted average of slopes,
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Lesson 30

4™ Order Runge-Kutta Method

30.1 3" Order Runge-Kutta Method

The third order Runge-Kutta method is given by
1

Vi =Y, +§(2k1 +3k, +3k;)

wherek, =h-f(t;,y,)

h 2
k,=h-f (tj +2§,yj +§k1]

h 2
andk,=h-f (ti +22., +§k2j.

Module 1: Numerical Analysis

(30.1)

Derivation of this method involves evaluation of eight unknowns in eight non-

linear algebraic equations, which is very tedious. Similarly the 4™ order Runge-

Kutta method is also. The interested is referred to a standard test book on

Numerical analysis for the detailed derivation. The Fourth order Runge-Kutta

method is given as:
1
Yia=Y; +€(k1+2k2 +2k; +k,)

wherek, =h- f (t,,y,
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4" order Runge-Kutta method

This method is also known as the Classical Runge-Kutta method. The 4™order R-T

method is an efficient method which can be used very easily. Let us now illustrate

its use for finding the solution of given I.V.P.

Example 1: Use the Classical Runge-Kutta method to find the numerical solution

at t=0.6for %:Jw y,y(0.4)=0.41,h=0.2.

Solution:

Given t, =0.4,y,=0.4L f(t,y)=Jt+y.

First let us evaluate k.’s.
k,=h-f (to'yo)

1
=(0.2)[0.4+0.41]2 =0.18
h k
k, =h-f|lt +—,y,+2
et )

— (0.2)[(0.4+0.1)+(0.41+ 0.09)]3 =02

h k
k,=h-f|t,+=,y,+-2
3 (0 2 yO 2)

1
= (0.2)[(0.4+0.1) + (0.41+0.01) ]2 = 0.20099
ky=h-f(t;+h,y, +k;)

1
— (0.2)[0.6+ (0.41+0.20099) |2
= 0.22009 .

Now y(0.6) = y(0.4) +%(k1 +2k, + 2k, +k,)

=0.41+0.20035

< 0.2 >

I
0.4 0.5
tl} tl

2
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=0.61035.
Example 2: Find y(0.1) form %: y—t,y(0)=2by taking h=0.1.
Solution:

Given f(t,y)=y-t,t,=0,y,=2,h=0.1
kp=h-f (to’yo)

=(0.)[2-0]=0.2

h k
k,=h-f (t0+§,yo+51J

= (0.1)[2.1-0.05] =0.205

h k
ky=h-f (t0+z,yo+?2j
=(0.1)[2.1025-0.05] = 0.20525
ky=h-f(t;+h,y, +k;)

=(0.1)[2.20525-0.1] = 0.21053
Hence y(0.1) = y(0)+%(k1 +2k, + 2K, +k, )

=2+0.2056
- y(0.1) = 2.2056 .

Example 3: Given% =1+ y?,y(0.2) =0.2027,h = 0.2 compute y(0.4) using the 4™ order

R-K method.

Solution:

Given f(t,y)=1+y*t,=0.2,y,=0.2027,h=0.2

3
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4" order Runge-Kutta method

Evaluating k.’s, we get
k, =0.2082,k, =0.2188,

k, =0.2195,k, = 0.2356.
and hence y(0.4)=y(0.2) += (k +2k, + 2k, +k,)

=0.4228.

Exercises:
1. Use 3" order Runge-Kutta method to find

a) y(0.1)given ‘;—i' =3e'+2y,y(0)=0,h=0.1.

b) y(08)g|ven = Jt+y,y(04)=041,h=0.2.

dy y-t
C 0.2) given ,y(0)=1,h=0.1.
) y(0.2)g i y(0)

d) y(0.2)given ‘;y 3+t >¥.¥(0)=1h=01.

2. Use 4™order Runge-Kutta method to solve the problems 1(a)-1(d) and make a

comparison table.

3. Solve the non-linear 1.V.P.

dyy

v subjected to y(0)=1in the interval [0,1] by taking h=0.2.

4. Use the Classical Runge-Kutta method to find y(1.4) insteps of 0.2 given that

dy .,
—=t"+vy°,yd)=15.
™ y5y@

Keywords: 3" order Runge - Kutta method, 4™ order Runge - Kutta method,

4
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Module 1: Numerical Analysis

Lesson 31

Methods for Solving Higher Order Initial Value Problems

31.1 Introduction

From the Theory of ordinary differential equations, it is evident that an n"order

ordinary differential equation, be a linear or a non-linear one, can be reduced to a

system of n-first order equations. To see this, consider the second order o. d. e.
y' -y +4t’y =0

subject to the initial conditions y(1) =1, y'(1)=2.

Let u=y(t)and v=y'(t),

thenv' =y”

and we have v’ =vand v' =v-4ti.

Thus the 2-first order equations are
u'=v, u@=1

V' =v—4tiu; v() =2

This is known as the initial value problem in the first order system corresponding

to the given 2™ order initial value problem.
In general an n"order differential equation

yO =Fty, Y,y y) (31.1)

Is written in the first order system as follows set u, = y(t).
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Methods for Solving Higher order initial value problems

uy =u,
u, =u,
(31.2)
urll—l = un
ur =F(tu,u,,..,u. )
With the transformed initial conditions
Uy (ty) =170, U, (t) =17, U, (t) =17, (31.3)

This system is written in the vector form as

= )
t)=n }

(31.4)

= 1=

where u=[u,,u,,...,u,],

f=[u,,u;,...,u FJ',

n!

ny [770’771""777n71]T J

Thus the methods of solution of the first order I.VV.P

d
=YY =Y,

can be used to solve the above system of first order 1.V.Ps.

31.2 Taylor Series Method

In what follows is shown the utility of Taylor series method to the system of
I.V.Ps. through two examples.

1. The vector form of the Taylor Series method is written as

2
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2

ALY h®
Yia =Y+ XPLEXJ'J“"*EXJ'

Here j=0,1,2,.,N -1 denote the nodal point

® ] d
ylvj(k) Wfl(tj’yl,j’yz,j""'yn,i)
and y,® = Yair o ||
- q*t
_yn’j(k)_ _W fo Yo Yo joees yn,j)_

31.3 Euler Method

The vector form of Euler method can be written as:

Yin=Y;+hy;, =012, ,N-1.

Example: 1. Reduce the 3" order I.V.P. into a system of first order I.V.P.:
y"+2y"+y —y=cost,t [0,1]

subject to y(0) =0, y'(0) =1, y"(0) = 2.

Solution:
Set y=u,u =u,,u, =u,.
Now the system of 3 first order equations is

U =cost—2u, —u, +Uu,

The initial conditions are: u,(0) =0,u,(0) =1,u,(0) = 2.

3
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Example 2. Use the 2" order Taylor Series method to compute y(1), y'(1) and

y"(1) by taking h=1.01n the above example.

Solution:

The Second order Taylor Series method is

2
U, + 1) =u() +hu't)+ ')
Given h=1

- u() =g(0)+u’(0)+%u”(0)-

The system of 1.V.P. is:

!

u1 ul
u'=|u, | =|u,
U, cost—2u, —u, +U,
u,(0) | |0
subject to u(0)=|u,(0) [=|1 |.
U, (0) 2

We now require to compute u’(0)and u”(0):

u,(0) 1 u; (0)
u'(0) = u,(0) =12 |=|u(0)
1- 2U3 0)- u, 0)+ U, (0) -4 Ué (0)
[u;(0) 2
Also u"(0) =| u}(0) =| -4
| —2u3(0)—u;(0) +u;(0) | [7
) ]
0 (1 2 2 y(1)
~u@=11{+|2 +% -41=|1 [=|Y'@Q |.
2 -4 7 3 y"(D)
) 2]

4
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Exercises:
1. Solve the system equations u’=—-3u+2v,u(0) =0 and v' = 3u —4v,v(0) :%using

(i) Forward Euler method and

(ii) 2" order Taylor Series method by taking h = 0.2 0on the interval[0,0.6] .

Keywords: Euler Method, Higher order initial value problems, Taylor Series
method.
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Module 1: Numerical Analysis

Lesson 32

System of 1.V.Ps.-4" Order R-K Method

32.1 Introduction

We now present the vector form of the 2" order and 4™ order Runge-Kutta

methods.
d
d—i/: f(t,y,2);y(t) =Y,
Given the LV.P. : (32.1)
dz ]
E = g(t’ Y, Z)’ Z(to) =,

The Euler-Cauchy method (which belong to the class of 2™ order Runge-Kutta

method) when applied to the above system of 1.V.P. is written in the vector form as
1

Ui, =U; +§(K1+K2)

I

WhEI‘Eg:[y,z]T; Kflz[knvkm] ;K :[klzlkzz]T
withk, =h-f(t;.y;.z;)

kn=h-g(t;.y;.2;)

andk, =h-f(t,+h,y, +k,,z; +ky)

Ky =h-f(t;+h,y; +Ky 2, +ky )

]

Example 1

Find y(0.2)and z(0.2) from the system of .V.P. :
y'=-3y+2z,y(0)=0
z2'=3y-42,2(0)=0.5

by taking h=0.2 using the Euler-Cauchy method.
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Solution:

Given t, =0,y,=0,z, =0.5,
ft,y,z)=-3y+2z,9(t,y,z)=3y-4z.
k,=0.2,k,,=-04

k., =—-0.08,k,, =0.04

1
- ¥(02) = y(0) + 5 (ky +k;,) = 0.06,

2(0.2) = z(0) +%(k21 +k,,)=0.32.

The 4™ order Runge-Kutta method for the system of equations as given in (1) is

written as

1
Yia=Y; +€(k1+2k2 +2k; +k,)

Z iR +%(Il+2|2 2004 L) i =0, 255N =1

j+ J

wherek, =h- f
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System of 1.V.Ps. -4™ Order R-K Method

In the similar manner, the method can be extended to 3 or more first order

equations.

y!! — Xyi2 _ y2

Example 2: Solve ,
y(0)=1y'(0)=0

} to compute y(0.2).
Solution:

The given second order equation with the initial conditions can be written as the

system of two first order equations as:

dy

_:Z:f t, ,Z !Sa

at (t,y,z) y

3? —t72 _y2 =9(t,y,z), say.

Givent, =0,y, =1z, =0,h=0.2.Compute k,1,,k,,1,.k,, 1, and k,,1,in this order, we see
k, - Tl izessds )= 022d0=0

L=9-f(t) ¥ 2)=02(-1)=-0.2

k,=h f(to+ Yo+ 1,ZO+IE1 =-0.02
h k I

l,=g f(t0+5 y0+51,zo+51 =-0.1998
h k I

k,=h f(t0+5 y0+72,zo+32 =-0.02

h k I
l,=9 f(t0+2,y0+?2,20+52 =-0.1958
k,=h f(t0+2,y0+ 3,zo+|53]_—0.0392
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h k |
|4 = g - f [to +E! y0+?3120+53j=_0'1905

Thus y(0.2) = y(0) +%(k1 +2k, + 2K, +k, )

=1-0.0199
=0.9801

and y’(0.2) = z(0.2) = z(0)+%(|1 +21,+2l,+1,)

=0-0.1970
=0.197.

Exercises

1. Find y(0.2)and z(0.2) using the 4™ order Runge-Kutta method to solve
y'=-3y+2z,y(0)=0
z2'=3y-42,2(0)=05
by taking h=0.1.

2. Solve y"=y+ty’, y(0)=1, y'(0)y=0to find y(0.2)and y'(0.2) using the A" order R-

K method. Take h=0.1.

3. Find y"=t*y'+t’y, y(0) =1, y’(0)=% in [0,1] by taking h=0.2.

Keywords: System of I.V.Ps.,

References

Jain. M. K, lyengar. S.R.K., Jain. R.K.,(2008).Numerical Methods. Fifth Edition,
New Age International Publishers, New Delhi.

216 WhatsApp: +91 7900900676 www.AgriMoon.Com



System of 1.V.Ps. -4™ Order R-K Method

Atkinson. E Kendall, (2004). Numerical Analysis. Second Edition, John Wiley &
Sons, Publishers, Singapore.

Suggested Reading

Scheid.Francis,(1989). Numerical Analyysis. Second Edition, Mc Graw-Hill
Publishers, New York.

Sastry.S.S, (2005). Introductory Methods of Numerical Analysis. Fourth
Edition,Prentice Hall of India Publishers, New Delhi.

217 WhatsApp: +91 7900900676 www.AgriMoon.Com



Module 2: Laplace Transform

L esson 33

| ntroduction

In this lesson we will discuss the idea of integral transfamgeneral, and Laplace trans-
form in particular. Integral transforms turn out to be a vefficient method to solve

certain ordinary and partial differential equations. Intjgalar, the transform can take
a differential equation and turn it into an algebraic equatilf the algebraic equation
can be solved, applying the inverse transform gives us asiratksolution. The idea of

solving differential equations is given in Figure 33.1.

Integral
Initial and boundary value Transform > Algebraic
problems / PDE’s Problems/ ODE’s
Difficult Easy
Inverse
Solution of initial and boundary < Transform Solutions of
value problems or PDE’s Algebraic Problems

Figure 33.1: Idea of Solving Differential/Integral Equats

33.1 Concept of Transformations

/Kst

is called integral transform of (¢). The functionk(s,t) is called kernel of the trans-
form. The parametes belongs to some domain on the real line or in the complex

An integral of the form
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plane. Choosing different kernels and different values ahdb, we get different in-
tegral transforms. Examples include Laplace, Fourier,Kgband Mellin transforms. For
K(s,t)=e¢"%, a =0, b= oo, the improper integral

/ h e SLf(t) dt

0
is called Laplace transform gf(t). If we setK (s,t) = e™*!, a = —oc0, b = oo, then

/ st f(t)dt

—00
where:; = /-1 is called the Fourier transform ¢ft). A common property of integral
transforms is linearity, i.e.,

b
LT [or f(2) + Bg(t)] = / K(s,t) [a f(t) + £ g()] dt = «LT.(f(2)) + BL.T. (9(t))

The symbol I.T. stands for integral transforms.

33.2 Laplace Transform

The Laplace transform of a functighis defined as

L@ =F= [ ety de

0
provided the improper integral converges for some

Remark 1: The integral Jo- e st f(t) dt is said to be convergent (absolutely conver-

gent) if
R R
lim e SUf(t)dt <lim / | e St (1) | dt)
0 R—o0 0

R—o0

exists as a finite number.

33.3 Laplace Transform of Some Elementary Functions
We now give Laplace transform of some elementary functiobaplace transform of

these elementary functions together with properties otd@ptransform will be used to
evaluate Laplace transform of more complicated functions.

WhatsApp: +9157900900676 www.AgriMoon.Com



Introduction

33.4 Example Problems

33.4.1 Problem 1

Evaluate Laplace transform gfit) = 1, ¢t > 0.

Solution: Using definition of Laplace transform

e—st 00

Lifo) = [ Tt =

—S 10

Assuming that is real and positive, therefore

1
LIf()] = -, since lim et =0

R—

What will happen if we take to be a complex number, i.es,= = + iy. Sincee ¥ =
cosyR — isinyR, and thereforé e~ |= 1, then, we find

lim | e*® || e ¥ |= 0 for Re(s) =z > 0
R—oo
Thus, we have

LIf(9)] = L1 = -, Re{s) > 0.

33.4.2 Problem 2

Find the Laplace transform of the functioe, i, e,

Solution: Using the definition of Laplace transform

S oo 6_(3_a)t o0
L) = [ estertar = [ ety - Lo
0 0 —{s—a

— é provided Rés) > a (Or s > a)

Similarly, we can evaluate

0o —(s—ia)t |00
iat] _ —(s—ia)t 34 _ €
Lle"| /0 e dt —G—ia)lo
— 1 provided Res) > 0.

]
S —1a
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Here we have used the fact that, for « + iy, we have

6—(s—ia)R

! lim |e *Re~ilv—a)E| — g

lim = -
S —1a4 R—oo

R—o00

—(s —ia)

Similarly, we get

33.4.3 Problem 3

Fins the Laplace transform of the unit step function (comin&nown as the Heaviside
function). This function is given as

{0 if ¢ < a,
u(t —a) =

1 ift>a.

Solution: Let us find the Laplace transform aft — a), wherea > 0 is some constant.
That is, the function that is O far< « and 1 fort > a.

_ 00 . i
e st} e a8
t=a

—S

LInl a b = /OOO e Stu(t — a) dt = /aoo el dir— {

where of course > 0 anda > 0.

33.4.4 Problem 4

Find the Laplace transform af, n =1,2,3, ...

Solution: Using definition of Laplace transform we get

%9 G—St S o0 6—st
L[t"] = / e S dt = {t" } -~ / ——nt" 1 dt
0 —S o o —9

o
=0+ ﬁ/ A Ry T
S Jo S

Puttingn = 1:
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Puttingn = 2:
2 2
21 _ 4 _
Wl=5=5
If we assume.[t"] = %, then
S
n+1 (n+1)! n!
L) = L") = o = LI = oy Re(s) >0,

One can also extend this result for non-integer values of

33.45 Problem 5

Find L[t7] for non-integer values of.

Solution: Using the definition of Laplace transform we get

L[ﬂ]:/ e S dt, (y> 1)
0

Note that the above integral is convergent onlyfor —1. We substitute; = st = du =
sdt wheres > 0. Thus we get

Lit" = / E <E> —du = —/ e FAmihdu
0 s/ s ¥+ Jy

We know o
I'(p) = / WP e du (p > 0)
0
Then, r( )
(v +1
Lit"] = — >—1,5>0
Note that fory = 1,2, 3, ..., the above formula reduces to the formula we got in previous
!

example for integer values, i.eL[t?] = T
S

33.4.6 Problem 6

Let f(t) = ao + art + ast? + ... + ant™. Find L[f(t)].

Solution: Applying the definition of Laplace transform we obtain

n
Z aktk]
k=0

LIf(@®)] =L
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Using the linearity of the transform we get
LIF®) =D LI = > ax g
k=0 k=0

Remark 2:  For an infinite serie$ %, a,,t", it is not possible, in general, to obtain
Laplace transform of the series by taking the transform teyrterm.

Suggested Readings

Arfken, G.B., Weber, H.J. and Harris, F.E. (2012). MatheoaiMethods for Physicists
(A comprehensive guide), Seventh Edition, Elsevier Acaddimess, New Delhi.

Debnath, L. and Bhatta, D. (2007). Integral Transforms ahneliiTApplications. Second
Edition. Chapman and Hall/CRC (Taylor and Francis GrougwNork.

Grewal, B.S. (2007). Higher Engineering Mathematics. Emmth Edition. Khanna
Publishers, New Delhi.

Dyke, P.P.G. (2001). An Introduction to Laplace Transfoemd Fourier Series. Springer-
Verlag London Ltd.

Jain, R.K. and lyengar, S.R.K. (2002). Advanced Engingeliathematics. Third Edi-
tion. Narosa Publishing House. New Delhi.

Jeffrey, A. (2002). Advanced Engineering Mathematics ek Academic Press. New
Delhi.

Kreyszig, E. (2006). Advanced Engineering MathematicsittNiEdition, Wiley India
Pvt. Ltd, New Delhi.

McQuarrie, D.A. (2009). Mathematical Methods for Scietrdiisd Engineers. First Indian
Edition. Viva Books Pvt. Ltd. New Delhi.

Schiff, J.L. (1999). The Laplace Transform: Theory and Agations. Springer-Verlag,
New York Inc.

Raisinghania, M.D. (2009). Advanced Differential Equato Twelfth Edition. S. Chand
& Company Ltd., New Delhi.

WhatsApp: +91¢7900900676 www.AgriMoon.Com



224

Module 2: Laplace Transform

L esson 34

L aplace Transform of Some Elementary Functions

In this lesson we compute the Laplace transform of some el@mnefunctions, before
discussing the restriction that have to be imposegd(orso that it has a Laplace transform.
With the help of Laplace transform of elementary functiona@e get Laplace transform
of complicated function using properties of the transfotmattwill be discussed later.
Another important aspect of the finding Laplace transfornelementary function relies
on using them for getting inverse Laplace transform.

34.1 Example Problems

34.1.1 Problem 1

Find Laplace transform of (i) cosh wt, (ii) coswt, (iii) sinh wt (iV) sin wt .

Solution: (i) Using the definition of Laplace transform we get
Llcoshwt] = L [%]
Using linearity of the transform we obtain
Lleoshwt] = & (L[] ~ L[] )

Applying the Laplace transform of exponential function waxaon

1 1 1 s
Lcoshwt] = 2 L—w a s+w} R

(ii) Following similar steps we obtain

wt —iwt
Licoswt] = L {i]

2
Using linearity, we obtain

Llcoswt] = %L [e™f] + %L [e71]
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We know the Laplace transform of exponential functions Wwitan be used now to get

L[ t] 1 1 n 1 1 2s
coswt| = = — -
2 |ls—iw s+iw 252 + w?

Thus we have
S

L[COS wt] = m
Similarly we get the last two cases (iii) and (iv) as

w

S w

22 and L[sinwt] =

34.1.2 Problem 2

Find the Laplace transformof (3 + e5%)2.
Solution: We determine the Laplace transform as follows
L(3 + %)% = L(3 +€%)(3 + ) = L(9 + 6% + ')
Using linearity we get
L(3 4+ €592 = 1(9) + L(6e5) 4 L(e!%)
= 9L(1) + 6L(e%) + L(e'?)

Using the Laplace transform of elementary functions appgabove we obtain

9 6 1
L<3+€6t)2:§+s—6+s—12

34.1.3 Problem 3

Find the Laplace transformof sin? 2.

Solution: We know that

sin3t = 3sint — 4sin> ¢

This implies that we can write

1
sin® 2t = 7 (Bsin2t —sin 67)
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Applying Laplace transform and using its linearity progese get
Lfsin® 2] — i (3L[sin 2¢] — L{sin 6¢))

Using the Laplace transforms gf at we obtain

3 2 1 6
4s24+4 4s2+36

Llsin®2t] =

Thus we get
48

Llsin® 21) = (52 +4)(s2 + 36)

34.1.4 Problem 4

Find Laplace transform of the function f(¢) = 2.

Solution: First we rewrite the given function as
f(t) - 2t p— eln2t _ 6tln2

Now f£(t) is function of the form:% and therefore

LIf®)] = - _lm, for s > In2

34.1.5 Problem 5

Find (a) L[t? — 4t + 5+ 3sin2t] and (b) L[H (t — a) — H(t — b)].

Solution: (a) Using linearity of the transform we get
L[t3 — 4t + 5 + 3sin 2t] = L[t3] — 4L[t] + L[5] + 3L[sin 2t]

Using Laplace transform evaluated in previous previousmgptas, we have

6 4 5 6

L[t? — 4t + 5+ 3sin2t] = — — — S
[ + 5 + 3sin 2t] a 82+S+(52+4)
On simplification we find

(58 + 251 + 205°1052% 4 24)
[s%(s2 + 4)]

L[t? — 4t 4+ 54 3sin2t] =
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(b) Using Linearity property we get
L[H(t —a) — H(t —b)] = L[H(t — a)] — LIH(t — b)]
Applying the definition of Laplace transform we obtain
L[H(t —a) — H(t — b)] :/OOO H(t —a)e st dt — /OOO H(t —Db)e st dt
:/OO H(t —a)e st dt — /boo H(t —Db)e st dt

Integration gives

This implies

34.1.6 Problem 6

Find Laplace transform of the following function

t/e, IfO0<t<c;
1) =
#) {1, if ¢>ec.

Here ¢ Is some constant.

Solution: Using the definition of Laplace transform we have

o) :/Oce—st (é) dt+/:o e ot

Integrating by parts we find

) - [L(-50) - (‘i;t)E ' [‘ftf

WhatsApp: +9147900900676 www.AgriMoon.Com



Laplace Transform of Some Elementary Functions

34.1.7 Problem 7

Find Laplace transform of the function f(¢) given by

0, ifo<t<1;
fe)y=< ¢t if1<t<?2;
0, if t>2.

Solution: By the definition of Laplace transform we have

00 2
L[f(t)]:/o e_Stf(t)dt:/l e St dt

Integrating by parts we obtain

34.1.8 Problem 8

Find Laplace transform of sin /%.

Solution: We have

1 1 1
' _ a2 Lo 5/2 _ Lo7/2
sin vVt = ¢ —3!t + —5!t 7!t + .

Then, taking the Laplace transform of each term in the sereeget

Losoy Looso 1o
5L[t |+ =L[t7°] — = L[t"*] + ...

L[sinvt] = L[t'/?] — = o
L T(3/2) 1T(5/2) 1T(7/2) 1T1(9/2)
T g3/2 31 $5/2 TRl S7/2 7l $9/2
Further simplifications leads to

1\/%[1 131 1531 17531 }

Lsinvi =5 57 |1~ 3195 T 52052 " 72205 T
1

T
=2 g[ T2 T 32

1
L[sin V] = %\/ge_ﬁ.

1 1 1 11}

Thus, we have
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Lesson 35

Existence of Laplace Transform

In this lesson we shall discuss existence theorem on Laptaosform. Since every
Laplace integral is not convergent, it is very important twow for which functions
Laplace transform exists.

Consider the functiorf (¢) = " and try to evaluate its Laplace integral. In this case we
realize that

R
lim / =5t 4t = o0, for any choice of
0

R—o0
Naturally question arises in mind that for which class ofdiimns, the Laplace integral
converges? So before answering this question we go thraugh definition.

35.1 Piecewise Continuity

A function f is called piecewise continuous @nb| if there are finite number of points<
t1 <tg < ...<t, < bsuchthayf is continuous on each open subinterval,), (¢1,t2), ..., (tn,b)
and all the following limits exists

lim, f(¢). i f(0), Y £(0), and T f(0), ¥

t—a+ —b—

Note: A function f is said to be piecewise continuous[0nx) if it is piecewise continu-
ous on every finite intervad, o], v € R..

35.1.1 Example 1

The function defined by

t2, 0<t<Il;
fB)=1< 3—-t, 1<t<2;
t+1, 2<t <3,

IS piecewise continuous g 3].
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35.1.2 Example 2

The function defined by

a4, 0<t<2;
f(t>{ 152:1 2;23;
IS not piecewise continuous @n 3.
35.2 Example Problems
35.2.1 Problem 1
Discuss the piecewise continuity of
FO) =

Solution: f(t) is not piecewise continuous in any interval containirgince

lim f(t)

t—1+

do not exists.

35.2.2 Problem 2

Check whether the function

f(t){ S LA

0, otherwise

IS piecewise continuous or not.

Solution: The given function is continuous everywhere other thao &0 we need to

check limits at this point. Since both the left and right isni

Mg /=1 and g 70 =1

exists, the given function is piecewise continuous.
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Existence of Laplace Transform

35.3 Functions of Exponential Orders

A function f is said to be of exponential orderif there exist constantZ anda such that
for somety; > 0
If(t)] < Met forallt >t

Equivalently, a functiory(¢) is said to be of exponential ordenf
Jlim e " f(t)| = afinite quantity

Geometrically, it means that the graph of the functfoan the intervalt,, o) does not
grow faster than the graph of exponential functiga™

35.4 Example Problems

35.4.1 Problem 1

Show that the functiori(¢t) = t™ has exponential ordex for any value ot > 0 and any
natural numbern.

Solution: We check the limit

lim e~ %"
t—00

Repeated application of L'hospital rule gives

|
lim e — lim —— =0

—ozttn
t—00 t—o0 ettt

Hence the function is of exponential order.

35.4.2 Problem 2

Show that the functiofi(t) = ¢t is not of exponential order.
Solution: For given function we have

2
lim e ! = lim e
t—o0 t—o0

L(t—a) _ 00

for all values ofo. Hence the given function is not of exponential order.
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35.4.3 Theorem (Sufficient Conditions for Laplace Transfom)

If fis piecewise continuous df oo) and of exponential ordex then the Laplace trans-
form exists forke(s) > a. Moreover, under these conditions Laplace integral cogesr
absolutely.

Proof: Sincef is of exponential orded, then
|f(t)] < Mye™, t >t (35.1)
Also, f is piecewise continuous df, o) then
|f(t)] < Ma, 0<t<tg (35.2)
From equation (35.1) and (35.2) we have
f(1)] < Me, t>0

Then
R R _
/ e £()|dt < / e~ (Hw) AL | dt
0 0

Here we have assumedo be a complex number so that z + iy. Noting thate=%| =1

we find
R R
/ e Stf(t)]dt < M / e~ (@)t gt
0 0

On integration we obtain

R
b/ estplar < 2 MR
0 Tr — o Tr —

Letting R — oo and notingRe(s) = = > a, we get

/mwﬂﬂMMS M
0

r—

Hence the Laplace integral converges absolutely and thogeoges. This implies the
existence of Laplace transform. For piecewise continuonstfons of exponential order,
the Laplace transform always exists. Note that it is a sefficcondition, that means if a
function is not of exponential order or piecewise continsithen the Laplace transform
may or may not exist. n
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Remark 1: We have observed in the proof of existence theorem that

/ h e St f(t)dt
0

We now deduce two important conclusions with this obsemati

o0 L, M

o L[f(t)] = /000 e St f(t)dt = F(s) — 0 @aSRe(s) — oo

o if L[f(t)] A 0ass — oo (Or Re(s) — oco) then f(¢) cannot be piecewise continuous
function of exponential order. For example functions suslids) = 1 and F,(s) =
s/(s+1) are not Laplace transforms of piecewise continuous funstaf exponential
order, sincery(s) 4 0 and Fy(s) 4 0 ass — oo.

Remark 2: It should be noted that the conditions stated in existeneertém are suf-
ficient rather than necessary conditions. If these condittiare satisfied then the Laplace
transform must exist. If these conditions are not satisfiet t_aplace transform may or
may not exist. We can observe this fact in the following eXasnp

e Consider, for example,
ks ote!” cos(etz)

Note thatf(¢) is continuous orj0,cc) but not of exponential order, however the
Laplace transform of (¢) exists, since

Lif(t)] :/ e~stotel” cos(etQ)dt
0
Integration by parts leads to

o0

LIf(1)] = e *sin(e!)

+ s/ e 5t sin(etQ)dt
0 0
Using the definition of Laplace transform we obtain
LIf(t)] = —sin(1) + sL[sin(e")]

Note thatL[sin(etQ)] exists because the functi@im(etz) satisfies both the conditions
of existence theorem. This example shows that Laplaceftransof a function
which is not of exponential order exists.
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o Consider another example of the function

which is not piecewise continuous singe) — oo ast — 0. But we know that

LIf (1) = % - \/é s> 0.

This example shows that Laplace transform of a function kvigcnot piecewise
continuous exists. These two examples clearly shows thatahditions given in
existence theorem are sufficient but not necessary.

Suggested Readings

Arfken, G.B., Weber, H.J. and Harris, F.E. (2012). MatheoaiMethods for Physicists
(A comprehensive guide), Seventh Edition, Elsevier Acaddiress, New Delhi.

Debnath, L. and Bhatta, D. (2007). Integral Transforms anelifTApplications. Second
Edition. Chapman and Hall/CRC (Taylor and Francis GrougwNork.

Grewal, B.S. (2007). Higher Engineering Mathematics. Emmth Edition. Khanna
Publishers, New Delhi.

Dyke, P.P.G. (2001). An Introduction to Laplace Transfoemd Fourier Series. Springer-
Verlag London Ltd.

Jain, R.K. and lyengar, S.R.K. (2002). Advanced Engingekilmathematics. Third Edi-
tion. Narosa Publishing House. New Delhi.

Jeffrey, A. (2002). Advanced Engineering Mathematics ek Academic Press. New
Delhi.

Kreyszig, E. (2006). Advanced Engineering MathematicgitiNiEdition, Wiley India
Pvt. Ltd, New Delhi.

McQuarrie, D.A. (2009). Mathematical Methods for Scietrdiisd Engineers. First Indian
Edition. Viva Books Pvt. Ltd. New Delhi.

Schiff, J.L. (1999). The Laplace Transform: Theory and Agatlons. Springer-Verlag,
New York Inc.

WhatsApp: +91¢7900900676 www.AgriMoon.Com



236

Module 2: Laplace Transform

L esson 36

Properties of Laplace Transform

In this lesson we discuss some properties of Laplace tremsfdhere are several useful

properties of Laplace transform which can extend its appildy.

mainly present shifting and translation properties.

36.1 First Shifting Property

In this lesson we

If L[f(t)] = F(s) thenL [e* f(t)] = F(s — a), Wherea is any real or complex constant.

Proof: By the definition of Laplace transform we find

Le"™f(t)] = /OO e f(t)e st dt

0
= / e~ (=t (4) dt
0
Again by the definition of Laplace transform we get

L [e"f(t)] = F(s — a).

36.2 Example Problems

36.2.1 Problem 1

Find the Laplace transform ofe~*sin? ¢.

Solution: First we get the Laplace transformoif® ¢ as

1 —cos2t
2
111 s 2
25 28244 s(s?2+4)
Now using the first shifting property we obtain

L[sin®t] =L {

= F(s).

2

Lle'sin®t] = F(s+1) = G
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36.2.2 Problem 2

Find L[e~2 sin 6t].

Solution: Settingf(t) = sin 6¢ we find

6
Lif)] = F(s) = 2136
Now using the first shifting property we get
92t . -
Lle™* sin6t] = 5527136

36.2.3 Problem 3

EvaluateL[e? (¢t + 3)?.

Solution: By the definition and linearity of Laplace transform we have

L[(t + 3)?) =L[t* + 6t + 9] = L[t*] + 6L[t] + 9L[1]

26,9
S 3 82 s
Further simplifications lead to
2+ 65 + 95>
Lt +3) = — = = F(s)

Using the first shifting property we get

C2+46(s—2)+9(s — 2)?
a (s —2)3
952 — 30s + 26
(s —2)3

Lie*(t +3)?] = F(s — 2)

36.2.4 Problem 4

Using shifting property evaluatg[sinh 2¢ cos 2¢] and L]sinh 2¢ sin 2¢]

Solution: We know that
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Using shifting property we can get
L[e*" sinh 2t] = F(s — 2i)

This implies ) )
L[e* sinh 2t] = =
b 2] = e T T o — s

Multiplying numerator and denominator iy — 8) + 4is, we find

2(s? — 8) +8is  2(s* — 8) + 8is

L[e?*" sinh 2t] = =
e sinh 2] = 5 1 162 (s + 64)

Replacing:?" by cos 2t + i sin 2t and using linearity of the transform we obtain

2(s? — 8) L 8s
1
(s*+64) (s*+64)

L]cos 2t sinh 2t] 4 ¢ L|cos 2t sinh 2t] =

Equating real and imaginary parts we have

2(s? - 8)
(st 4 64)

8s

L[COS 2t Sinh 2t] = m
S

and L[cos 2¢sinh 2t] =

36.3 Second Shifting Property

f(t—a) whent >a
0 wheno <t < a

IFL[f(#)] = F(s) andg(t) = {

then
Llg(t)] = e F(s).

Proof: By the definition of Laplace transform we have
Ligtn) = [ e tgtear
= /OO e SUf(t —a)dt
Substitutingt — a = « so that d = du, we find
Lot = [ e ) au
= 50 / s F(u) du
0
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Again using the definition of Laplace transform we get

Llg(t)] = ™" F(s).

Alternative form: It is sometimes useful to present this property in the foilmwcom-
pact form.

If L[f(¢)] = F(s) then
L[f(t—a)H(t — a)] = e " F(s)

where

{ 1 whent > 0
H(t) =

0 whent <0

Note thatf(t — a)H(t — a) is same as the functiofit) given above.

36.4 Example Problems

36.4.1 Problem 1

0 wheno <t <1

Find L{g(t)] whereg(t) = { (t—1)2 whent > 1

Solution: On comparison with the functiof(¢) given in second shifting theorem we get

f(fy=¢ = Lift) =5

Using the second shifting property we find

36.4.2 Problem 2

Find the Laplace transform of the functigry), where

) cos(t—m/3), t>m/3;
al) = { 0, t > /3.
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Solution: Comparing with the notations used in the second shiftingrédm we have

f(t) = cost. Thus, we find

LU0 = F(s) = 57

Hence by the second shifting theorem we obtain

S

Ligt)] = e ™3F(s) = e—f/?)m.

36.5 Change of Scale Property

It LI7(5)] = F(s) thenL{f(ar)] = - F (%)

a

Proof: By definition, we have
L[f(at)] :/ e St f(at) dt.
0
Substitutingat = u so thatz dt = du we find
L{f(at)] = / e~ () £ () s
0 a
Using definition of the Laplace transform we get

Lifan] = - (2).

[0 Q

36.5.1 Example

If
2 —s+1

L= e -

then findL[f(2t)].

Solution: Direct application of the second shifting theorem we obtain

1 (5’ -5+1
LIf2t) =5 (2;2 1)22(;_ )

On simplifications, we get

32 — 4S8
Lol = i(s n 1)3(:—42)'

240 WhatsApp: +9157900900676 www.AgriMoon.Com



241

Properties of Laplace Transform

Suggested Readings

Arfken, G.B., Weber, H.J. and Hatrris, F.E. (2012). MatheoaiMethods for Physicists
(A comprehensive guide), Seventh Edition, Elsevier Acaddimess, New Delhi.

Debnath, L. and Bhatta, D. (2007). Integral Transforms ahneliiTApplications. Second
Edition. Chapman and Hall/CRC (Taylor and Francis GrougwNork.

Grewal, B.S. (2007). Higher Engineering Mathematics. Emmth Edition. Khanna
Publishers, New Delhi.

Dyke, P.P.G. (2001). An Introduction to Laplace Transfoemd Fourier Series. Springer-
Verlag London Ltd.

Jain, R.K. and lyengar, S.R.K. (2002). Advanced Engingeliathematics. Third Edi-
tion. Narosa Publishing House. New Delhi.

Jeffrey, A. (2002). Advanced Engineering Mathematics etdklr Academic Press. New
Delhi.

Kreyszig, E. (2006). Advanced Engineering MathematicsttNiEdition, Wiley India
Pvt. Ltd, New Delhi.

McQuarrie, D.A. (2009). Mathematical Methods for Scietrdiisd Engineers. First Indian
Edition. Viva Books Pvt. Ltd. New Delhi.

Schiff, J.L. (1999). The Laplace Transform: Theory and Agations. Springer-Verlag,
New York Inc.

WhatsApp: +91¢7900900676 www.AgriMoon.Com



242

Module 2: Laplace Transform

L esson 37
Properties of Laplace Transform (Cont.)
In this lesson we continues discussing various properfiegplace transform. In partic-

ular we shall discuss Laplace transform of derivatives atebrals. These two properties
are very important for solving differential and integralagjons.

37.1 Laplace Transform of Derivatives

Before we state the derivative theorem, it should be notattltis results is the key aspect
for its application of solving differential equations.

37.1.1 Derivative Theorem

Supposef is continuous ono, o) and is of exponential order and thatf’ is piecewise
continuous ori0, co). Then

Lif ()] = sLIf (1)) — £(0), Re(s)> a.

Proof: By the definition of Laplace transform, we have

uf = [ e

Integrating by parts, we get

/

LIf (1)) = f(t)e™™

o / F(t)e="t(—s) dt
0 0
Using the definition of Laplace transform we obtain

LIf (1) = —£(0) + sLf(1)],  Re(s)> a.

This completes the proof. n
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Remark 1. Supposef(t) is not continuous at = 0, then the results of the above
theorem takes the following form

/

LIf (0)] = =f(0+0) + sL{f(2)]

Remark 2: An interesting feature of the derivative theorem is thét (¢)] exists
without the requirement of to be of exponential order. Recall the existence of Laplace
transform off (¢) = 2te!” cos (etQ) which is obvious now by the derivative theorem because

£t = (sin (")) -

Remark 3: The derivative theorem can be generalized as
LIf (#)] = —F (0) + sLIf (¢)
= —f (0) + s {—f(0) + sL[f ()]} = S*LIf(£)] — s£(0) — £ (0).

In general, fornth derivative we have

LIf"(®)] = sS"LIF®)] — " £(0) = s"2F (0) — .. — f"1(0).

37.2 Example Problems

37.2.1 Problem 1

DetermineL[sin® wt].

Solution: Let us assume that
f(t) = sin® wt

Now we compute the derivative gfas

f/(t) = 2 sin wt cos wiw = w sin 2wt.
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Using the derivative theorem we have
LIf ()] = = f(0) + sL[f(2)]
Substituting the functiorf(¢) and its derivative we find
Llwsin 2wt] = sL[sin* wt] — 0
Therefore, we have

Lfsin? wr] = & (L)

52 4+ 4w?

37.2.2 Problem 2

Using derivative theorem, find¢"|.

Solution: Let
ft)=t"
Then

F@O) =nt"t £ @) =nn-10"2. ., @ =n.

From derivative theorem we have

LIf"(®)] = s"LIF®)] = "1 £(0) = s"2F (0) — .. = f71(0).

Therefore, we find |
n'

Linl] = "L[t") = L[] = <

37.2.3 Problem 3

Using derivative theorem, finksin kt].

Solution: Let f(¢) = sin kt and therefore we have
f'(t) =kcoskt and f"(t) = —k%*sinkt
Substituting in the derivative theorem

L[f"(t)] = sLf(t)] = s£(0) — f'(0)

WhatsApp: +9147900900676

www.AgriMoon.Com



Properties of Laplace Transform (Cont.)

yields
L|—k*sinkt] = s*Lsin kt] — 0 — k

On simplifications we get
k

37.2.4 Problem 4

Using L[t?] = 2/s® and derivative theorem, find[t°].

Solution: Let f(t) = t° so thatf'(t) = 5t*, f"(t) =20t  f"(t) = 60t2. The derivative
theorem for third derivative reads as

LIf" ()] = s’LIf(t)] = s*£(0) — s£'(0) — f"(0)

This implies
_ 120

L0 = SLf@) = LIf(1)] = 5

37.25 Problem 5

Using the Laplace transform df [sin v/¢] and applying the derivative theorem, find the
Laplace transform of the function

cos V't
Vit

Solution: We know that
] 1
L [sm\/%] = 2_3 — e 4

Let f(¢) = sin /¢, then we have

BE
|
-

cos v/t

f(0)=0 and f'(t) = N

Substitution off(¢) in the derivative theorem

yields
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Thus, we get

37.3 Laplace Transform of Integrals

37.3.1 Theorem
Suppos¢g (t) is piecewise continuous di co) and the function

ngéﬂwm

is of exponential order. Then X
Lig()] = <F(s).

Proof: Clearlyg(0) = 0 andg'(t) = f(t). Note thaty(¢) is piecewise continuous and is of
exponential order as well as(t) = f(t) is piecewise continuous. Then, we get using the

derivative theorem

Llg (t)] = sLlg(t)] - 9(0)

Sinceg(0) = 0 we obtain the desired result as

Llg®) = SLL(E)

This completes the proof.

37.4 Example Problems

37.4.1 Problem 1

Given that ' o
L{ggq::/‘——i—d&
t s 1+s2

Find the Laplace transform of the integral
t .
/’&nudw
0 Uu
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Solution: Direct application of the above result gives
t . .
L[/ d} . [_f]
0o U S t

1 [ 1 I
ST U Y
5/3 1+325 - 13 an s

t .
1
L [/ smud4 = —cot7ls
0 u S

Thus, we have

37.4.2 Problem 2

Find Laplace transform of the following integral
1

/ u e du
0

Solution: With the application of the first shifting theorem we knowttha

n!
(s + a)nt1

It follows from the above result on Laplace transform of grds

¢ 1 n!
L / W du| = L[ = "
0 s s(s+ a)"tt

L[tne—at] —
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L esson 38

Properties of Laplace Transform (Cont.)

In this lesson we further continue discussing propertielsapiace transform. In partic-
ular, this lesson is devoted to Laplace transform of fumstiavhich are multiplied and
divide byz.

38.1 Multiplication by ¢"

38.1.1 Theorem

If F(s)isthe Laplacetransformof f(¢),i.e., L[f(t)] = F(s) then,

LIF(B) =~ F(s)

and in general the following result holds

LIS (D) = (-1 F (s)

Proof: By definition we know

F(s) = /OO e StF(t) dt

0

Using Leibnitz rule for differentiation under integral sigve obtain

dF(S) - > o —st
i _/0 (—t)e—*t F(t) dt
Thus we get
dF(s)
o = LIt (®)
Repeated differentiation under integral sign gives thesgarule. n

Applicability of the above result will now be demonstratgddmme examples.
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38.2 Example Problems

38.2.1 Problem 1

Find Laplace transform of the function ¢ cos at.

Solution: We know from Laplace transform of elementary functions that

S

L[COS CLt] = m

Direct application of the above rule gives

9 d? s d [ %+ a%—2s2 d a? — §2
L[t cosat}:— = |— | == | ——=
ds? \ s +a? ds \ (s 4 a?) ds \ (s2 + a?)

On simplifications we find

2s (52 — 3a2)

2 s
L [t cosat] = (52 +a2)3

38.2.2 Problem 2

Evaluate (i) L{te™*] (i) L[t?e~?] (iii) L[t*e ]

Solution: (i) We know that \

s+1

Lle7! =
Using the above mentioned rule we find

o
dss+1 (s+1)2

Lite™"] =

(ii) Applying the same idea once again, we obtain

4 1 2
ds(s+1)2  (s+1)3

L[th_t] =—

(i) Similarly, we can further generalize this result as

k!

Litte!] = Gt
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38.2.3 Problem 3

Find the Laplace transform of f(¢) = (t> — 3t +2)sint

Solution: Using linearity of the Laplace transform we have

L{f(t)] = L[t*sint] — 3L[t sint] + 2L[sin t] (38.1)
Since we know
a1
Lisint] = T2
then . )
. __a _ S
Lltsint] = ds1+s2 (14 s2)2

and 5 . d 2s 2(1+ %)% - 8s%(1 +s?) 652 —2

U sint] =~ v e = 1+ 7)1 BETRE

Substituting the above values in the equation (38.1), we find

65 =2 6 2
Liywl = (1S+ R +Ss2)2 e

Further simplifications lead to

_ 65®—2—65(1+5%) +2(1+s5%)?

LI () i

Finally, we obtain
(25* — 653 4 10s% — 65)

Lf(t)] = (56 +3s% + 352 4+ 1)

38.3 Division by ¢

38.3.1 Theorem

If f is piecewise continuous on [0, o) and is of exponential order « such that

lim /)
t—0+ ¢

L{&} :/:OF(u)du, s >

exists, then,

WhatsApp: +9137900900676 www.AgriMoon.Com



251

Properties of Laplace Transform (Cont.)

Proof: This can easily be proved by lettingt) = @ so thatf(t) = tg(t).

Hence,

F(s) = LIF(t) = Lltg(t)] = - Llg()

Integrating with respect towe get,

Sincey(t) is piecewise continuous and of exponential order, it foHl dlaat lim Lg(t)] — 0.
Thus we have

This completes the proof. n

Remark: It should be noted that the condition tlir&[ f(t)/t] is very important because
%

without this condition the function ¢(¢) may not be piecewise continuous on [0, co). Thus

without this condition we can not use the fact lim Lg(t)] — 0.

38.3.2 Corallary

If L[f(t)] = F(s) then /OOO @ dt = /OOO f(s) ds, provided that the integrals converge.

Proof: We know that .
L {@} :/ F(u)du

t
Using the definition of Laplace transform we get

[ [

Taking limit s — 0 in above two integrals we obtain

[

This completes the proof. n
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38.4 Example Problems

38.4.1 Problem 1

Find the Laplace transform of the function

Solution: We know,
Llsinat] = % and L [@} :/ F(u)du
s+ t s

On integrating we get,

Thus we have

38.4.2 Problem 2

Find the Laplace transform of the function

B 2sintsinh ¢
n t

()

Solution: Using Division byt property of the Laplace transform we get
LIf() = / T Llsint (¢ — e 1)] ds (38.2)
Now we evaluatd. [sint (¢! — e~*)] using linearity of the Laplace transform as
L[sint (' —e™")] = L[e'sint] — L [e " sint]

Applying the first shifting theorem we obtain

1 1
1+ (s—1)2 1+(s+1)2

L [sint (et — e_t)} =
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Substituting this value in the equation (38.2) we find

LIf#)] = /:O L+(31_ 12?2 1+(sl+ 1)2] &

On integrating, we have

o0 o0

LIf(t)] =tan"1(s —1)] —tan"!(s+1)

S

:g —tan" (s — 1) — g +tan (s +1)

S

On cancellation of- /2 we get
Lif(t)] =tan (s +1) — tan"'(s — 1)

This can be further simplified to obtain

L] = vt (3)
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L esson 39
Properties of Laplace Transform (Cont.)
In this lesson we evaluate Laplace transform of periodictions. Periodic functions fre-
guently occur in various engineering problems. We shall sbaw that with the help of a
simple integral, we can evaluate Laplace transform of piifunctions. We shall further

continue the discussion for stating initial and final valnedrems of Laplace transforms
and their applications with the help of simple examples.

39.1 Laplace Transform of a Periodic Function

Let f be a periodic function with period so thatf(t) = f(¢t + T) then,

T
L) = T [, 0

Proof: By definition we have,

o= [ e T ar

0
We break the integral into two integrals as

T 00
e = [ e Tiwas [ e

Substitutingt = 7 + T in the second integral

T 00
= e 5T e~ £ (7 T
L) = [ e i [ f(r+T)d
Noting f(r + 7) = f(r) we find

T
LI (1) = /0 Tty dt + =T L[ ()],

On simplifications, we obtain

This completes the proof. n
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Remark 1. Just to remind that if a functiorf is periodic with periodl” > 0 then
f(t)=f({t+T), —o <t < oco. The smallest af, for which the equality'(¢) = f(t +T) is
true, is called fundamental period ¢ft). However, ifT" is the period of a functiori then
nT, n iS any natural number, is also a period ¢f Some familiar periodic functions are

sin x, cos z, tan x etc.

39.2 Example Problems

39.2.1 Problem 1

Find Laplace transform for

f(t):{ 1 wheno <t<1

0 whenl <t <2
with f(t +2) = f(t), t > 0.
Solution: Using the above result on periodic function, we have,

2 1
L{f(0)] = 1_16_28 /0 et F (1) dt = 1_16_28 /0 o5t dt

On integration we obtain

e —— (_i) = ey

39.2.2 Problem 2

Find Laplace transform for

sint whend <t<n
ft) =
0 whenr < t < 27

With f(t + 27) = f(t), t > 0.

Solution: Sincef(t) is periodic with perio@= we have

27
e UL
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Properties of Laplace Transform (Cont.)

We now evaluate the above integral as

/02” e tF(t) dt = / ' et F(t) dt + / 7 e f(t)dt

0 s

Substituting the given value gf(¢) we obtain

2w ™ _
14+e "
—st —st :
t)dt = tdt +0 = ————
/0 ) /06 ST 1+ 52

This implies
1 14 e 57 1

T l-e 27 1452 (1+s2)(l—e )

LIf@)]

39.2.3 Problem 3

Find the Laplace transform of the square wave with period T:

1(t) = h — wheno <t < T/2
| =h whenT/2<t<T

Solution: Using Laplace transform of periodic function we find

T
L) = 1= | e

Substitutingf (¢) we obtain

L[f(t)] ! /mh tq /T he st d
= —" e st dt — e St dt
L—esT \ Jo T/2

Evaluating integrals we get

h(1 — esT/2)
s(1 — esT/2)

39.3 Limiting Theorems

These theorems allow the limiting behavior of the functiorbe directly calculated by
taking a limit of the transformed function.
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39.3.1 Theorem (Initial Value Theorem)

Suppose thaf is continuous or0, ) and of exponential ordes and /' is piecewise
continuous orj0, co) and of exponential order. Let

then
f(0+) = lim f(t)= lim sF(s), [assumingsis real]

t—0+ S—00

Proof: By the derivative theorem,

Note that lim L[f (t)] = 0, sincef" is piecewise continuous dh, o) and of exponential
order. Therefore we have

0= lim sF(s) — f(0+)
Hence we get

Jim f(t) = Tim sF(s)

This completes the proof. n

39.3.2 Theorem (Final Value Theorem)

Suppose that is continuous oo, co) and is of exponential order and f is piecewise
continuous ori0, oo) and furthermoréim,_, . f(¢) exists then

lim f(t) = lim sL[f(t)] = lim sF(s)

t—00 s—0 s—0

Proof: Note thatf has exponential order= 0 since it is bounded, sindan; .. f(t) and
limy_, f(¢) exist andf(¢) is continuous if0, o). By the derivative theorem, we have

LIf ()] = sF(s) = f(0+), s>0,
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Taking limit ass — 0, we obtain

lim ” e_Stf/(t) dt = lim sF'(s) — f(0)

s—0 0 s—0

Taking the limit inside the integral

| f o =timsr) - r0)
0 S—»
On integrating we obtain

lim f(t) — f(0) = lim sF(s) — f(0)

t—o0

Cancellation off (0) gives the desired results. ]

Remark 2: In the final value theorem, existencelof,_... f(¢) iS very important.
Considerf(t) = sint. Thenlim,,gsF(s) = lims0 1>z = 0. Butlim¢, f(t) does not
exist. Thus we may say thatiihs_,o sF'(s) = L exists then eithélim,_,, f(¢t) = L or this
limit does not exist.

39.3.3 Example

Without determiningf(¢) and assuming that(¢) satisfies the hypothesis of the limiting
theorems, compute

Jlim f() and lim f() if L[f(2) :%—i-tan_l (_)

Solution: By initial value theorem, we get

lim f(t) = lim sF(s) = lim [1 + stan~! (2)]

t—0+ $—00 $—00

Application of L'hospital rule gives

52 (=a
i f) =14 m TP L,

t—0+ $—00 _1

Using the final value theorem we find

lim f(t) = lim sF(s) = lim [1 + stan™! E] = 1.
t—o00 5—0
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Remark 3:  Final value theorem saysn,_,o f(t) = limy_0 sF(s), if lim_o f(t) EXIStS.
If F(s) is finite ass — 0 then trivially lim;_,~, f(¢) = 0. However, there are several func-
tions whose Laplace transform is not finitesas: 0, for examplef(¢) = 1 and its Laplace
transformF(s) is equal tol, s > 0. In this case we havim,_,g sF(s) = lim,,01 = 1 =
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L esson 40

| nver se L aplace Transform

In this lesson we introduce the concept of inverse Laplagstorm and discuss some of
its important properties that will be helpful to evaluatedrse Transform of some com-
plicated functions. As mention in the beginning of this miedtat the Laplace transform
will allow us to convert a differential equation into an abgaic equation. Once we solve
the algebraic equation in the transformed domain we wik lik get back to the time
domain and therefore we need to introduce the concept ofsaueaplace transform.

40.1 Inverse Laplace Transform

If F'(s) = L[f(¢)] for some functiory(¢). We define thenverse Laplace transformas

There is an integral formula for the inverse, but it is notiagoée as the transform itself as
it requires complex numbers and path integrals. The easasof computing the inverse
Is using table of Laplace transform. For example,

w
Lisnwt| = —
| ] s2 + w?
This implies
L_l {%} = Sinwt, t 2 0
54 4+w
and similarly
5
L t]=——— = L! = t,t>0
[cos wt] T [32+w2] coswt, t >

40.2 Uniqueness of | nverse L aplace Transform

If we have a functiorF'(s), to be able to find (¢) such thatL[f(¢)] = F(s), we need to first
know if such a function is unique.
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Consider

(t) = 1 whent = 1
7 sin(t) when otherwise

Llg(t)] = o = Llsin1

Thus we have two different functiongt) andsint¢ whose Laplace transform are same.
However note that the given two functions are different aviafof discontinuity. Thanks
to the following theorem where we have uniqueness for caotis functions:

40.2.1 Theorem (Lerch’s Theorem)

If f andg are continuous and are of exponential order, and@'it) = G(s) for all s > sq
thenf(t) = g(¢) for all ¢ > 0.

Proof: If F(s) = G(s) for all s > sy then,

/ e—Stf(t)dt:/ e Stg(t)dt, Vs > sg
0 0

= /OOO e SUF(t) — g(t)]dt =0, Vs > sg
= () — g{t) =0, ¥t > £
= f(t) = g(t), Vt>tq.

This completes the proof. n

Remark: The uniqueness theorem holds for piecewise continuousidnaas well.
Recall that piecewise continuous means that the functioansinuous except perhaps at
a discrete set of points where it has jump discontinuities the Heaviside function or the
functiong(t) defined above. Since the Laplace integral however does met’ 'galues
at the discontinuities. So in this case we can only conclbde ft(t) = g¢(¢) outside of
discontinuities.

We now state some important properties of the inverse Legltansform. Though, these
properties are the same as we have listed for the Laplacsdram we repeat them with-
out proof for the sake of completeness and apply them to at@laverse Laplace trans-
form of some functions.
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40.3 Linearity of Inverse Laplace Transform

If F1(s) and F»(s) are the Laplace transforms of the functigyit) and f»(¢) respectively,
then
L_l[CLlFl(S) + CLQFQ(S)] = alL_l[Fl(s)] + L—I[FQ(S)] = alfl(t) + CLQfQ(t)

wherea; andas are constants.

40.4 Example Problems

40.4.1 Problem 1

Find the inverse Laplace transform of

6 8 — 6s

F —
) =53t 679

Solution: Using linearity of the inverse Laplace transform we have

1 1 S
- L—l L—l n L—l
ft) =6 {23—3} =3 {1652+9] 0 {1652+9]

Rewriting the above expression as

0 =37 | ) *3F [ orm) ab o)

L ! = e
s—a

and taking the inverse transform we obtain

Using the result

2 t t
f(t) = 3e3? + gsin% - gcos%.

40.4.2 Problem 2

Find the inverse Laplace transform of

24541

F —
() s34+ s
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Solution: We use the method of partial fractions to writan a form where we can use
the table of Laplace transform. We factor the denominatefést 1) and write

s?’+s+1 A Bs+C

—_— = — + .

s3+s s s2+1

Putting the right hand side over a common denominator andteguthe numerators we
getA(s? +1) + s(Bs + O) = s + s + 1. Expanding and equating coefficients we obtain
A+ B=1,C=1,A=1,andthusB = 0. In other words,

2
s“+s+1 1 1
F = - @ @@= - .
O e

By linearity of the inverse Laplace transform we get
2 1
[ § il RSN R ~ 1+ sint.
s3+s S s24+1

40.5 First Shifting Property of Inverse Laplace Transform

If L7[F(s)] = f(t), thenL Y [F(s — a)] = ™ f(t)

40.6 Example Problems
40.6.1 Problem 1

1 1
EvaluateL [7(5 n 1)2}

Solution: Rewriting the given expression as

. 1 . 1
- | =7 - -
) = = oo
Applying the first shifting property of the inverse Laplacartsform

o[l [

Thus we obtain
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40.6.2 Problem 2
. . 1
Find L [82+4s+8}

Solution: First we complete the square to make the denominater2)® + 4. Next we
find

L1 { ! ] = %sin(Qt).

s2 4+ 4
Putting it all together with the shifting property, we find

1

Lo
— | = <€ sin(2t).
(s+2)°+4| 2 (2)

1
L—l — —1
{52 + 4s + 8]

40.7 Second Shifting Property of Inverse Laplace Transform

If L7 [F(s)] = f(t), thenL™! [~ f(s)] = f(t — a) H(t — a)

40.8 Example Problems

40.8.1 Problem 1

Find the inverse Laplace transform of

6—8

B s(s2+1)

F(s)

Solution: First we compute the inverse Laplace transform

e R e

Using linearity of the inverse transform we get

L ls<821+ 1>} - H - [@231)] — st

We now find ~
e S

L {m} = L7 [e7*L[1 — cost]]
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Using the second shifting theorem we obtain

—S

L {ﬁ} = [1 = cos(t — 1)] H(t - 1).

40.8.2 Problem 2

Find the inverse Laplace transforyit) of

—s —2s —3s
F(S) (& (& (&

232+4+52+4+(s+2)2

Solution: First we find that

1 1
1 _ L
L [82_'_4} = 251n2t

and using the first shifting property

By linearity we have
—s —2s —3s
- —1 (& -1 e —1 (&
f) =L [32+4} et [52+4} il [(s+2)2]

Putting it all together and using the second shifting theones get

(1) = %Sin2(t ) HE—1)+ % §in2(t —2) H(t —2) + e~ 209 B —3)
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L esson 41

Properties of Inverse Laplace Transform

We shall continue discussing various properties of inveeggace transform. We mainly
cover change of scale property, inverse Laplace transféimegrals and derivatives etc.

41.1 Change of Scale Property

If L7 F(s)]=f(t) then L7 '[F(as)]= 1p (3)

a a

41.1.1 Example

If

then find

Solution: Given that

! l i 16} = cosh 4t

Replacings by 2s and using scaling property we find

L7t [ 2s ] = 1costh

452 — 16 2

Thus, we obtain

S 1
L7 | = = cosh2t
[232 - 8] g “O°

41.2 Inverse Laplace Transform of Derivatives (Derivative Theorem)

If L-'[F(s)] = f(t) then L~} [%f(s)] — ()™M f(t), n=1,2...
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41.2.1 Example

Find the Laplace transform of

: 2as . 8T —a
Orar W arae

Solution: Note that

d a _ —2as and d s B a? — s?
ds \s2+a%2)  (s2+a?)? ds \s2+a?) (5?4 a?)?

Direct application of the derivative theorem we obtain

[ 2as ] [ a
. -1 _ -1 — tqi
(Z) L -m- = (—1)tL _—m- = tsinat
and . ] ]
(i) L1 Ll — (=1 —— 7 | =tcosat
| (2 + a?)?] | 2+ a?]

41.3 Inverse Laplace Transform of Integrals

If L71(F(s)] = /() then L~ [ | f<s>ds] )i

41.3.1 Example

Find the inverse Laplace transforyiit) of the function
o 1
/S s(s+1) ds

Solution: By the method of partial fraction we obtain

e R R T

Using the inverse Laplace transform of integrals we get

L Um e 1>} -
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41.4 Multiplication by Powers of s

If L-1[F(s)] = f(t) and f(0)=0, then L~![sF(s)] = f'(t)

41.4.1 Example

UsingL™! [ ] = sin t, and with the application of above result compute [ i ]

s2+1 s2+1

Solution: Direct application of the above result leads to

d
L_l {%} = E sint = cost.
S

41.5 Division by Powersof s

Let L='[F(s)] = f(t). if f(t) is piecewise continuous and of exponential ordsuch that

! [F“)} _ /Otf(u) .

S

lim f—t exists, then
t—0 t

41.6 Example Problems

41.6.1 Problem 1

Compute

ke

Solution: we could proceed by applying this integration rule.

11 | b
L -5—|=] L 5 du= [ sinT du=1—cost.
S S —|—1 0 8+1 0
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41.6.2 Problem 2

. 1
Find inverse Laplace transform ?17
s2+1)2

Solution: We know that

S 1
L7V —2 | = Ztsint.
(1+52)2} 5 sin

We now apply the above result as

_ 1 a1 s IR
L 1 {m} =L 1 {;m} 25/0‘ tSlntdt.

Evaluating the above integral we get

_ 1 1 .
L 1 [m:l = 5(—tCOSt—|—Slnt).

41.6.3 Problem 3

Find inverse Laplace transform 2%

Solution: It is easy to compute

M| =7 (i) 7 [ ot

Now repeated application of the above result we get
Lt s —/t(cost—sint)dt—sint+cost—1
s(s2+1)]  Jo n '

Finally, we obtain the desired transform as

-1 t
L1 [2827] :/ (sint 4+ cost —1)dt =1 — ¢ +sint — cost.
s*(s? + 1) 0

41.7 Evaluation of Integrals

With the application of Laplace and inverse Laplace tramsfae can also compute some
complicated integrals.
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Properties of Inverse Laplace Transform

41.8 Example Problems

41.8.1 Problem 1

costx

—d t > 0.
x2 41 o

Evaluate /
0

Solution: Let .
f(t):/ costx Q.
0

224+ 1
Taking Laplace transform on both sides,

S

LIf(t)] = d

£ /0 @2+ 1)(s2+22)
s /OO 1 B 1 de
Cs241 241 24 g2
=5 . {tan_l T — ltan_1 (1)}
sc—1 S s/ 1o

s <7r 7r> o1
C s2=14P 25/ 2s+1
Taking inverse Laplace transform on both sides,

41.8.2 Problem 2

o0 2
Evaluate/ e ¥ dzx.
0

Solution: Let .
g(t) = / e~ dy
0

Now taking Laplace on both sides,

Llg(t)] = /000 ﬁdx = % arctan (i) )OO _ 1

Taking inverse Laplace transform we obtain

Hence fort = 1 we get

/ 6_I2d1’ = ﬁ
0 2
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Remark: Theoretical results on applicability of Laplace transfofar evaluating of
integrals and evaluation of some more integrals will beHertelaborated in one of the
next lessons.
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Module 2: Laplace Transform

L esson 42

Convolution for Laplace Transform

In this lesson we introduce the convolution property of tlaglace transform. We shall
start with the definition of convolution followed by an impant theorem on Laplace
transform of convolution. Convolution theorem plays an amant role for finding in-

verse Laplace transform of complicated functions and tbegevery useful for solving

differential equations.

42.1 Convolution

The convolution of two given functiong(t) andg(¢) is written asf = g and is defined by
the integral

(f = g)(t /f ot —7) (42.1)

As you can see, the convolution of two functiong @ another function of.

42.2 Example Problems

42.2.1 Problem 1

Find the convolution of (t) = ¢! andg(t) = ¢ for t > 0.

Solution: By the definition we have

t
e = [ et=r)ar
Integrating by parts, we obtain

(frg)t)=e —t—1.

42.2.2 Problem 2

Find the convolution of (¢) = sin(wt) andg(t) = cos(wt) for ¢ > 0.
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Convolution for Laplace Transform

Solution: By the definition of convolution we have
t
(fxg)t) = / sin(wr) cos(w(t — 7)) dr.
0

We apply the identityos(6) sin(y)) =

t
(f*g)(t) = /O

On integration we obtain

(sin(6 + ) — sin(f — )) to get

N =

(sin(wt) — sin(wt — 2wT)) dr

DN =

(f*g)(t) = F 7 sin(wt) + S cos(2wT — wt) t = liﬁsin(wt)
I = 2 Aw 2 '

The formula holds only for > 0. We assumed that and g are zero (or simply not
defined) for negative.

42.3 Properties of Convolution

The convolution has many properties that make it behavedligeoduct. Let be a con-
stant andf, ¢, andh be functions, then

(i) fxg=gxf [symmetry]

(i) c(fxg)=cf*xg=fxcg, [c=constant]
(i) f*(g*h)=(f=*g)=*h, [associative property]
(V) f*(g+h)=f=*g+ fxh, [distributive property]

Proof: We give proof of (i) and all others can be done similarly. Bg thefinition of
convolution we have

t
Fea= [ ringte—rar
Substitutingt — 7 = u = —dr = du we get
0 t
Fra== [t =wgtdu= [ - wgudu =g+ f
This completes the proof. n

The most interesting property for us, and the main resulhisfliesson is the following
theorem.
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Convolution for Laplace Transform

42.4 Convolution Theorem

If f andg are piecewise continuous ¢h oo) and of exponential ordet, then

LI(f * 9)(®)] = LIf ()] Llg ()]

Proof: From the definition,

Li(f % g)(t / —st/f o(t — 7)drdt, [Re(s) a]

Changing the order of integration,

:/OOO /Ote_Stf(T)g(t—T)dth,

We now putt — 7 = u = —dr = du and get,

Li(f * ) / / S47) £ (1) g (u)dudr

/0 I f( )dT/O e *g(u)du
= L{f(t)]L[g(t)]

This completes the proof. n
In other words, the Laplace transform of a convolution is pineduct of the Laplace

transforms. The simplest way to use this result is in reversg to find inverse Laplace
transform.

42.5 Example Problems

425.1 Problem 1

Find the inverse Laplace transform of the functiors aefined by

1 1 1

(s+1)s2  s+1 2
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Convolution for Laplace Transform

Solution: We recognize the two elementary entries

1 ] 1
Lt L+ o = et and Lt {—} =t

Therefore,

11 t
Lt —2} :/ re~ =) d4r
s+ 1s 0

On integration by parts we obtain

1 1
-1 ¢
L [54'1_52]_6 +t—1.

425.2 Problem 2

Use the convolution theorem to evaluate
g SN
e

Solution: Note that

) 1 s
Lisint] = LB and  Licost] = 27
Using convolution theorem,
Llsint * cost] = L[sint|L[cost] = ﬁ

Therefore, we have

t
L1 [ﬁ] = /0 sin 7 cos(t — 7)dr.
Using the trigonometric equality/sin A cos B = sin(A + B) + sin(A — B) we get

Lt [m} = %/Ot[sint + sin(27 — t)]dr.

On integration we find

L {(7} — L4 L [_M]

2+ 1)2| 2 2 2 0

= 1t 1 tl[ t t]
= —tsint— — .
ptsmizjcost —cos
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Convolution for Laplace Transform

Finally we have the following result
_ s 1, .
L 1 {m} = it sint.
42.5.3 Problem 3

Use convolution theorem to evaluate

e

Solution: We know the following elementary transforms

s[2] -1

Vi ¢52¢L4[§%}:§%ﬁ

and

1
¥ =
]

Then by the convolution theorem, we find

1 1 f
gl L t:/ A Mnls
[\/5(8—1)} \/E*e o aro

Substitutionu = 7 = du = Ldr gives
T

2VT

_1¥_6_t/t6 _6—t/\/f_u2
e Y ity At

Thus, we have

5

425.4 Problem 4

Use convolution theorem to evaluate

# )
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Convolution for Laplace Transform

Solution: We know

2
L1 [i] :% and ! {

= sint.
: |

s24+1
By the convolution theorem we have

1

1 I
L_l {m] = tQ*Sint: §A SinT(t—T)QdT

2
— % {(— cos7(t —7)%) ‘; — 2/0t(t —7) COSTdT]

1

~ = {tQ —2((t—7)sin ) }’;+/Otsimdf} .

Finally we get the desired inverse Laplace transform as

-1 1 2
m == E—FCOSt—l.
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Module 2: Laplace Transform

L esson 43

L aplace Transform of Some Special Functions

In this lesson we discuss Laplace transform of some spematibns like error functions,
Dirac delta functions, etc. There functions appears inoveriapplications of science and
engineering to some of them we shall encounter while soldifigrential equations using
Laplace transform.

43.1 Error Function

The error appears in probability, statistics and solutimirsome partial differential equa-

tions. It is defined as
erf(t) \/_/ —v*

Its complement, known as complementary error functionefthed as
erfc(t) =1 — erf(t) / e du
c(t) ~ 7

We find Laplace transform of different forms of error functio the following examples.

43.2 Example Problems

43.2.1 Problem 1

Find Llerf(v/)].

Solution: From definition of the error function and the Laplace transfave have,

Llerf(v/t =7 / / e~Ste= dzdt

By changing the order of integration we get,

Llerf(\v/t =7 / / e~ste™ dtdx
x=0 Jt=x2
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Laplace Transform of Some Special Functions

Evaluating the inner integral we obtain

2
2 [ _pe 21 2
Lierf(v/1)] NG a::oe ; de = \/78/11)‘ 06 dx

Substituting\/(1 + s)z = v = dz = \/%du
1
Llerf —wqy =
lerf(v)] = \/_s\/1+s/xo du= sv/s+1

. ) o0 2 NG
Note that we have used the value of Gaussian mteﬁrale‘“ du = 5
x=0

43.2.2 Problem 2

Find L |erf K and show that,~! e 2V —erfc( k)
Vi)l s | Vi

Solution: By the definition of Laplace transform we have

L[erf(%)] /OOO —st 2 /f — du dt

Changing the order of integration we get

el o

Evaluation of the inner integral leads to

o) - )

Using the value of Gaussian integral we have

() 5[] s

Let us assume

00 2 2
ﬁ = / e—UQ—S% (—k—Q) du
ds 0 u
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Laplace Transform of Some Special Functions

Substitution¥** =z = — Y54y = dx leads to

ﬂ — _i = e—xQ_Sgdx —
ds Vs Jo

Solving the above differential equation we get

I

<=

InI(s) = —2kvs+Inc = I(s)=ce 2V

Further note that

Therefore, we get
I(s) = ge_%\/g

Substituting this value in the equation (43.1), we obtain

o)) ] o

Taking inverse Laplace transform on both sides we get

or(-5) < 1 [H = |55 a2

This leads to the desired result as
e 2kVs k k
=1 f — - fc e
5 ] * (ﬂ) * (ﬂ)

43.3 Dirac-Dedlta Function

L—l

Often in applications we study a physical system by puttm@ ishort pulse and then
seeing what the system does. The resulting behaviour is otibedimpulse response
Let us see what we mean by a pulse. The simplest kind of a mussimple rectangular
pulse defined by

0 if t <a,

a

pi(t) = /e fa<t<a+e,
0 if a+e<t.
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Laplace Transform of Some Special Functions

Let us take the Laplace transform of a square pulse,

Lwﬂwhzémeﬂwxww

Substituting the value of the function we obatin

a 1 ate —st
L) = [ e

€

On integration we get

—Sa

Ligt®] = ——[1 -]

We generally want to be very small. That is, we wish to have the pulse be verytshor
and very tall. By letting: go to zero we arrive at the concept of theac delta function
§(t — a). Thus, the Dirac-Delta can be thought as the limiting case @f ase — 0

(¢~ a) = lim ¢2(¢)
Sod(t) is a "function” with all its "mass” at the single point= 0. In other words, the
Dirac-delta function is defined as having the following prdges:

() 6(t—a)=0, Vi, t#a

(i) for any intervallc, d]

d 1 if the intervallc, d] containsg, i.e.c < a < d,
/ Ot —a)dt = :
c 0 otherwise.

(iii) for any interval|c, d]

d f(a) if theintervallc, d] contains, i.e.c < a < d,
/ 5t — a) f(x) dt =
c 0 otherwise.

Unfortunately there is no such function in the classicakseryou could informally think
thatd(t) is zero fort # 0 and somehow infinite at= 0.

As we can integraté(t), let us compute its Laplace transform.
Lo(t—a)] = / e S5(t —a) dt = e
0

In particular,
L[5(t)] = 1.
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Laplace Transform of Some Special Functions

Remark: Notice that the Laplace transform 6ft — «) looks like the Laplace trans-
form of the derivative of the Heaviside functieft — «), if we could differentiate the
Heaviside function. First notice

e—as

Llu(t—a)] =

S
To obtain what the Laplace transform of the derivative woboddwe multiply by, to
obtain e~?%, which is the Laplace transform &ft — «). We see the same thing using
integration,

/té(s—a) ds = u(t — a).
Soin a certain sense :

” %[u(t —a)] =d(t—a)”
This line of reasoning allows us to talk about derivativefuoictions with jump disconti-

nuities. We can think of the derivative of the Heavisidetiona:(t —a) as being somehow
infinite ata, which is precisely our intuitive understanding of the déiinction.

43.3.1 Example

ComputeL ! [#H].

Solution: We write,

L=t {%] =% [1 + ﬂ = Loshibt Bl H = 5(t)h 1

The resulting object is a generalized function which malegse only when put under an
integral.

Suggested Readings

Debnath, L. and Bhatta, D. (2007). Integral Transforms anelifTApplications. Second
Edition. Chapman and Hall/CRC (Taylor and Francis GrougwNork.

Dyke, P.P.G. (2001). An Introduction to Laplace Transfoemd Fourier Series. Springer-
Verlag London Ltd.

Schiff, J.L. (1999). The Laplace Transform: Theory and Agatlons. Springer-Verlag,
New York Inc.
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L esson 44

L aplace and Inverse Laplace Transform: Miscellaneous Examples

In this lesson we evaluate Laplace and inverse Laplaceftiams of some useful func-
tions. Some important special functions include Bessergfions and Laguerre poly-
nomial. Additionally, some examples demonstrating paddmtf Laplace and inverse
Laplace transform for evaluating special integrals willdnesented.

44.1 Bessel's Functions

The Bessel's functions of order(of first kind) is defined as
IR SV VA
Tult) _;r!(njwﬁ)! 2 '

This Bessel’s function is a solution of the Bessel’s equmatibordern

1 n?
y”+¥y'+(1—t—2)yzo

The Bessel's functions of orderand1 are given as

12 4 16
Jo(t):1—2—2+w—m+...
and
t P

Ji(t) = +...

2 224 T 2%
Note thaty)(t) = —Ji(1).

44.1.1 Example

Find the Laplace transform of Jy(¢) and Jy(¢).

Solution: Taking Laplace transform of th&(¢) we have

2 4 16

L[J()(t)]:[/ 1—2—2+W—W262+...
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Laplace and Inverse Laplace Transform: Misc. Examples

Using linearity of the Laplace transform we get

1 12 1 4 1 6
L= - wstors 2eg s

+ ...

This can be rewritten as

11 11_'_131 1351
252 2454 24646

LJo()] = -

With Binomial expansion we can write

~1/2
) =3 143 ===

Further note that [/ (¢)] = —L[J|(¢)] and therefore using the derivative theorem we find
LIJi(t)] = —sL[Jo(t)] + Jo(0)] = 1 — sL[Jo(t)], SinceJo(0) =1

Hence, we obtain
S

V1+ 52

L[Jl(t)] =1-—

44.2 Laguerre Polynomials

Laguerre polynomials are defined as

B el d"
nld

Ly (t)

The Laguerre polynomials are solutions of Laguerre’s teffitial equation

(e'"), n=0,1,2,...

d%y dy
rog T (l—a) +ny=0,n=012,...
44.2.1 Example
(s —1)"
Show that L{Ly ()] = 77—

Solution: By definition of the Laplace transform we have
e’} t gn
L{L,(t)] = / et D ()
0
_ - 6—(s—l)td_ (e—ttn) dt

’fl' 0 dtm

WhatsApp: +9157900900676 www.AgriMoon.Com
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Integrating by parts, we find

n—1

0 oo d
—(s—1 —tun
0 + (S — 1)/0 (& ( )tW (6 tt ) dt:|

Noting that each term ilg{;—_,l1 contains some integral power oo that it vanishes as
t — 0 ande— (=Y vanishes for — oo provideds > 1. Thus, we have

— o0 n—1
a) = | [T ey o

n—1

1| s d i
LLn(t)] = — eV (e717)

onl

n!

Repeated use of integration by parts leads to

L) = S { /0 T ety dt] SRR

n! n!

Hence, we get

Dfeae) = S22 = B2

44.3 Miscellaneous Example Problems

44.3.1 Problem 1

Using the convolution theorem prove that

L(m)I'(n

Tim+n)’ [m,n > 0].

1
B(m,n) = / u™ N1 = w)" e =
0

Solution: Let f(t) = t™1, g(t) = t"~1, then
(fxg)(t) = /Ot I R D
Substitutingr = ut so that & = ¢ du we obtain
(f*g)(t) = /01 tmym ==t — ) hdu
We simplify the above expression to get

1
(f *g)(t) =tmtn1 / w1 — w)" Ly = "I B(m, n)
0
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Taking Laplace transform and using convolution propersy,fivd
I'(m)C'(n)

L[tm+n_lB(m, n)] — L[f(t)] * L[g(t)] = L[tm—l] x L[tn_l] = sgm+n

Taking inverse Laplace transform,

T T
tm+n—lB(m, n) _ (m> (n) tm—l—n—l

I'(m+n)

Hence, we get the desired result as
_ P(m)I'(n)
B(m,n) = T(m 1 n)

44.3.2 Problem 2

Show that

[hntg 1
, Lt 2

1
5241

int A\
) S5 N / ds= = — tan"ls.
t s S2+1 2

Taking limit ass — 0 (see remarks below for details) we find

© sint T T
M =T _tan0) = .
/0 / y ~tan () =3

Solution: We know
Lisint] =

Therefore, we get

Remark 1. Supposethat f ispiecewise continuouson [0, co) and L[f(t)] = F(s) exists
for all s > 0, and [;° f(t) dt converges. Then lim,_o4+ F(s) = limso4 [y~ e S f(t)dt =
I f()dt.

Remark 2: If fis a piecewise continuous function ans [;°e~*!f(t)dt = F(s) con-
verges uniformly for all s € E, then F(s) is a continuous function on FE, that is, for
s —sg €k,

lim h e St f(t)dt = F(sg) = /OO lim e™ 5t f(t)dt.
0

S$—S0 0 S$—So
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Remark 3: Recall that the integral Jo" et f(t) dt is said to converge uniformly for s
in some domain Q if for any e > 0 there exists some number 7, such that if = > 7, then

/OO e Stf(t) dt) <e

T

for all sinQ.

44.3.3 Problem 3

Using Laplace transform, evaluate the following integral
*° xsinxt
/_OO 72 + a? d

Solution: Let —
f(t):/ x sin xt d
0

1’2—|—02

Taking Laplace transform, we get

F(s):/oOO - I,

22+ a? 22 + 52

Using the method of partial fractions we obtain

S | a? > 1 1
F(s) = — = i s 5_- — d
(s) /0 22452 1 5 a? /0 <x2 +a? 2+ 52> f

Evaluating the above integrals we have

1 00 1 1
F(s) = —tan™! (E) } — 2@ 5 {— tan ™! (£> — —tan™! <£>]
s s/lo  s?—a?|a a s s/,

On simplification we obtain

st+a
Taking inverse Laplace transform we find

£(1) = e

Hence the value of the given integral

© rsinaxt  rsin xt
/ 7dx:2/ o dr = we .
0

2 2 2 2
o XXt a T°+a
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Module 2: Laplace Transform

L esson 45

Application of Laplace Transform

In previous lessons we have evaluated Laplace transforchgnaerse Laplace transform
of various functions that will be used in this and followings$sons to solve ordinary
differential equations. In this lesson we mainly solveiaiivalue problems.

45.1 Solving Differential/lntegral Equations

We perform the following steps to obtain the solution of degéntial equation.
(i) Take the Laplace transform on both sides of the giverediiftial/integral equations.
(i) Obtain the equatior|y] = F(s) from the transformed equation.

(iii) Apply the inverse transform to get the solutionas: L=1[F(s)].

In the process we assume that the solution is continuoussaofdexponential order so
that Laplace transform exists. For linear differential &ipns with constant coefficients
one can easily prove that under certain assumption thaollhé@ is continuous and is
of exponential order. But for the ordinary differential @fjons with variable coefficients
we should be more careful. The whole procedure of solvingdinhtial equations will be

clear with the following examples.

45.2 Example Problems

4521 Problem 1

Solve the following initial value problem

d? /
—5+y=1 y0)=y©=0.

Solution: Take the Laplace transform on both sides, we get

Ly + Ly = L[1]

WhatsApp: +91 7900900676 www.AgriMoon.Com



Application of Laplace Transform

Using derivative theorems we find
S*Lly] — sy(0)y (0) + Lly] = L[1]

We plug in the initial conditions now to obtain

1 1
2
Ml 0+s) =5 = S
Using partial fractions we obtain
1 ]
=51

Taking inverse Laplace transform we get

y(t) =L} H —L‘ll i ] =1 cost

s 1+ s2

45.2.2 Problem 2

Solve the initial value problem

() + x(t) = cos(2t), x(0) =0, 2'(0)=1.

Solution: We will take the Laplace transform on both sides. Bg) we will, as usual,
denote the Laplace transformof).
L[z" (t) 4+ x(t)] = Llcos(2t)],
2 B o _ e
s°X(s) — sx(0) — 2'(0) + X (s) R
Plugging the initial conditions, we obtain

2 . S
s°X(s) =1+ X(s) = 21

We now solve forX (s) as
s L 1
(s2+1)(s2+4) 241

X(s) =

We use partial fractions to write
1 s 1 s 1

X(s) == — =
() 3s2+1 352+4+52+1
Now take the inverse Laplace transform to obtain
1 1
x(t) = 3 cos(t) — 3 cos(2t) + sin(t).
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45.2.3 Problem 3

Solve the following initial value problem

d?y dy 2 3t !
— —6— 49y =t 0) =2, y (0) = 6.
Gz O Ty =t y(0) =2,y (0)

Solution: Taking the Laplace transform on both sides, we get

$?Y (s) = sy(0) =y (0) — 6 [sY () — y(0)] + 9 (s) = =

Using initial values we obtain

s2Y (5)2s — 6 — 6 [sY (s) — 2] + 9Y (s) =

We solve forY (s) to get
2 N 2(s —3)
(s—-3)°  (s—3)

Taking inverse Laplace transform, we find

Ys) =

2 1
y(t) = E#et?’t + 23 = E#et?’t + 2¢%,

45.2.4 Problem 4

Solve
y'+y=CH(t—a), y(0)=0,y(0) =1

Solution: Taking Laplace transform on both sides, we get

o0

sV (s) — sy(0) — y/(O) +Y(s)= C/ e st dt

a
We substitute the given initial values to obtain

—as

(s> +1)Y(s) =1+ C—

Solve forY(s) as
1 —as
+C

Yis)= s2+1 s(s?+1)
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Method of partial fractions leads to

y(t) = sint + CL~! [(1 o ) 6—%]

s  s241

By inverse Laplace transform we obtain

y(t) =sint + CH(t — a)[l — cos(t — a)].

4525 Problem 5

Solve the following initial value problem

') +z(t)=H({t—1)— H(t-5), z(0)=0, 2'(0)=0,

Solution: We transform the equation and we plug in the initial condsi@as before to
obtain

—S —bs

€ (&

s°X(s) + X(s) =

s s
We solve forX(s) to obtain

e S 6_58

XeIs s(s2+1)  s(s2+1)

We can easily show that

1
Lt =1 — cost.
e

In other words[1 — cost] = . S0 using the shifting theorem we find

s(s2+1)

L1 [s(si_jt 1)} =L ' [e*L[1 — cost]] = [1 —cos(t — 1)] H(t —1).

Similarly, we have
6—58
L=t {m} =L ' [e L[l — cost]] = [1 — cos(t — 5)] H(t — 5).

Hence, the solution is

x(t) = [1—cos(t —1)] H(t — 1) — [1 — cos(t — 5)] H(t — 5).
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45.2.6 Problem 6

Solvethe initial value problem

2 +wir=6@1), z(0)=0, 2/(0)=0.

Solution: We first apply the Laplace transform to the equation
s°X(s) +wiX(s) =1

Solving for X (s) we find

1
82+ Wl
Taking the inverse Laplace transform we obtain

a(t)

X(s)

_ sin(wot)
= —

45.2.7 Problem 7

Solve the initial value problem

y' +2y' +2y=6(t—3)H(t-3), =(0)=0, z'(0)=0.

Solution: Recall the second shifting theorem
Lf(t— a)H(t - a)] = e *F(s)
We now apply the Laplace transform to the differential emunato get
$2 (s) — sy(0) — 4 (0) + 2 [sY (s) — y(0)] + 2V (5) = €™
Plugging the initial values we find
(s + 25 +2] V(s) = e %

Solving forY (s) we get

_ ; —3s
Y = o1
Taking inverse Laplace transform with the use of first anesdcshifting properties we
obtain X
_ 71\  =3s| _ o —(t—3) o i
y(t) =1L [EESE 1]6 H(t—3)e sin(t — 3).
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L esson 46

Application of Laplace Transform (Cont.)

In this lesson we continue the application of Laplace tramsffor solving initial and
boundary value problems. In this lesson we will also lookdiffierential equations with
variable coefficients and some boundary value problems.

46.1 Example Problems

46.1.1 Problem 1

Find the solution to
" +wiz = f(t), x(0)=0, '(0)=0,

for an arbitrary function f(t).
Solution: We first apply the Laplace transform to the equation. Deggatire transform
of z(t) by X (s) and the transform of (¢) by F(s) as usual, we have

s X () + wiX(s) = F(s),

or in other words
1

X(s) = F(s)m.

We know

-1 1 _ sin(wot)
s+ w? wo

Therefore, using the convolution theorem, we find

o(t) = /0 f(T)sin(wo(t - 7‘)) ar.

wo

or if we reverse the order

wo

 sin(w
x(t) :/0 Mf(t—ﬂ dr.
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46.1.2 Problem 2

Find the general solution of

Solution: Taking Laplace transform on both sides

2 (s) - 5y(0) — (0) + Y (s) = —

s+1
Denotingy(0) by yo andy’(0) by y; we find
1
(s2+1)Y(s) — syo —y1 = o]
Now we solve fory'(s) to obtain
1 540 Y1

Yi(s) =
(s) (s+1)(82+1)+52+1+52+1

Method of partial fractions leads to

1 1 s—1 sYo Y1
Y(s) == —
(s) L+1 52+1]+52+1+52+1

Taking the inverse transform we get

1 = 3% 1. .
y(t):ie —écost—i—ismt+yocost+ylsmt

This can be rewritten as
(t) Lt + L cost) + + L sint
= = - = - 1
Y 26 Yo 5 hn 5
Note thaty, andy, are arbitrary, so the general solution is given by

1
y(t) = 56_t + Cpcost + Cysint.

46.1.3 Problem 3

Solve the following boundary value problem

y' +y=cost, y(0)=1,y (E> = 1.
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Solution: Taking Laplace transform on both sides we get,

s2Y (s) — sy(0) — y/(O) +Y(s) = 241

We solve forY'(s) to get

s L8 +y(0)
(s24+1)2  s2+1 s2+41

Y(s) =

Taking inverse Laplace transform on both sides we get,
1 /

y(t) = §tsint + cost +y (0)sint.

Giveny(%) = 1, therefore

17

1= 404y (0 =y 0 = (1-F).

22 4

Hence, we obtain the solution as

1 . T .
y(t) = 5tsmt—|—cost+ (1 - Z> sin t.

46.1.4 Problem 4

Solve the following fourth order initial value problem

d4y

pre —o(z — 1),

with theinitial conditions

Solution: We apply the transform and get

1Y (s) = $%(0) = $29/(0) — sy/(0) — y/"(0) =~

We notice thaty(0) = 0 andy”(0) = 0. Let us callC; = /(0) andCs = y"’(0). We solve

for Y(s), D e o
—€ 1 2
T Tt
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We take the inverse Laplace transform utilizing the secdniftirsg property to take the
inverse of the first term.

—(9:6— 1)3u
We still need to apply two of the endpoint conditions. As tbeditions are at = 2 we
can simply replace(x — 1) = 1 when taking the derivatives. Therefore,

C
y(zr) = (x—1)+ Ciz + %x?’.

—2-1)° Cy s —1 4
—y2)= 2 N 293 - "1 9o 4 2
0=y(2) 5 + C1(2) + 5 5 + C1+3Cz,
and .
~3.2.(2-1
0=y'(2) = = C=D Gy g9 1100y,

6 6
HenceC, = 5 and solving forC; using the first equation we obtain = —*. Our solution

for the beam deflection is
e N3 3

We now demonstrate the potential of Laplace transform fonirsg ordinary differential
equations with variable coefficients.

46.1.5 Problem 5

Solve the initial value problem

!’

y +ty —2y=4; y(0)=-1, y(0)=0.

Solution: Taking Laplace transform on both sides we get,

/

s%«ﬁ—smm—yan+(—%Lw0—oY@w:um]

Using the given initial values and applying derivative tteen once again, we get

LY (5) 5~ (s () ~ y(0)) ~ 2Y (s) = -

On simplification we find the following differential equario

dy 3 4
ﬁ‘i‘(g—S)Y(S)——?—Fl
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Integrating factor of the above differential equation iegi as
ef(%—s) ds _ 836—87

Hence, the solution of the differential equation can betemias
S2 4 S2
Y(s)sPe™ T = / (—? - s) sPe” T ds +c
On integration we find

52 S

52 52
Y(s)sde™ T =4e” T — <S26_7) +/236_7 ds+c

[ V)

We can simplify the above expression to get

2 1 C 52
CRRNOL
(s) 3 S+ 836

Since,Y (s) — 0 ass — oo,c must be zero. Putting = 0 and taking inverse Laplace

transform we get the desired solution as

y(t) =t> -1

46.1.6 Problem 6

Solvethe initial value problem

/

ty +y +ty=0; y(0)=1, y (0)=0

Solution: Taking Laplace transform on both sides we get,

d d

—EL[?J”] + Ly ]+ (—EL[@/]) =0

Application of derivative theorem leads to

d

L2V ()~ sy O} + 4 () (0} — ¥ (5) = 0

ds

Plugging initial values, we find

(52 +1) Y/(s) +sY(s)=0
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On integration we get
C

V1+s?

Taking inverse Laplace transform we find
y(t) = cJo(t)
Notingy(0) =1, Jy(0) = 1, we findc = 1. Thus, the required solution is

y(t) = Jo(t).

Y(s) =
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Lesson 47

Application of L aplace Transform (Cont.)

In this lesson we discuss application of Laplace transfansblving integral equations,
integro-differential equations and simultaneous diffiied equations.

47.1 Integral Equation

An equation of the form

t
ﬂﬂ=ﬂ0+élﬂhwﬂw&u

or !
ngékwwﬂmm

are known as the integral equations, whge is the unknown function. When the kernel
K (t,u) is of the particular formk (¢, ) = K (t — u) then the equations can be solved using
Laplace transforms. We apply the Laplace transform to tedguation to obtain

F(s) =G(s)+ K(s)F(s),

whereF(s), G(s), andK (s) are the Laplace transforms pft), ¢(¢), andK (¢) respectively.

Solving for F(s), we find
__G()
11— K(s)

F(s)

To find f(¢) we now need to find the inverse Laplace transforny’'of). Similar steps can
be followed to solve the integral equation of second typetmnead above.

47.2 Example Problems

47.2.1 Problem 1

Solve the following integral equation

fE) =+ /0 sin(t — u) f(u) du.
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Solution: Applying Laplace transform on both sides and using conumtutheorem we
get,

On simplifications, we obtain

Lo |1- | = o

8241 s+ 1

This further implies

2 + 1
L0 = 2551
Partial fractions leads to 9 1 1
L[f(t)] = Tt

s+1 s s
Taking inverse Laplace transform we obtain the desiredisolas

f)=2et+t—1

47.2.2 Problem 2
Solve the differential equation

t
z(t) =et + /0 sinh(t — 7)z(7) dr.

Solution: We apply Laplace transform to obtain

1 1
X(s) = X
(5) S+1+S2—1 (5),
or )
) -1 S 1
X — s+1 — 5 — — .
(s) 1— 53— s2-2 s2-2 s2-2
se—1

It is not difficult to take inverse Laplace transform to find

z(t) = cosh(vV2t) — % sinh(V21).
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47.2.3 Problem 3

Solve the following integral equation for x(t)

t
2 :/ e'x(r) dr,
0

Solution: We apply the Laplace transform and the shifting propertyeti g

32_3 _ %L[et:c(t)] _ éX(s _,
whereX (s) = L[z(t)]. Thus, we have
2 2
X(s—l)zs—2 or X(s):<s+1)2.

We use the shifting property again to obtain

z(t) = 27t

47.3 Integro-Differential Equations

In addition to the integral we have a differential term in theegro differential equa-
tions. The idea of solving ordinary differential equati@r integral equations are now
combined. We demonstrate the procedure with the help ofll@ing example.

47.3.1 Example

Solve

d t
d—i + 4y + 13/ y(u) du = 3¢~ sin 3t, y(0) = 3.
0

Solution: Taking Laplace transform and using its appropriate progevre obtain,

Y(s) 3
sY(5) = y(0) +4Y (s) + 13— = 3(5 T
Collecting terms of"(s) we get
s% +4s+ 13 9
— Y(s)—7(8+2)2+9+3
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On simplification we have
9s n 35
[(s+2)2+97 (5+2)2+9

Taking inverse Laplace transform and using shifting theowee get

9(s—2) 3(s—2)
(s249)*  s2+9

y(t) = e

We now break the functions into the known forms as

A LR . S B (I
g\ = (2497 (s249?% (2492 $2+9 249
[ 95 29 3s 7

—ot -1
=e L 2 A 5T 2 T2
[(s24+9)7 (2497 s°+9  s°+9

Using the the following basic inverse transforms

-1 a - —1 S .
L [m = Sin at, L [m} = cosat
2 2 2
Lt ﬁ — tsinat, L' ﬁ =t cosat.
s“+a s“+a

We find the desired solution as

i
y(t) = e 2 Et sin 3t + t cos 3t + 3 cos 3t — 3 sin 34

47.4 Simultaneous Differential Equations

At the end we show with the help of an example the applicatidraplace transform for
solving simultaneous differential equations.

47.4.1 Example

Solve

dx dy
=9y — -
dt z =3y, dt

subject to the initial conditions
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Solution: Taking Laplace transform on both sides we get
sX(s) —x(0) =2X(s) — 3Y(s)

and
sY (s) — y(0) = Y(s) — 2X(s)

Collecting terms ofX (s) andY (s) we have the following equations

(s —2)X(s) +3Y(s)

2X(s)+ (s —1)Y(s)

8 (47.1)
3 (47.2)

EliminatingY (s) we obtain
(s —1)(s—2)—6]X(s) =8(s—1)—9

On simplifications we receive

8s — 17
X .
(5) (5_D(s+1)
Partial fractions lead to
5 3
X(s) = b 1
(s) s+ 1 J g ="y

Taking inverse Laplace transform both sides we get
z(t) = 5e ! + 3t
Now we solve the above equations (47.1) and for (4Y.2)
[6— (s =1)(s =2)]Y(s) =16 — 3(s — 2)
On simplifications we get
3s — 22 3s — 22

Y = e i~ o6 D)

Using the method of partial fractions we obtain

Taking inverse transform we get

y(t) = be ! — 2eM.
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L esson 48

Application of L aplace Transform (Cont.)

In this last lesson of this module we demonstrate the patieotiLaplace transform for
solving partial differential equations. If one of the in@gylent variables in partial differ-
ential equations ranges froono co then Laplace transform may be used to solve partial
differential equations.

48.1 Solving Partial Differential Equations

Working steps are more or less similar to what we had for sghardinary differential
equations. We take the Laplace transform with respect teghable that ranges fromto
oo. This will convert the partial differential equation inta ardinary differential equation.
Then, the transformed ordinary differential equation ningssolved considering the given
conditions. At the end we take the inverse Laplace transtehich results the required
solution.

Denoting the Laplace transform of unknown variable, ¢) with respect ta: by U(z, s)
and using the definition of Laplace transform we have

U(x,s) = L{u(x,t)] = /000 e Stu(x,t) dt

Then, for the first order derivatives, we have
, oul [ _you , d [T _, _du
(Z)L[%]—/O e %dt_%/o e u(x,t)dt—d—x

. u _ > —sta_u _ —st OO_ > o —st
(17) L{E} —/0 e dt=e u‘o /0 u(—s)e " dt

o
= —u(x,0) + s/ ue” S dt
0

= L {%} — —u(z,0) + sU(z, s)
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Similarly for the second order derivatives we find

0% d2U
(id) L [@} =0z

(iv) L [W} = s?U(z, s) — su(x,0) — %(x, 0)

(v) L [ 82“} - S%U(l’, 5) — %u(x,m

Remark: In order to derive the above results, besides the assumptions of piecewise
continuity and exponential order of u(x,t) with respect to ¢, we have also used the fol-
lowing assumptions: (i) The differentiation under integral signisvalid and (ii) The limit
of the Laplace transform is the Laplace transform of the limit, i.e., lim,_,,, L [u(z,t)] =

L limy gz, u(z,t)].

48.2 Example Problems

48.2.1 Problem 1

Solve the following initial boundary value problem

Ou  Ou
= o u(z,0) =z, u(0,t) =t

Solution: Taking Laplace transform

d
%U(.’L‘7 3) = SU(CL’, 5) - u(x, O)

Using the initial values we get

d
—U(z,s) —sU(x,s) = —x
dx

The integrating factor is
LF =[50 — s
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Hence, the solution can be written as
Ulx,s)e *" = —/xe_“ dz +c
On integration by parts we find

Ulx,s)e”*" = —x

Simplify, the above expression we have
Ulx,s) = Iy ! + ce®®
S S
Using given boundary condition we find

1
8—2:8—24‘06“% = c=0
With this we obtain
B 1
U = —+ =
(cfs) = =+ -

Taking inverse Laplace transform, we find the desired smiuis

u(xz,t) =x+1t

48.2.2 Problem 2

Solve the following partial differential equation

@+x@—
ot or

with the following initial and boundary condition

z, x>0,t>0

u(x,0) =0, z >0 and u(0,t) =0, ¢ >0

Solution: Taking Laplace transform with respectitave have

d
sU(x,s) —u(z,0) + x%U(x, s) =

E, s>0
S
Using the given initial value we find

d s 1
%U(x, s) + EU(x, s) = .
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Its integrating factor is* and therefore the solution can be written as

1 1
U(x,s)xsz/gxsdx+c = U(x’s):s(s+1)x+ﬁ

Boundary condition provides
u(0,t) =0 = U(0,s) =0, = ¢=0

Ule,s) = s(sil) :x[%_sil}

Taking inverse Laplace transform we find the desired saiud®

Thus we have

u(z,t) =z [1—e']

48.2.3 Problem 3

Solve the following heat equation

ou_ P
ot o2’

with the initial and boundary conditions

z>0,t>0

u(x,0) =1, u(0,t) =0, lim =1

T—00

Solution: Taking Laplace transform we find
2
sU(z,s) —u(zx,0) = @U(x, s)

Using the given initial condition we have

Its solution is given as

1
Ulx,s) = creVs® 4 cpe VA 4 =
s

The given boundary conditions give

1
lim U(z,s)=- = ¢ =0
T—00 S

WhatsApp: +9147900900676 www.AgriMoon.Com



Application of Laplace Transform (Cont.)

and

1 1
U0,5)=0 = c1+c+-=0 = c=—
S S

Hence, we have

1 1
Uz, s) = —;e_\/gx +

Taking inverse Laplace transform we find the desired solui®

u(z,t) =1— L7 Ee‘\/ﬂ —1- {1 — erf (2%/%)} = erf (2%/%)

48.2.4 Problem 4

Solve the one dimensional wave equation

Py 0%

W—aw, l’>0,t>0

with theinitial conditions
y(l’,O) F— ]-7 yt(xv 0) =0

and boundary conditions

y(0,t) =sinwt, lim y(z,t) =0
T—r 00

Solution: Taking Laplace transform we get

2

d
SQY({E, S) - S’y(l’, O) - yt(xv O) - QQEY(QL" S) =0

With the given initial condition we have the resulting diffatial equation

% _ 52

w2

Its general solution is given as
Y(z,s) = crea® + cpe”a®
The given boundary conditions provides

lim Y(z,s) =0 = ¢ =0,

T—00
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Application of Laplace Transform (Cont.)

and
w w
Y(0,8) = 5—— = =
(0, 5) 52 + w2 @ 52 + w2
Thus we have
w s
Y =_—— ¢ a%
(z,5) 2+ w2t

Taking inverse Laplace transform we obtain
y(x,t) = sin [w (t - g)} H (t - g) :
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Engineering Mathematics 111
Module 2: Laplace Transform

QUIZ
. {0, 0<t,t>b .
1. Laplace transform of the rectangular wave function W (t —a, b)_{l, a<t<p S
1 as S 1 —as —bs
() =(e*-e") (b) Z(e*-e™)
S S
1 —bs —as 1 bs as
—-|e " —e d —(e” —¢€
© ) @ < )
2. Laplace transform of the function sin® pt is
_ A g 2P
(@) s(s*+4p?) (b) s(s*+2p)
2p? 2p
S+ ap?) DS +ap?)
3. Laplace transform of the function Sinat cosbt is
a’(s’+a’-b’) a(s’+a’-b?)

(a) (b)

(32 +(a+b)2)(s2 +(a—b)2) (32 +(a+b)2)(s2 +(a—b)2)
a(sz+a2_b2) a(sz+a2—b2)2

(sz+(a+b) )(32+(a—b) ) @ (sz+(a+b)2)(sz+(a—b)2)

(c)

4. Which of the following function is not piecewise continuous?

1 2t, t<
(@) ft)=—7,t=2 (b) f(t)=
t-2 1+t2, t>1
e 0 tsin{lj, t0
(0 f)y=1 ! (d) f(t)= t
0, t=0 0, t=0
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5. Laplace transform of t?cosat is

(a) 23(52 + az)f2 —8azs(s2 +a’ )73 (b) 23(52 + az)f2 —8azs(s2 +a’ )72

() 2s(s*+a’ )72 —8a 5(32 +a’ )73 (d) 25’ (32 + az)f2 —8azs(s2 +a’ )73

6. Laplace transform of f(t) = |Sin(t)|, t>0is

1_ e—27rS

(a) e (b) 1-e™
@ (1+e?)(s* +1) (Lre)(s'+1)
1+e™™ 1-e™
<) (1-e7)(s*+1) N (1+e)(s*+1)
7. Llaplace transform of f(t)=tH(t—a), t>0is
@ & [i-as) (b) e
s ?[1+ as|
(c) i—:s[l—as] (d) i—:s[l+ as]

8. Which of the following functions does not possess the Laplace transform?

(a) e‘erfc(\/f) (b) sin(e‘z)
(© e d) te" sin(etz)
9. The value of L{ZZS_'_B} is
s°+4
3. 3.
(a) c052t+§sm2t (b) 20052t+§smt
3. 3.
(c) 20052t+zsm2t (d) 20052t+§sm2t
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2-5s i
(s—6)(s* +11)

10. The inverse Laplace transform of

(a) %[—28&3‘ +28c0sT1 t— 2L sin i1 t}

J11
(b) i_—28e‘“ —28cosJ1_1t+ﬂsinJ1_1 t}
47| J11
(c) i_289*“ +28c0s+/11 t—ﬂsin\/l_l t}
47| Ji1

(d) 4—17{28e6t —28c0s+/11 t —%sin J11 t}

i

11. The value of L* [&:l is

4s* —4s+1
(a) %ez (6-T7t), (b) %9_2(6—7t),
1L 1 -4
() =e?(6+7t), (d) Ze?(6+7t),
8 8
12. The value of F(S) = 2_% is
(a) %H(t—n)cosh{\/f(t—z)} (b) %H(t—ﬁ)sin{ﬁ(t—n)}
(c) %H(t—ﬂ)cos{ﬁ(t—ﬂ)} (d) %H(t—ﬂ)sinh{x/?(t—fr)}

315 WhatsApp: +91 7900900676 www.AgriMoon.Com



2

13. The solution of the initial value problem d—y+ﬂ =(1-H(t —1)); y(0)=1y'(0)=-1 is

dt> dt

(a) y=t-1+2e'-H(t-1)(t-2+e"") () y=t-1+2e'—H(t-1)(t+2+e")

(@ y=t-1+2e*-H(t-1)(t-2+e") (@) y=t-1+2e —H(t-1)(t+2+e")

14. The solution of the initial value problem
2

d°y
dt?

cost, O<t<r

+y="f(t); y(0)=y'(0)=0; where f(t)={

@ y=[toost+H(t-n)(t-m)sin(t-=)]
) y=1[tsintH (t-7)(t-F)sin(t-7)]
@ y=5[tsint—H (t-7)(t-r)sin(t-7)]

(d y= %[tcost— H(t-7)(t-7)sin(t-7)]

t
15. The solution of the integral equation y(t) =sint + ZI y(u)cos(t—u)du 1is
0

(@) y(t)=te™ (b)  y(t) =t
(€ y(t)=te' (d) y(t)=t%"
316 WhatsApp: +91 7900900676

www.AgriMoon.Com



t
16. The solution of the integro-differential equation %ﬁ%y(t) + ZJ. y(u)du =t; y(0)=11is
0
1 5 1 5
t)==-2e"+=¢* b ty==-2e'+=e™
@ yO=7 5 () y()=2 5

5

(c) y(t):%—Ze‘+§e >

(d) y() =%—2e‘t +§e

17. The solution of the wave equation

&y _oy.

e ? O<x<1 t>0
X

with the following initial and boundary conditions

y(X,0+) =sinzx, 0<x<1, Y, (X,0+)=0, O0<x<1
y(0,t)=0, t>0, y@,t)=0, t>0

is
(@)  y(x,t) =sin zxcos zt (b)  y(x,t) =sin2zxcosxzt
()  y(x,t)=sinzxcos2xt (d)  y(x,t)=sin2zxcos 2zt

t
18. The solution of the integral equation F(t) =t+ 2'[ cos(t —u)F(u)du
0

(a) 2e'(t—-1) -2+t (b) 2e'(t+1)+2+t

(c) 2e'(t-1)+2+t (d) 2e'(t-1)+2+t
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Tosint
19. The value of the integral J.e’t Tdt is
0

Vg Vg

(a) 5 (b) N

Vg Vg

il d =

(c) 3 (d) 5

20. The value of the integral Ite_3t costdt is
0

1 2

(a) 2 (b) 2

3 4

(c) 25 (d) 25
Answers:

i =t 2. C

3. b 4. a

5. a 6. C

7. d 8. ¢C

9. d 10. a

11. a 12.d

13. a 14. b

15. ¢ 16. d

17. a 18. ¢

19. b 20.b
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